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Highly efficient designs to handle the

incorrect specification of linear mixed models

S.A. Ortega-Azurduy,1 ,∗ F.E.S. Tan1 and M.P.F. Berger1

1University of Maastricht,Department of Methodology and Statistics,

P.O. Box 616, 6200 MD Maastricht, The Netherlands

Summary. We apply a maximin criterion to examine the relative efficiency

of several Dq-optimal designs for a family of linear mixed models. Incorrect

specifications of the order of the polynomial, size of the autocorrelation pa-

rameter, number of random parameters, and the correlation between random

intercept and random slope are investigated. The results of our study allow

us to draw the following conclusions: 1) the maximin Dq-optimal design

encountered appears to be highly efficient;2) the variation of the minimum

relative efficiencies of Dq-optimal designs of the family of linear mixed mod-

els that were studied, decreases as the order of the polynomial increases; 3)

the effect of the autocorrelation parameter on the relative efficiencies of Dq-

optimal designs is the largest for first-degree polynomials; and 4) the relative

efficiency of the equidistant design is lower than that of the maximin value

and also lower than the reference value 0.85.

Key words: D-optimality; Dq-optimality; first-order autocorrelation; lin-

ear mixed models; maximin criterion; relative efficiency; robust designs

∗email: shirley.ortega@STAT.unimaas.nl
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1. Introduction

Longitudinal and repeated measure designs are widely used by practitioners

for experimental and observational studies. These designs target to investi-

gate changes over time in subjects and are usually analyzed by linear mixed

models (LMM). See e.g. Laird and Ware(1982); Verbeke and Molenberghs

(2000).

An optimal design for longitudinal and repeated measurements depends

on the assumed model. Practitioners, however, do not know beforehand the

underlying model of a studied phenomenon and data analysts usually choose

designs with sufficient number of time points at convenient places. This often

results in loss of efficiency. The estimated coefficients of the underlying model

are often not estimated efficiently because a chosen model with covariance

matrix may differ from the true model and covariance matrix. In this paper,

we will focus on the problem of finding efficient designs for linear mixed

models that remain highly efficient even if the true model is not known.

The importance of studying optimal designs for linear mixed models has

been advocated by many authors, Abt et.al. (1988, 1997). These authors

searched for optimal designs for linear and quadratic growth models with

random intercept and autocorrelated structures.

The robustness of designs against incorrect specifications of the polyno-

mial model has been studied in recent years by Wong(1994); Dette(1997) and

Moerbeek (2004). Few authors, however, have provided evidence of the draw-

backs of specifying incorrectly random-effects models. Tan and Berger(1999);

Berger et.al(2002) and Berger and Tan(2004) compared some D-optimal de-

signs for polynomial regression models where either the random intercept

2
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variance or the random slope variance was fixed given a first-order auto-

correlation structure, AR(1). They showed that regardless the underlying

polynomial regression model, the number of repeated measures should be

chosen as close as possible to the number of regression parameters.

Berger et.al(2002), Ouwens et.al. (2002) and Berger and Tan(2004) stud-

ied maximin designs for mixed models. Their papers focuss on D−optimal

cohort designs for first- and second-degree polynomial models with a (fixed)

value for either the random intercept or the random slope variance and within

specific intervals for the serial correlation parameter and the error variance.

In this paper we will expand their results and search systematically for ef-

ficient designs for a larger range of linear mixed models. The issues of concern will

be 1. expand the class of models to a third-degree polynomial model, 2. extend

the parameter values of both: the random intercept and the random slope variances,

and 3. show that a discrete approximation of the standardized maximin method

proposed by Dette and Neugebauer(1997) and Dette et.al.(2006) will lead to highly

efficient designs for models and combinations of parameter values which often

occur in practice.

The remainder of this paper is as follows. In section 2, we will include a

motivating example. In section 3, we will introduce the linear mixed model

framework and the formulation of the maximin criterion for these models.

In section 4, we will explain our numerical approach. Thereafter, we will

present the obtained results in section 5. We will discuss some special cases

in section 6. Finally, in section 7 we will summarize our conclusions.

3
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2. Motivating example

In longitudinal studies of psychiatric disorders, uncovering relationships be-

tween pharmacological treatments and its therapeutic effects in patients is

decisive. An experiment involving an antidepressive drug treatment for de-

pressive inpatients was conducted to examine the relationship between an-

tidepressants plasma levels and severity of depression. See for details Gram

et.al.(1976) and Reisby et.al(1977). The inpatients were followed during an

one-week baseline placebo period. Thereafter, a fixed drug’s dose was admin-

istered during four weeks. Plasma levels of the drug in blood samples were

measured and the clinical response of patients was rated using the Hamilton

Rating Scales for Depression (HAM-D) at a total of six equally spaced time

points.

Hedeker et.al(1989) and Hedeker and Gibbons(1996) used linear mixed

models to analyze the experimental data and regress HAM-D scores on weeks

by polynomial models with random intercepts and random slopes. Their

results indicated a significant effect of the treatment on the response across

the time points and evidence of a first-order autoregressive process in the

residual errors.

The design of this study is characterized by the number of time points,

the location of the time points and by the number of patients measured at the

time points. In general, the design of such studies can be improved if more

specific information is available about the best fitting linear mixed model.

Information about the degree of the polynomial describing the trend over

time, the random parameters and the autocorrelation errors may enable the

researcher to choose a locally optimal design for such studies. The prob-

4
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lem is, however, that such information is rarely available in the design stage

of a study. Sometimes, previous research may provide reasonable guesses

about these parameter values, but usually the researcher does not know the

information required to find an optimal design for his/her study. The prob-

lem of finding an optimal design for linear mixed models is hampered by

the fact that the information about the parameter may be incorrectly spec-

ified. A robust design for these studies should be capable to deal with the

incorrect specification of the degree of the polynomial involved, the random

variance-covariance structure and the size of the serial correlation. The use

of a maximin criterion to identify maximin designs would be an alternative

to overcome model and covariance structure uncertainty and reduce experi-

mental costs.

3. Linear mixed models and optimality of designs

Let yi be a continuous response of subjects i = 1, . . . , n with three compo-

nents: the overall-population effects, the random subject-specific effects and

the first level within-subjects error terms. For each subject, the measured

response is given by:

yi = Xiβ + Zibi + ei, (1)

where β denotes a p × 1 vector of unknown population parameters, Xi is

a known q × p design matrix linking β to yi. The number of the fixed

parameters of the polynomial regression and the number of design points

(or time points) are given by p and q, respectively. Let bi denote a k × 1

vector of unknown subject-specific effects and Zi be a known q × k design

5
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matrix linking bi to yi. The random-effects parameter vector bi represents

how the ith subject deviates from the average population and it is normally

distributed with mean 0 and k × k covariance matrix D, i.e., N(0,D). We

will restrict ourselves to a 2 × 2 covariance matrix D, where d11 stands for

the variance of the random intercepts, d12 is the covariance between the

random intercepts and random slopes and d22 corresponds to the variance of

the random slopes. In practice, the most often encountered mixed models

have only random intercept and random slope terms (Hedeker et.al., 1989;

Hedeker and Gibbons, 1996). Thus, the quadratic and cubic random effects

are assumed to be fixed, throughout.

The errors ei are distributed as N(0, σ2Ψi). Here σ2Ψi is a positive-

definite covariance matrix, and depends on the correlation parameter ρ of

the time lag between the jth and j ′th time points xj and xj′, i.e., ρabs(xj−xj′ ).

These elements of the within-subject correlation matrix Ψi correspond to an

exponentially decreasing function known as autoregressive correlation struc-

ture in which the time points xj are not necessarily equally spaced. We will

symbolize this structure by AR1. Although other structures for Ψi exist, we

will restrict ourselves to this structure because it is the most often encoun-

tered structure in longitudinal designs. For a list of other possible variance-

covariance structures, see Verbeke and Molenberghs (2000, p.99-100) . No-

tice that the random variables bi and ei are independent, identically and

normally distributed.

In what follows we will assume that design matrices Xi and Zi and covari-

ance matrix Vi are the same for each subject. So, if we will consider that mea-

surements are taken at the same design points for all subjects, the model (1)

6
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can be written as a family of linear mixed models: Y = Xβ+Zb+e, whereof

Y,X, β,Z,b, and e are all matrices concatenating n subject-specific regres-

sion models, i.e. Y = (y′

1, . . . ,y
′

n)′, X = (X1, . . . ,Xn)
′ , β = (β1, . . . , βp)

′,

Z = Diag(Z1, . . . ,Zn), b = (b′

1, . . . ,b
′

n)′ and e = (e′

1, . . . , e
′

n)′. This linear

mixed model implies a marginal model Y distributed normally with mean

Xβ and covariance matrix:

V = ZDZ′ + σ2Ψ, (2)

where D = Diag(D, . . . ,D) and Ψ = Diag(Ψ1, . . . ,Ψn). The matrix product

ZDZ′ and matrix Ψ have size (nq × nq).

The best linear unbiased estimator of β has a variance-covariance matrix

Var(β̂) =
(

X′V−1X
)

−1
, (3)

which is equal to the inverse Fisher information matrix. Small valued asymp-

totic covariance matrices of the parameter estimates correspond to large val-

ued information matrices. Fisher information matrix represents the amount

of information contained in a specific design and expresses the amount of pre-

cision by which the model parameters β are estimated by β̂. Good estima-

tors with high precision have small valued estimated (asymptotic) variances,

Var(β̂).

3.1 Optimal designs

In this section, we introduce a design space Ξ and a parameter space Ω

as the building blocks required to handle and apply optimality and maximin

criteria.

7
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3.1.1 Design space, Ξ

Let us introduce a design ξ in the design space Ξ. ξ is a probability measure

with finite support in xj, where j = 1, . . . , q and without loss of generality

−1 ≤ xj ≤ 1; that is, ξ represents the relative proportion of the total ob-

servations taken at xj’s time points Kiefer(1959). The design ξ is defined

as:

ξ =

{

x1 x2 . . . xj . . . xq

1/q 1/q . . . 1/q . . . 1/q

}

, where (1 ≤ j ≤ q). (4)

where
∫ 1

−1
ξ(dx) = 1 and the weights are all equal to 1/q. In our study we

have considered data having equal weights, meaning that no missing patterns

arise. Unequal weights may arise in practice and are known as unbalanced

designs.

3.1.2 Parameter space Ω

Let us define the parameter space Ω as the parameters connected to the

family of marginal linear mixed models in (1):

Ω =
{

ω = (q, p, β,D, ρ, σ2) : 2 ≤ p ≤ q, β ∈ Rp,

D ≥ 0, 0 ≤ ρ < 1; σ2 > 0
}

(5)

Ω contains the mean parameters β, the variance and covariance parameters

of D and Ψ, and the variance of the errors, σ2.

We consider the space Ω to have a total of W different combinations of

parameters. Let us denote w = 1, . . . , W to identify each possible combina-

tion of parameters in Ω. There is a one-to-one correspondence between each

element ω of the parameter space Ω and the model Mw . Each combination

8
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of parameter values ω determines a linear mixed model of the form (1) and

for each model Mw we can derive an optimal design.

Notice that quadratic and cubic-effects are kept as fixed. In practice, one often

only specify deviations from the average that change linearly in time. Quadratic- and cubic

-effects could also be considered, but its existence and significance might be much

harder to show because of lack of power. See Verbeke and Molenberghs, p.70-71, 2000.

3.1.3 Optimality criterion

Different optimality criteria are proposed in the literature to compare com-

peting designs (Kiefer, 1959; Kiefer and Wolfowitz, 1961; Fedorov, 1972;

Atkinson and Donev, 1996). In this paper, we will focus on the determinant

criterion or D-optimality criterion. The idea is to minimize the determinant

function of the asymptotic covariance matrix for the estimated parameter β̂

for a given model Mω, i.e.,

min
ξ∈Ξ

Φ{Var
Mw

(β̂)} . (6)

This criterion is particularly interesting since it has a natural and intuitive

interpretation among practitioners as the minimum volume of the confidence

ellipsoid about β. Another important advantage is that the D−optimality

criterion is invariant with respect to reparametrization (Ouwens et.al., 2002).

The determinant of the Var(β̂) can be written as,

Det{Var
Mw

(β̂|ξ)} = Det
(

X′

ξV
−1
ξ Xξ

)

−1
,

= Det{X′

ξ

(

ZξDZ′

ξ + σ2Ψξ

)

−1
Xξ}−1, (7)

where ξ refers to the design that is used for the estimation of Var(β̂) under

model Mw.

9
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By applying relation (6) to (7), we obtain that the D-optimal design ξ∗

is the design that satisfies:

Det{Var
Mw

(β̂|ξ∗)} ≤ Det{Var
Mw

(β̂|ξ)} ∀ ξ ∈ Ξ, (8)

where β̂ is the vector of the estimated parameters for designs ξ∗ and ξ un-

der model Mw, respectively.

A complete description about approximate theory on the general equiv-

alence theory for optimum designs is provided in Fedorov(1972); Atkinson

and Donev(1996); Kiefer(1974) and Pukelsheim(1993).

3.2 Maximin criterion

Different approaches can be used to investigate efficiency loss when a

model is incorrectly specified; among them are the sequential approach (Wynn,

1970) and the Bayesian approach (Chaloner and Verdinelli, 1995). For a re-

view of these methods, the reader is referred to Atkinson and Donev(1996).

In this paper we will focus on the maximin approach.

The maximin approach was used to overcome the problem of local op-

timality (Dette and Neugebauer, 1997; Muller, 1995; Bischoff, 1996). In

this approach practitioners and analysts select a region of interest for each

parameter, such that maximin designs do not depend on the individual pa-

rameter values. Thus, the estimation of the variance random components is

not covered in this manuscript but a set of values is considered instead.

The maximin designs in this paper are based on D-optimal designs. The

space of all D-optimal designs ξ∗ω(w = 1, . . . , W ) for all linear mixed models

is Ξ∗; all ξ∗ω are elements of Ξ∗ and Ξ∗ is a subset of Ξ, i.e., ξ∗ω ∈ Ξ∗ ⊂ Ξ.

10
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Two types of D-optimal designs ξ∗ω can be distinguished:

ξ∗S := D-optimal design for a selected model MS,

ξ∗T := D-optimal design for a true model MT .

Notice that the D-optimal design space Ξ∗ includes the D-optimal designs

ξ∗S and ξ∗T for the selected model MS and true model MT , respectively.

The only parameters that are fixed in models MS and MT are the number

of points q = 4, the residual variance σ2 = 1 and the interval [−1, 1]. The

polynomial degree (p − 1), the variance of the random intercept d11, the

variance of the random slope d22, the autocorrelation parameter ρ and the

covariance d12 between random parameters under the selected model MS and

the true model MT are not necessarily the same.

The maximin procedure is implemented in three steps. First, we compare

the standardized relative efficiencies of an optimal design ξ∗

S for a selected

model with respect to the efficiencies of the optimal designs ξ∗

T for a set of

assumed true models, i.e., for each assumed true model MT , the generalized

variance of the estimated regression coefficients Var
MT

(β̂|ξ∗T ) given the optimal

design for the true model is computed, and compared to the generalized

variance of the estimated regression coefficients Var
MT

(β̂|ξ∗S) given the optimal

design of a selected model.

The relative efficiency of the selected D−optimal design compared to the

11
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true optimal design is:

RE(ξ∗S|ξ∗T ) =





Det{Var
MT

(β̂|ξ∗T )}

Det{Var
MT

(β̂|ξ∗S)}





1

pT

=

{

Det(X′

ξ∗

T
V̂−1

ξ∗

T
Xξ∗

T
)−1

Det(X′

ξ∗

S
V̂−1

ξ∗

S
Xξ∗

S
)−1

}

1

pT

, (9)

where V̂ξ∗

S
and V̂ξ∗

T
are the estimated variance-covariance matrix of the

selected optimal design ξ∗

S and true optimal design ξ∗

T both under model MT .

Notice that the D-optimal design ξ∗S is optimal for the selected model MS ,

but not for the true model MT and that the numerator of (9) has a smaller

variance than the denominator when the optimal design ξ∗S for the selected

model is not equal to ξ∗T for the true model. The number of fixed parameters

of the true model is equal to pT . Taking the ratio of the determinant in (9)

to the 1/pT power results in an efficiency measure which is proportional to

design size, irrespective of the dimension of the model (Pukelsheim, 1993;

Atkinson and Donev, 1996). The interpretation of the relative efficiency in

(9) is straightforward. Two replicates of a selected optimal design ξ∗

S for

which RE = 0.5 would be as efficient as one replicate of the true optimal

design ξ∗T . Relative efficiencies of 0.85 or higher are usually preferred and

the relative efficiency of an optimal design with respect to itself is clearly

equal to 1. Notice that equation (9) can be also used to compare designs

with different number of repeated measures (Ouwens et.al., 2002, p.736).

Second, we seek for the minimum of all these relative efficiencies over all

true (assumed) models, i.e., MT = Mw ∈ {M1, . . . , MW}. Finally, the maxi-

mum of all the minimum relative efficiencies is selected over all possible D-

optimal designs for the selectable models, i.e., MS = Mw ∈ {M1, . . . , MW}.
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The maximin value MMV , in terms of relative efficiency, is defined as:

MMV = max
ξ∗
S
∈Ξ

∗

[ min
ξ∗
T
∈Ξ

∗

RE(ξ∗S|ξ∗T )]. (10)

For each ξ∗S in the design space Ξ∗, the minimum of relative efficiencies

RE(ξ∗S|ξ∗T ) is selected over all ξ∗T designs. Then the maximum of all minima is

selected over all ξ∗S designs. The design that has this maximin value MMV is

referred to as the maximin Dq-optimal design ξMMV . Notice that this paper

focus on model misspecification, thus the number of design points are the

same for the selected and the true model and we will only compare design

with the same number of time points.

3.2.1 Dq-optimal designs

’Dq-optimal’ design refers to D-optimal designs where the number of time

points is fixed at q ≥ p, the number of regression parameters. A design

ξ∗q is Dq-optimal if Det{Var
Mw

(β̂|ξ∗q )} ≤ Det{Var
Mw

(β̂|ξq)}, for all ξq ∈ Ξ. For

further details on these optimal designs, the reader is referred to Tan and

Berger(1999).

In general, notice that, we will refer to Dq designs as the local optimum

design if Model Mw where w = 1, . . . , W is used. Later on, the reader will notice

that the subindex w is used to point to a true model MT with optimal design

ξ∗T or to the selected model MS with optimal design ξ∗S.

4. Numerical Analysis

In this section, we tackle numerically the problem of finding efficient designs

that remain efficient even if the model is misspecified.

It is well-known that the correct specification of the linear mixed models
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depends upon four sources of uncertainty, namely the order of the polynomial

(p− 1), the size of the autocorrelation coefficient ρ, the number k of random

effects, and the correlation ρ∗ between the random intercept and random

slope.

To deal with uncertainty about the order of the polynomial, the models

Mw will be restricted to the set Sp = {2, 3, 4}, i.e., the first-degree (p = 2,

linear), the second-degree (p = 3, quadratic) and the third-degree (p = 4,

cubic). These polynomial models are mostly encountered in longitudinal

studies in health sciences and medicine (Hedeker et.al., 1989; Hedeker and

Gibbons, 1996; Keller et.al., 2003). The number of time points chosen is

q = 4, it enables us to test the goodness-of-fit. Higher (fourth or fifth) order

polynomials are not considered because they may not be always meaningfully

interpreted in any biological or physical sense.

To deal with the uncertainty of the size of the autocorrelation coefficient

ρ, a convenient grid is used that is Sρ = {0.0001, 0.1, 0.2, 0.3, 0.6, 0.9}. Since

ρ is chosen from the set Sρ, six different within-subject residual variance

matrices Ψ can be specified.

To handle uncertainty of the random effects, four classes of linear mixed

models are considered. These models are based on the number of random

effects k ∈ Sk = {0, 1, 2}:

1. The case k = 0 leads to fixed effect models with AR1 structure, i.e there

is no random term in the variance covariance matrix V. The random

variance-covariance matrix D is 0 in block matrix D of equation (2)

and the matrix V depends only on matrix Ψ. This class of fixed models

will be denoted by AR1.
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2. The case k = 1 enhances random intercept models with AR1 structure.

This class of models is denoted by RI-AR1. Because, besides the au-

tocorrelated structure for the residuals, there is also a random intercept

(RI) variance in matrix D = (d11). Random intercept models with AR1

structure are obtained by choosing a value d11 from the set of random

intercept variances Sd11
= {1, 2, 3, 4, 10} and a value for ρ ∈ Sρ.

3. The case k = 2 allows random intercept and random slope models

with AR1 structure. This class of models is denoted by RI-RS-AR1.

The random intercept (RI) variance and random slope (RS) variance

of matrix D are both non-zero, i.e. D = Diag(d11, d22) and residuals

are autocorrelated. This model is constructed by choosing a value for

the random intercept variance d11 ∈ Sd11
, a value for the random slope

variance d22 from the set of random slope variances Sd22
= {1, 3} and

a value for ρ ∈ Sρ.

4. In this case, k = 2 and the covariance between random intercept

and random slope is non-zero. This covariance depends on the cor-

relation ρ∗ between the two random variance parameters. The main

diagonal elements of D =

(

d11 d12

d21 d22

)

are filled by values d11 ∈

Sd11
and d22 ∈ Sd22

. Then, using the relation d12 = ρ∗
√

d11d22 the

off-diagonal elements of the symmetric matrix D are fixed. Notice

that D−optimal designs are invariant with respect to the sign of d12

(Ouwens et.al., 2002). The correlation ρ∗ is chosen from a set Sρ∗ =

{0.5, 0.8} and the parameter ρ is chosen from Sρ. This class of models

is denoted by RI-RS-ρ∗-AR1.
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In this paper, we have neglected the fact that the parameters of the V matrix

need to be estimated. The optimal designs are calculated conditional on the parameters

of the V matrix, which is often done in literature (Näther, 1985, p.9).

Given the sets of parameter values Sp, Sρ, Sk, Sd11
, Sd22

and Sρ∗, the pa-

rameter space of our numerical analysis is defined as:

Ω = {ω = (q, p, β,D, ρ, σ2) : q = 4, p ∈ Sp, β ∈ Rp, (11)

d11 ∈ Sd11
, d22 ∈ Sd22

; ρ ∈ Sρ, ρ
∗ ∈ Sρ∗, σ

2 = 1; k ∈ Sk},

Each combination of parameters ω in the parameter space Ω leads to a model

Mw, where w = 1, . . . , W . These set of values are chosen to cover the range of

estimates obtained in most longitudinal studies (Verbeke and Molenberghs, 2000) .

[Table 1 about here.]

The ordering of the models for different combinations of parameters is illus-

trated in Table 1. In this table, the fastest varying index is the index for

the autocorrelation parameter ρ ∈ Sρ, whereas the slowest varying index is

always the index for the random intercept variance d11 ∈ Sd11
. Notice that

model complexity increases with the value of ω and that in the linear case

(p = 2), the quadratic (p = 3) and cubic (p = 4) cases, ω belongs to the

interval [1, 216], [217, 432] and [433, 648], respectively. The ordering of mod-

els Mw starts with model class AR1 and ends with RI-RS-ρ∗-AR1. The

parameter combination of Mw can be illustrated by describing the easiest

and most complex model classes as examples.

The first model class AR1 (M1 − M6) is obtained when k = 0 and the ρ

values are chosen one-by-one in ascending order from set Sρ.
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The last class of models RI-RS-ρ∗-AR1 (M97 − M216) is more compli-

cated because the combination of parameters d11, d22 and ρ∗ is required while

k = 2. So, let d11, d22 and ρ∗ be fixed at their lowest values, i.e., 1, 1 and

0.5, respectively. Next, choose one-by-one an autocorrelation parameter ρ

from the set Sρ, in ascending order. Afterwards, keep d11 and d22 unchanged

and vary ρ∗ to its higher level, i.e., 0.8. Then again, vary the autocorrela-

tion parameter ρ ∈ Sρ, in ascending order. Thereafter, let d11 remain at its

lowest level, while d22 takes the value 3 and put the value of ρ∗ back to its

lowest level. Vary the autocorrelation parameter ρ ∈ Sρ, in ascending order.

Subsequently, let d11 and d22 be unchanged and increase ρ∗ to 0.8. And, so

again choose ρ from the set Sρ. Repeat this procedure with a next d11 and

so forth.

4.1 Algorithm

We numerically derive Dq-optimal designs ξ∗q for all models Mw by opti-

mizing the generalized variance of their estimated parameters. A program us-

ing function fminsearch was implemented in Matlab version 7.0.1(R14).

The program uses a multidimensional unconstrained nonlinear minimization

algorithm developed by Nelder and Mead (Lagarias et.al., 1998; Matlab,

2004). The program requires an initial design value ξ0. We used equally-

spaced designs as initial values.

Thereafter, we compute the RE in (9) for all Dq-optimal designs ξ∗q ’s.

We evaluate W × W pairs of Dq-optimal true ξ∗T and Dq-optimal selected

ξ∗S designs. The application of the criterion (10) leads to the maximin value

MMV and the corresponding maximin design ξMMV . The total number of

paired comparisons of designs and models is 6482 − 648 = 419 256.
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The MATLAB programs used to derive Dq−optimal designs and to find

maximin designs in the parameter space Ω are available upon request to the

authors as well as the list with the most highly efficient designs. The computational time

required to obtain our results in a desktop computer with dubble INTEL processor

x86, Family 6, Model 15 having a speed of 1595 MHz is approx. 35 minutes.

5. Results

A total of 648 minimum relative efficiencies are displayed in Figure 1, where

the upper, middle and lower subplots show the results for (a) linear, (b)

quadratic and (c) cubic models, respectively. On the x−axis of each sub-

plot, we distinguished the four model classes: AR1, RI-AR1, RI-RS-

AR1, and RI-RS-ρ∗-AR1 represented by their optimal designs ξ∗S where

S = 1, . . . , 648.

[Figure 1 about here.]

In all subplots of Figure 1, a horizontal line is drawn at min RE = 0.85 as

reference line. This reference line leads to 97 optimal designs with min RE ≥

0.85. Notice that all quadratic models and related optimal designs ξ∗

S turn

out to have min RE values smaller than RE = 0.85 (Figure 1b).

The following results are based on Figure 1:

1. The efficiency of the encountered maximin design is very high

The maximin Dq-optimal design ξMMV for the parameter space Ω has

a relative efficiency RE = 0.8727, see Figure 1a. The design

ξMMV = {−1 −0.4568 0.4568 1} is Dq-optimal for a first-degree poly-

nomial with p = 2, random intercept d11 = 1 and with autocorrelation

parameter ρ = 0.2.

18

Page 19 of 41

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2. The highly efficient designs are located around ξ∗ for q = 4

In Table 2, a list of the most highly efficient Dq-optimal designs is

presented. All Dq designs have an autocorrelation coefficient ρ smaller

than 0.2. The models involved are mostly linear and pertain to either

the class model RI-AR1 or class model RI-RS-AR1.

[Table 2 about here.]

3. Variation of minimum RE values decreases as the order of p

increases

Figures 1a-1c show that the variation of the min RE values for the

linear, quadratic and cubic models decreases as the degree of the poly-

nomial increases.

The min REs of locally optimal designs Dq shows steadily less variation on

their min REs values as the number of fixed parameters p increases from 2 to 4,

i.e., as p approaches to number of time points q. We observe that under

these conditions the locally optimal design points depend less on the

covariance-variance structure and hence, are less affected by its incorrect specification.

4. Effect of autocorrelation parameter ρ on relative efficiencies

The effect of the autocorrelation parameter ρ in the relative efficiencies

min RE of Dq-optimal designs corresponding to linear and quadratic

models is large. For the linear model in Figure 1a, an increase of the

value of ρ first leads to a rapid increase of the relative efficiency in

the interval [0.0001, 0.2]. Once a maximum is reached in the interval

[0.1, 0.2] , the relative efficiency of the Dq-optimal designs decreases
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slowly, but steadily, as correlation increases. All linear models studied

show this non-linear relation. For the quadratic model, the relation

of min RE with the autocorrelation parameter ρ is positive. These

min RE’s reach their maximum values for ρ = 0.9, see Figure 1b.

In contrast to linear and quadratic models, the relation in cubic models

between the autocorrelation parameter ρ and the relative efficiency

min RE is relatively small and negative (see Figure 1c). High min RE’s

are usually encountered for the case where ρ = 0.0001 and low min RE’s

are found for high serial correlation values, i.e., ρ = 0.9.

6. Special cases

Effect of fixing design points to q = 4

The effect of fixing the number of design points to q = 4 in the max-

imin procedure is that the MMV of the maximin design will be very high.

However, Wong(1994) and Moerbeek (2004) reported RE’s for uncorrelated

fixed effects and fixed effects with AR1 structure, which are much lower.

In their papers, the RE in equation (9) is evaluated for the q = 2 points

D-optimal design ξ∗ = {−1 1} and the q = 3 points D-optimal design

ξ∗ = {−1 0 1} of a linear and quadratic model, respectively. Our results

are based on Dq-optimal designs with fixed time points, q = 4. We will

illustrate the consequences of such a choice.

Our maximin design is ξMMV = {−1 −0.4568 0.4568 1} with MMV =

0.8727. If we recalculate the RE of this design related to the efficiency of the

q = 2 points ξ∗ = {−1 1} then the relative efficiency value is RE = 0.4963.

This value is almost two times smaller than our current reported MMV .

This difference is to be expected, because Wong(1994) and Moerbeek (2004)
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are comparing a D-optimal design with q = 2 points to a design with q = 4

design points, whereas we fix the design points to q = 4 points. We choose

for the Dq-optimality criterion to account for the uncertainty about the order

of the polynomial. Because, the effect of this additional uncertainty about

the true order of the polynomial pT adds extra loss of efficiency.

Effect of the presence of autocorrelation

In longitudinal and repeated measure designs, repeated measures could

be correlated and in practice the uncorrelated condition in our numerical

analysis might be unrealistic. So, let us introduce two sets Sρ(1), such that

Sρ(1) ≡ Sρ and Sρ(2) = {0.1, 0.2, 0.3, 0.6, 0.9}.

In Table 3, the two cases are summarized. For ρ ∈ Sρ(1), we obtain a

maximin design ξMMV = {−1 − 0.4568 0.4568 1} corresponding to a linear

model with an AR1 structure having ρ = 0.2 and a random intercept variance

d11 = 1. Its MMV is RE = 0.8727. For the ρ ∈ Sρ(2) condition, the maximin

design becomes ξMMV = {−1 −0.4247 0.4247 1}, corresponding to a linear

model with random intercept variance d11 = 1, ρ = 0.3 and its MMV has a

RE = 0.9734. So, if we assume that the correlation ρ ∈ Sρ(2), our maximin

procedure will lead to a maximin design with a much higher MMV .

The purpose of studying the effect of the autocorrelation on the chosen

maximin design is to answer the question: what-if one has serial correlation.

Do we need to know the value of the serial correlation parameter ρ to apply

a maximin design? The answer to this question is: No. Once the practitioner

knows if there is serial correlation, it does not seem to matter anymore what

the value of ρ is. So, the choice of the maximin design only depends on whether or

not there is serial correlation.
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[Table 3 about here.]

Effect of using of equidistant time points

[Table 4 about here.]

In practice designs with equally-spaced time points are often used. The q = 4

equally-spaced design is ξequal = {−1 − 0.3333 0.3333 1}. In Table 4, the

RE’s for this equally-spaced design is 0.8373 for ρ ∈ Sρ(1) and 0.9236 for

ρ ∈ Sρ(2), respectively. Here, again, it can be seen that the RE increases

when the autocorrelation parameter corresponding to the uncorrelated case

is not considered in our parameter space.

6.1 Discussion on Hamilton Depression Scores’example

Hedeker and Gibbons reported the following estimates for a linear mixed

model of first-degree (p = 2) with q = 6 design points: random intercept

variance d̂11 = 11.64, random slope variance d̂22 = 2.08, random covari-

ance d̂12 = −1.40 with σ̂2 = 12.22 and autocorrelation coefficient ρ̂ = 0.37

(Hedeker and Gibbons, 1996) .

The generalized variance of the equally spaced designs ξequal = {−1 −

0.6 −0.2 0.2 0.6 1} can be compared with that of the maximin design ξMMV =

{−1 −0.4568 0.4568 1} using the relative efficiency measure given in (9). Fur-

ther, we will assume that the model proposed in Hedeker and Gibbons(1996)

as MT . After adjusting the result for the number of repeated measures in de-

signs ξMMV and ξequal, i.e., four and six, respectively, we find that the relative

efficiency of ξMMV with respect to the ξequal under the given model parame-

ters is 0.663, i.e., the equally spaced design should be replicated 1.5 times to
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have the same efficiency as our maximin design. Thus, the maximin design

proposed for the Hamilton’s depression example is ξMMV = {0 9 26 35} days

and the sample size connected to this design has 44 patients place at four

time points instead of the 66 patients being measured at six time points.

7. Conclusions

In this paper, we have studied the optimality of designs with four types of

incorrect specifications in the linear mixed models, namely the order of the

polynomial (p − 1), the size of the autocorrelation coefficient ρ, the number

of random effects k, and the correlation ρ∗ between the random intercept

and random slope. Our results are limited to four-points designs for first-,

second- and third-degree polynomials. However, the same methodology to

find maximin designs can be applied to other misspecifications.

The application of the maximin criterion and the constraint RE ≥ 0.85

has rendered 97 highly efficient designs. Our main conclusions are that,

the maximin Dq-optimal design is highly efficient. The maximin Dq-optimal

design ξMMV = {−1 − 0.4568 0.4568 1} has a relative efficiency RE =

0.8727 in the chosen parameter and model spaces. This maximin design is

a Dq-optimal design for a first-degree polynomial having covariance struc-

ture given by a random intercept and an AR1 structure with autocorre-

lation ρ = 0.2. A list of top-five highest efficient designs that resembles

the maximin design very much, is also provided. Moreover, it is shown

that the variation of min RE values decreases as the order of (p − 1) in-

creases. Although equally-spaced designs are often used in practice, they

are less efficient than the top-five highest efficient designs of our study.

It means that when practitioners have budget restrictions or simply a small sample,
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the maximin designs proposed here could play a deciding role on choosing a design

over another and will perform better than equally-spaced designs. Equally-spaced designs

will generally be the second best choice under model uncertainties, (cf. Tan and Verger, 1999) .

Notice that due to computational constraints, we have chosen few parameter values

(2 or 3) for the correlation parameter between the random intercept and random

slope variances (ρ∗) and the random slope variance (d22). From Figure 1(a)

one can notice that the optimal designs for p = 2 depend strongly on the variance-

covariance structure of their models. However, not all the parameters of the

variance-covariance structure seem to affect the optimal designs and the relative

efficiencies in the same manner. The largest changes on the optimal designs and REs

are due to the value of the parameter ρ and the presence/absence of ρ∗ and d22 rather

than the values of the parameters themselves. So, we expect that the use of a finer mesh

to discretise the variance-covariance parameters will not influence the results drastically.

Another topic of further research may be to construct highly efficient de-

signs for polynomial models with covariates. Covariates may vary or not over

time. It might also be matter of further research to study the effect of using other

structures than the AR(1) on the obtained maximin design. Finally, other ex-

tensions may be to consider unbalanced data, missing values or drop-out

processes.
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Figure 1. Minima of relative efficiencies for Dq-optimal designs of families
of linear mixed models
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Table 1
Ordering of linear mixed models Mw for the first-order polynomial model,

p = 2, q = 4, σ2 = 1, w = 1, . . . , 216.

Mw Model Class Sk Sd11
Sd22

Sρ∗ Sρ

M1-M6 AR1 k=0: — — —































0.0001
0.1
0.2
0.3
0.6
0.9































D = 0

M7-M36 RI-AR1 k=1: {1, 2, 3, 4, 10} — —































0.0001
0.1
0.2
0.3
0.6
0.9































D = (d11)

M37-M96 RI-RS-AR1 k=2: {1, 2, 3, 4, 10}
{

1
3

}

—































0.0001
0.1
0.2
0.3
0.6
0.9































D = Diag(d11, d22)

M97-M216 RI-RS-ρ∗-AR1 k=2: {1, 2, 3, 4, 10}
{

1
3

} {

0.5
0.8

}































0.0001
0.1
0.2
0.3
0.6
0.9































D =

(

d11 d12

d12 d22

)

d12 = ρ∗
√

d11d22
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Table 2
Top 5: Dq-optimal designs with highest min RE’s

Dq-designs minRE p ρ D

{-1 -0.4568 0.4568 1} 0.8727 2 0.2
[

1
]

{-1 -0.4567 0.4568 1} 0.8726 2 0.2

[

4 0
0 1

]

{-1 -0.4567 0.4568 1} 0.8726 2 0.2

[

10 0
0 3

]

{-1 -0.4538 0.4538 1} 0.8718 2 0.1

[

2 0
0 1

]

{-1 -0.4494 0.4494 1} 0.8710 4 0.0001
[

4
]
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Table 3
Maximin designs for uncorrelated and correlated cases

ξMMV MMV p ρ D

Sρ(1) {-1 -0.4568 0.4568 1} 0.8727 2 0.2
[

1
]

Sρ(2) {-1 -0.4247 0.4247 1} 0.9734 2 0.3
[

1
]
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Table 4
Relative efficiencies RE for equidistant designs ξequal given uncorrelated and

correlated cases

ξequal RE p ρ D

Sρ(1) {-1 -0.3333 0.3333 1} 0.8373 3 0.9
[

1
]

Sρ(2) {-1 -0.3333 0.3333 1} 0.9236 3 0.9
[

1
]
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The authors are thankful to the Editor and reviewers for their valuable comments and the time 

spent on thoroughly reading our paper. Hereby please find enclosed our reactions. 

 

Responses to Reviewer Comments:                                <Reviewer #1> 
 

1. Please state explicitly what the differences to your former papers (I mean all papers with 

authors Tan and/or Berger cited in the references) are (with respect to models, covariance 

structure, …). The paragraph on page 3 is not sufficient to show how much of the work in this 

manuscript is novel.  

 

The reviewer raises a good point. We added a few sentences to meet this concern. On page 

3 (new version), lines 11-17: 

 

“The issues of concern will be 

1. expand the class of models to a third-degree polynomial model,  

2. extend the parameter values of both: the random intercept and the random slope 

variances, and  

3. show that a discrete approximation of the standardized maximin method proposed by 

Dette and Neugebauer(1997) and Dette et.al.(2006) will lead to highly efficient designs for  

models and combinations of parameter values which often occur in practice.” 

 

2. It seems the estimation of variance components is not covered in this manuscript. Could you 

please comment on this?  

 

This crucial assumption was introduced by Näther (1985, p.9).  On page 16 (new version), 

lines 1-3, we address this issue: 

 

“In this paper, we have neglected the fact that the parameters of the V matrix need to be 

estimated in practice. The optimal designs are calculated conditional on the parameters of 

the V matrix, which is often done in literature (Nather, 1985, p.9).” 

 

3. The criterion is not a true maximin criterion in the sense of e.g. Dette and Neugebauer (1997) 

but a discrete approximation. This should be made clear in the paper. 

 

We agree with the reviewer. On page 3, line 14 we added: 

“...show that a discrete approximation of the standardized maximin method ...”  

 

Also the designs do no longer depend only on the choice of the parameter domains (as is usual for 

maximin designs) but also on the discretisation. The discretisation seems quite crude in places 

with only 2 or 3 values from the parameter domain representing the entire set. Do the optimal 

designs change considerably if finer grids are used?  

 

We have addressed this issue on page 24, lines 4-13:  

 

“Notice that due to computational constraints, we have chosen few parameter values (2 or 

3) for the correlation parameter between the random intercept and random slope variances 
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(ρ
*
) and the random slope variance (d22).  From Figure 1(a) one can notice that the optimal 

designs for p=2 depend strongly on the variance-covariance structure of their models. 

However, not all the parameters of the variance-covariance structure seem to affect the 

optimal designs and the relative efficiencies in the same manner. The largest changes on 

the optimal designs and REs are due to the value of the parameter ρ and the 

presence/absence ρ
*
 and d22 rather than the value of the parameter itself.  

So, we expect that the use of a finer mesh to discretise the variance-covariance parameters 

will not influence the results drastically”. 

 

4. Moreover, the set of eligible designs is highly restricted to locally optimal (4 point) designs with 

respect to one of the models. What is the reason (apart from computational issues) to admit only 

locally optimal designs? Why can the designs not have more than 4 support points? These 

restrictions seem unnecessary and quite restrictive from a design point of view. There could well 

be designs with more than 4 points that are not locally optimal for any of the models but still 

outperform all the locally optimal designs in the maximin sense. It is stressed quite often in the 

manuscript that the maximin optimal designs are highly efficient, but this is of course due to the 

fact that only this restricted set of designs is admitted into the competition. Please comment on 

this.  

  

We agree with the reviewer that the number of design points (q=4) looks restrictive.  

If more time points would be considered (e.g. q=5), one may think that there might be 

designs (connected to first-, second- third- and fourth-degree models, i.e. p=2, 3, 4 and 5) 

that might outperform locally optimal designs from a maximin viewpoint.  

However, based on our empirical results and those of Tan and Berger (1999), it is expected 

that the encountered maximin value (RE=0.87) will not change strikingly.  

The reasoning is as follows. We observed that when q=4, the variation of the min RE for 

the first-degree models (p=2) is the highest and this variation decreases steadily as p 

approaches or equals q(=4). See Figure 1(a-c).  

Tan and Berger (1999, p. 532-533) have shown that using more designs points than the 

necessary for a model Mw (i.e. q>p) is less efficient for all values of the serial correlation.  

So, the maximin value, when q=5, p≤5, is smaller than 0.85. The last but not least 

argument for choosing q=4 has to do with computational time. 

 

5. Only the AR1 correlation structure is considered. Does it (in most cases) give the best fit to the 

data in longitudinal studies or is it just the most popular with practitioners?  

 

A number of approaches have been proposed to model the covariance structure of serial 

measurements. A commonly used approach for structuring the covariance is the first-order 

autoregressive AR(1) model (Verbeke and Molenbeghs, p. 152, 2000). 

This is the main reason of choosing AR(1) in this paper. Other correlation structures could 

be considered in future research. 

 

We account for this issue on page 24, lines 16-17: 

 

“It might also be matter of further research to study the effect of using other structures than 

the AR(1) on the obtained maximin design.” 
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6. Have you thought about using different designs for different subjects?  

 

We consider briefly this option, but we did not implement it because the complexity that it 

adds does not pay off in practical terms. In fact, as in question 5, it is not customary to 

model longitudinal data using different designs for different subjects. Perhaps, clustering 

subjects having similar designs points was a possibility, but again which criteria will be 

used to distribute subjects into these clusters with different designs points remained being a 

problem.  

 

 

7. Is there an intuitive explanation why the quadratic and cubic effects are usually assumed as 

fixed?  

 

There is mainly a practical reason rather than an intuitive argument for not specifying 

quadratic and/or cubic random effects. On page 9, lines 3-6, we add: 

 

“Notice that quadratic and cubic-effects are kept as fixed for one reason.  In practice, one 

often only specifies deviations of the average that change linearly in time. Quadratic and 

cubic effects could also be considered, but its existence and significance might be much 

harder to show because of lack of power. See Verbeke and Molenberghs, p.70-71, 2000.” 

 

8. Is it restrictive to fix sigma^2=1 (page 10)? It seems that the value of sigma^2 balances the 2 

components of V. Would a different choice e.g. sigma^2=10 or 0.1 result in different designs?  

 

We understand the concern of the reviewer. However, without loss of generality, if a 

different σ
2
 is used, the maximin design is expected to remain the same. Notice that D-

optimal designs are invariant w.r.t. the scale of the designs interval.  

 

9. How long does it take to run the algorithm on a standard PC?  

 

 We added the following sentences in page 18, lines 3-5: 

 

“The computational time required to obtain our results in a desktop computer with double 

INTEL processor x86, Family 6, Model 15 having a speed of 1595 MHz is approx. 35 

minutes.” 

 

10. (p. 18) “Variation of min RE decreases with increasing p”. Is there an intuitive explanation for 

this? Are locally optimal designs for larger values of p more similar in some sense?  

 

Unfortunately, we have no intuitive explanation for this phenomenon. On page 19, lines 12-16, 

we add some sentences to improve this statement: 

 

“The min REs of locally optimal designs Dq show steadily less variation on their min REs 

values as the number of fixed parameters p increases from 2 to 4, i.e. p approaches to the 
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number of time points q. We observed that, under these conditions, the locally optimal design 

points depend less on the variance-covariance structure and hence, seems to be less affected by 

its incorrect specification.”  

 

Please, see also answer of question 4. 

 

11. Is there an intuitive explanation for the effect of the correlation parameter rho?  

 

We lack of an intuitive explanation. We only can state that the effect of the serial 

correlation parameter on the REs is highly non-linear. As we have mentioned in question 

14, once the practitioner knows if there is serial correlation, it does not seem to matter 

anymore what the value of ρ is. 

 

12. Is there an intuitive explanation why the D-optimal design for the cubic fixed effects model is 

close to the maximin design?  

 

We want to thank the reviewer for making us notice the misleading statement on page 18, 

lines 33-41 (old version). This sentence is dropped in the new version. 

 

13.  (p.19/20): The MMV is not only high because 2 or 3 point designs are left out of the 

comparison, but also because the model space {M1, …, MW} is discretised and only a finite 

number W of designs is admissible.  

 

The reviewer raises an interesting point because despite the relatively small number of 

considered parameter values, one can see some trends about the different variance-covariance 

structures and their corresponding Dq optimal designs. We have tried 419 256 combinations of 

parameter values and it looks as if the discretisation will not influence the result. Notice that 

the class of models indicated by the model space is a choice of models that is often 

encountered in practice.  The alternative here would be to find an analytical proof. However, 

that is extremely difficult.  

 

14.  (p. 20): Leaving out the uncorrelated case leads to a different optimal design and a 

considerably different efficiency. This shows that the specification of the parameter space (here for 

rho) is crucial. The maximin designs do not seem to be very robust. Would a finer discretisation 

help?  

We understand the concern of the reviewer. On page 21, lines 19-25, we address this issue: 

 

“The purpose of studying the effect of the autocorrelation on the chosen maximin design is 

to answer the question: what-if one has serial correlation. Do we need to know the value of 

the serial correlation parameter ρ to apply a maximin design?  The answer to this question 

is: No. Once the practitioner knows if there is serial correlation, it does not seem to matter 

anymore what the value of ρ is. So, the choice of the maximin design only depends on 

whether or not there is serial correlation.” 

 

(What is the efficiency of the optimal design within S_rho(2) (excluding the uncorrelated case) in 

the set S_rho(1)?)  
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We found that the loss of efficiency of using the maximin design ξ MMV = {-1 -0.4568 

0.4568 1} of Sρ(2) instead of ξ MMV = {-1 -0.4247  0.4247 1} of Sρ(1)  is marginal, i.e. 

RE=0.9859. 

 

Is it (this efficiency) better than the efficiency of the equidistant design?  

 

Yes, this value is higher than those obtained in Table 4. 

 

15.  (p. 21): The efficiencies for the equidistant design are not too bad. How would you convince a 

practitioner to use maximin designs?  

 

In this paper we advocate the use of maximin designs instead of the equidistant designs.  

The loss of efficiency seems indeed not too large, therefore we added a few sentences to 

support our argument (on the pages 23-24, lines 25 and 1-3, respectively): 

 

”... It means that when practitioners have budget restrictions or simply a small sample, the 

maximin designs proposed here could play a deciding role on choosing a design over 

another and will perform better than equally-spaced designs. Equally-spaced designs will 

generally be the second best choice under model uncertainties (cf. Tan and Berger, 1999).” 

 

16.  (p. 22, line 26 ff): Statement not clear. Of course, the optimal MMV design must have equal 

weights, since all admissible designs (locally optimal designs) have equal weights. For the AR1 

correlation structure, repeated measurements do not make sense (at least in fixed effects models). 

Or would this be different in mixed effects models due to the fact that the covariance matrix 

consists of 2 components instead of one, and could so be dominated by the ZDZ’ component?  

 

We agree with the reviewer. We dropped this statement. 

 

-------------------------------------------------------------------------------------------------- 

 

                                                                                                                      <Reviewer #2> 
 

2.1. The page 6, the line 31, the number of year, 

  
and in references 

  
See also the page 15, the line 30. 

 

We agree with the reviewer. On page 6, line 20 (new version), the year is rectified to 2000. 

Similarly is done with page 16, line 11. 

 

2.2. The page 6, the line 47, the corrigendum  

 
On the page 7, line 3 (new version) is corrected as follows:  
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2.3. On the page 8 (the lines 26 and 36) identical names (labels) for 

  
 and  

for is used but the sense of this names (labels) is various. See also the page 10, 

the line 22, the page 15, the lines 20 and 26. 

 

We corrected this ambiguity. On the page 8, line 20 (and onwards, i.e. all over the 

manuscript), the variable 

  

is used instead of . Same holds for .  

 

Notice also that the earlier definition  

  
is omitted and the expression (4) of page 8 turns into 

 
 

2.3. The Page 9, the line 13, a point after the formula is absent 

 
On the page 9, a point replaces this misused comma. 

 

2.4. The Page 9, the line 26, more in detail to present expression for  

 
 

 On the page 9, the equation (7) is improved as follows: 

 
 

2.5. The Page 9, the line 40, see the text   

 
 

On the page 10, line 4: we adjusted the text to  

 
 

2.6. The Page 11, the line 22, the formula (9), to unify labels in  

 
and  

Page 40 of 41

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
 

See also the formula (8) and the page 12, the line 45   

 
 

 The reviewer raises a good point. We added a few sentences to meet this concern, see the 

page 13, lines 16-19: 

 
 

2.7. The Page 15, the lines 4 and 6, the parentheses  

 
 

On the page 15, lines 21-22, the reference is been rectified. 

 

2.8. The Page 19, the line 16, to unify labels for intervals  

 
We agree with the reviewer. In the manuscript, intervals have been unified, on page 19, line 

23, e.g.  

 
 

2.9. The page 19, the lines 50, 52 (and other places of the manuscript), to unify labels of the 

designs of experiments 

  
Compare to the label on the page 8, the formula (4) 

  
 

The reviewer is very right. All over the manuscript, designs of experiments are represented 

by ξ and curly brackets, i.e. 

 

 
The optimal design is denoted by ξ

∗
, curly brackets and weights are omitted, since they are 

all the same, e.g. on page 20, line 17: 
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2.10. The page 21, the lines 34 and 36, the parentheses 

 
 

 We agree with the reviewer. The text of page 22, line 15 should reads as follows: 

 
 

2.11. The page 24, the line 17 

 
 On the page 25, the line 7 is corrected 

 
  

2.12. The page 24, the lines 12, 21, 42, and others, to unify labels in the list of the literature 

(references) 

  
 

We agree with the reviewer. In the manuscript, the list of references has been unified, i.e.  

 

 
 

 

2.13. The page 25, the line 43, there are no numbers of the pages 

 
The reviewer points out an important gap. The reference is corrected on page 26, line 15 as 

follows: 

 
 

2.14. The page 28, the line 22, to replace “a” to “b” 

 
On the page 29, the correct label is   

 
 

--------------------------------------------- 

 

We do hope that the amendments made in the paper honor the valuable comments done by the 

reviewers. 
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