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Abstract

In this work we investigate the impact of misspecification of the innovations in fitting Garch(1, 1)

models. We show that an incorrect specification of the innovations together with the reduction of

the parameter space to the weak stationarity region, can give rise to a spurious IGARCH effect.

We address this point through an extensive Monte Carlo simulation study. We also analyse the

impact of misspecification on forecasted volatilities, showing that innovations with light tails can

lead to a remarkable overestimate of volatilities.

Keywords: Innovation distribution; IGARCH effect; Monte Carlo simulations; Weak and strong

stationarity; volatility forecasting.

1 Introduction

It is usually considered a general fact that volatility, at least to some degree, can be forecasted. To this

aim, the most popular class of models both in literature and amongst practitioners are the GARCH

models. Despite their simplicity, they are generally believed to capture some of the basic properties of

financial time series. Moreover, their exact structure is nontrivial and begins to be fully understood

only in some recent probabilistic works; see Berkes, Horváth and Kokoszka, 2003 and 2004.

The aim of this paper is to investigate some aspects of GARCH modelling and fitting that are

often omitted but could lead to a significative impact on real data applications.

The first step in fitting GARCH models is the choice of the distribution of the innovations. Lim-

iting the analysis to the univariate case, many different densities have been used: standard normal

∗Address for correspondence: Institute for Mathematical Sciences, Imperial College, 53 Prince’s Gate, London SW7

2PG, UK.
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(Bollerslev, 1986), Student-t (Bollerslev, 1987), generalized error (Engle and González-Rivera, 1991

and Nelson, 1991), gamma (Engle and González-Rivera, 1991), α-stable (Mittnik, Paolella and Rachev,

2002), max-entropic (Rockinger and Jondeau, 2002) and many others. Recently a more flexible family

of innovations based on mixture models has been introduced both in the classical (Haas, Mittnik and

Paolella, 2004) and bayesian analysis (Auśın and Galeano, 2007).

However the general view is that the correct distribution of the innovations is not so important:

this is based on asymptotic consistency results that, under mild assumptions, ensure that with Gaus-

sian innovations the estimates are asymptotically unbiased and normally distributed (Bollerslev and

Wooldridge, 1992). The most general version of these results, reviewed in Section 2, is given in Berkes,

Horváth and Kokoszka (2003).

From a practical perspective, it is considered not realistic to fit a GARCH model on time periods

longer than one year (roughly) otherwise non-stationarity could play a significant role (Mikosch and

Stărică, 2004a and 2004b, Stărică, Herzel and Nord, 2006). Since the general asymptotic results do not

hold in this case, an incorrect specification of the innovations could impact the parameters estimates:

this “misspecification issue” has been investigated for example in Engle and González-Rivera (1991).

After selecting a suitable model for the innovations, a second step is the choice of the domain where

the Quasi-Maximum Likelihood estimate is performed. It is well known, see for example Nelson (1990),

Bougerol and Picard (1992), Mittnik, Paolella and Rachev (2002) and Bellini and Bottolo (2007)

that the domain of strong stationarity of a Garch(1, 1) process is strictly bigger than the domain of

covariance stationarity: this unusual behaviour (with respect to other time series) corresponds to the

case where, for some sets of parameters, there exist stationary solutions with infinite unconditional

variance. Although this may seem unrealistic, we notice that the observed “IGARCH effect” would

also imply an infinite unconditional variance.

Apart from being bigger than the weak stationarity domain, the strong stationarity domain de-

pends crucially on the (unknown) density of the innovations. Analytic expressions for both domains

are known only in the Gaussian and in the Cauchy case, but numerical simulations show that the

heavier the tails of the innovations, the bigger the domains, Mikosch (2004). In practical applications

this issue is usually not considered and the estimates are performed simply on the weak stationarity

domain. However this is a rigid assumption since the strong stationarity domain can be much bigger,

causing differences in the parameters estimates compared to the weak stationarity constraint.

Quite often when a Garch(1, 1) model is estimated on real data, the parameters lie exactly on

the boundary of the weak stationarity domain. This situation corresponds to the aforementioned

“IGARCH effect” frequently found in the empirical literature, and it has been interpreted as an

extreme persistence of shocks in the volatility; see Bollerslev, Chou and Kroner (1992) and references

therein. However its interpretation is not unique: it could represent a sort of “long memory of the
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volatility shocks”, see for example Ding, Engle and Granger (1993) or the “IGARCH effect” and

more generally long memory processes, could be an artifact due to non-stationarity in the model’s

parameters caused by excessively long time series, see for example Mikosch and Stărică (2004a).

In this paper we suggest that the IGARCH effect could be differently explained by a combined

effect of misspecification of the innovations that increases the variability of the estimates and the weak

stationarity constraint that “ties” all the estimates to the boundary. In order to test this hypothesis

we performed an extensive Monte Carlo study of Garch(1, 1) time series of different lengths simulated

under different innovations, i.e. generalised error, normal and t distribution respectively. Each time

series is then estimated under a Garch(1, 1) model with different fitting innovations, adding/removing

the weak stationary constraint.

The paper is organised as follows. In Section 2 we review the general results about GARCH

models and in particular the domain of weak and strong stationarity, WS and SS henceforth. Then

we compare the exact domain of SS with the simulated one for normal innovations and present the

simulated SS domain for the generalised error distribution, GED henceforth, and the t distribution. In

Section 3 we discuss in detail the results of the simulation study: in particular we report the marginal

and joint empirical distribution of the parameters estimates under misspecification of the innovations

as well as the impact of misspecification on the estimated volatilities. Finally Section 4 contains some

concluding remarks and guidance for practitioners.

2 General properties of Garch(1, 1) process

The Garch(1, 1) process is described by the equations

Xt = σtZt (1)

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 (2)

with α0 > 0, α1 ≥ 0, β1 ≥ 0 and where Zt, t ∈ Z, is an i.i.d. sequence such that E(Z0) = 0 and

E(Z2
0 ) = 1 with Z0 the common distribution of Zt. It has been proved in Nelson (1990) that (1) and

(2) have a unique strong stationary and ergodic solution if and only if

E[log(α1Z
2
0 + β1)] < 0. (3)

The above result is a special case of the general necessary and sufficient condition for the SS of a

Garch(p, q) process provided in Bougerol and Picard (1992). A trivial necessary condition for (3) is

β1 < 1, while a sufficient condition is

α1 + β1 < 1. (4)

3
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Condition (4) is also necessary and sufficient for the existence of a WS solution of (1) and (2) and

in particular it is a necessary and sufficient condition for the variance of Xt to be finite. We define

the (α1, β1) region specified by (3) as the SS region, while we refer to the region defined by (4) as

the WS region. For GARCH models this corresponds to the unusual situation (with respect to other

time series) where the SS region is strictly bigger than the WS region, i.e. there are strong stationary

solutions that are not weakly stationary since the unconditional variance becomes infinite in the SS

region. The exact form of the SS domain (3) depends on the distribution of the (unknown) innovations

Z0 and has been computed explicitly only in the Gaussian and in the Cauchy case (Nelson, 1990).

It is a well known fact that the tails of the unconditional distribution can be Paretian even if the

distribution of the innovations has light tails; in Nelson (1990) an exact characterisation of the tail

index of the unconditional variance σ2 is given: if

E[(α1Z
2
0 + β1)τ/2] = 1 (5)

and E[(α1Z
2
0 + β1)p] < 1 for each 0 < p < τ/2, then

E
(
σ2

)p
=





< +∞ if p < τ/2

= ∞ if p ≥ τ/2.
(6)

Under the additional hypothesis that E(|Z0|τ+ε) < +∞, ε > 0, it is possible to show that Xt has tail

index τ : this suggests that knowing the parameters α1 and β1 and the distribution of the innovations

Z0, it is possible to calculate theoretically the value of the tail index τ and check if the GARCH model

can reproduce the empirical tails, as suggested in Mikosch and Stărică (2004a). In the particular case

α1 + β1 = 1, it is easy to see from (5) and (6) that τ = 2, hence leading to an infinite unconditional

variance for the IGARCH model.

2.1 Strong stationarity domains: normal case

In Nelson (1990) the integral in (3) is explicitly calculated when Z0 has a normal distribution. We

recall here Nelson’s results and compare the exact SS region with the corresponding region derived

numerically. If Z0 ∼ N(0, 1), β1 > 0, then

E
[
log(α1Z

2
0 + β1)

]
= log(2α1) + ϕ(

1
2
) + (

2πβ1

α1
)1/2Φ(

1
2
,
3
2
;

β1

2α1
)− (

β1

α1
)2F2(1, 1; 2,

3
2
;

β1

2α1
) (7)

and

E(α1Z
2
0 + β1)p = (2α1)−

1
2 β

p+1/2
1 Ψ(

1
2
, p +

3
2
;

β1

2α1
),

where Φ(a, b; z) =
∑∞

k=0
(a)k

(b)k

zk

k! , with increasing factorial (a)k = Γ(a+k)
Γ(a) , 2F2(a, b; c, d; z) is a Gaussian

hypergeometric function defined as 2F2(a, b; c, d; z) =
∑∞

k=0
(a)k(b)k

(c)k(d)k

zk

k! (Abramowitz and Stegun, 1970,

Section 15), Ψ(a, b; z) is confluent hypergeometric function of type 2 and ϕ is Euler psi function.

4
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Since we are interested in the general shape of SS region under different innovations, for the normal

case we perform a Monte Carlo integration of (3) as n−1
∑n

i=1 log
(
α1z

2
n + β1

) SLLN−→ E[log(αZ2
0 +β)].

To verify the accuracy of the approximation, in Figure 1 (a) we plot the exact and simulated SS region

for different samples size, n = 1, 000, 10, 000 and 100, 000 respectively: as expected with a relative

small sample size the simulated SS region is a coarse approximation of the analytic one (7). This is

not very important in the normal case as an exact expression for the SS domain exists, but this could

represent an obstacle for other distributions where an analytic expression does not.

Figure 1 about here

2.2 Strong stationarity domains: non-normal case

Here we focus on two classical families of innovations:

i) standardised t distribution with δ degrees of freedom, DoF henceforth,

f(x) =
Γ

(
δ+1
2

)

Γ
(

δ
2

)
√

δ − 2
πδ2

{
1 +

(δ − 2)x2

δ2

}−(δ+1)/2

;

ii) standardised GED with shape parameter ν

f(x) =
ν exp

{− 1
2

∣∣x
ν

∣∣ν}

βΓ
(

1
ν

)
2(1+ 1

ν )

with

β =

(
2−2/νΓ

(
1
ν

)

Γ
(

3
ν

)
)1/2

.

The t family is chosen as a prototypical “supergaussian” family (with tails heavier than the normal

distribution, including the normal for δ →∞). The GED family incorporates the normal distribution

as a special case for ν = 2, while is “supergaussian” for ν < 2 and “subgaussian” if ν > 2.

For each distribution and for different values of the shape parameters δ and ν, we compute numer-

ically the SS domain approximating the integral in (3) drawing 100, 000 random numbers from Z0 in

the same fashion we did for the normal case. The results, depicted in Figure 1 (b), show that, at least

for the set of distributions considered, the heavier the tails, the bigger the SS domain. This could be

simply explained taking into account the approximation log(1 + x) ∼ x− x2/2 of (3)

E
[
log(α1Z

2
0 + β1)

] ≈ (α1 + β1 − 1)− 1
2
(α1 + β1 − 1)2 − 1

2
α2

1

[
E

(
Z4

0

)− 1
]

(8)

showing that as E
(
Z4

0

)
increases, the stationarity domain increases. As a consequence if the “true”

or “underlying” innovations have heavy tails, than the SS region can be bigger than the WS region.

5
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2.3 Properties of QML estimate

The estimate of the model (1) and (2) is often performed via Maximum Likelihood with Gaussian

innovations. This means that even if the distributional assumption of the innovations are not correct,

ML with Gaussian innovations provides reasonable parameter estimates. We refer to this procedure

with Quasi-Maximum Likelihood, QML henceforth.

More precisely the estimates α̂0, α̂1 and β̂1 are obtained maximising the Gaussian log-likelihood

`T = −1
2

T∑
t=1

(
log σ2

t + σ−2
t x2

t

)
(9)

in the WS domain. This automatically guarantees that the unconditional variance σ2 is finite and that

the maximisation is performed on a compact set independent from the distribution of the underlying

innovations. The solution of (9) has attractive asymptotic properties: for example, it has been proved

in Berkes, Horváth and Kokoszka (2003) that, under the very mild conditions E(|Z0|2+ε) < +∞,

ε > 0 and lim
t→0

t−µ Pr {Z0 ≤ t} = 0 for some µ > 0, provided that E
(
Z2

0

)
= 1, the QML estimates with

Gaussian innovations are asymptotically unbiased. This result refines previous results of Lumsdaine

(1996) and Lee and Hansen (1994). Under the more restrictive hypothesis E
(
Z4

0

)
< +∞, it is possible

to prove the asymptotic normality of the QML estimators.

In practical applications the residuals display some departure from normality, see for example

Bollerslev, Chou and Kroner (1992). However the theoretical asymptotic properties of the QML esti-

mators for non-normal innovations and under misspecification are much less clear. One crucial result

can be found in Newey and Steigerwald (1997) that once again guarantees asymptotic unbiasedness

and normality if both underlying and fitting innovations are unimodal and symmetric around 0. This

covers the normal, t and GED distributions that we used in the simulation study, but does not prevent

a systematic bias for example in the case of skewed innovations.

3 Simulation study

In this Section we describe the simulation study we performed in order to investigate the effect of the

misspecification in the parameters estimates and forecasted volatilities. We considered four different

Garch(1, 1) processes with the following parameters:

A B C D

α0 0.1 0.02 0.1 0.1

α1 0.1 0.2 0.15 1.6

β1 0.5 0.75 0.85 0.1

(10)

6
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Models A and B lie inside the WS region, while C is on the WS boundary and D is outside the WS

region, but inside the SS domain for every considered innovation distribution Z0, see Figure 1 (b).

Models A and C have been considered in Lumsdaine (1995), while Nakatsuma and Tsurumi (1996)

analysed model D.

For each model 5, 000 time series of length T = 250 and T = 1, 000 have been simulated each of

which with three possible innovations: standard normal, N henceforth, standardised t with δ = 3, t3

henceforth, and standardised GED with shape parameter ν = 6, GED6 henceforth. Then for each

time series the MLE of a Garch(1, 1) has been calculated under three different fitting innovations,

N , standardised t with δ DoF, tδ henceforth, and standardised GED with shape parameter ν, GEDν

henceforth. We checked a posteriori if for each simulated case the estimated parameters laid inside

the SS region: in principle one should impose the SS constraint in the maximisation algorithm, but

this is not easy since, as noticed before, we have an explicit (although quite involved) description of

the SS domain only for normal innovations, see Figure 1.

All simulations and estimates has been performed in MATLAB: in particular we used the UCSD

GARCH Toolbox (with minor corrections) by Sheppard (2002). In the UCSD GARCH Toolbox the

initial values of (α0, α1, β1) are generated automatically and are inside the WS region. Moreover

in order to prevent transient effects on the estimated volatilities, the algorithm oversamples 500

observations and deletes the same number from the beginning of the simulated series of the volatilities.

Apart from the fitted parameter values, we are also interested in the error on the forecasted

volatilities, that could give rise to errors on the forecasted Value-at-Risk. In order to measure these

errors we use two indices:

i) Mean Relative Error on volatilities, MRE henceforth,

MRE =
1
T

T∑
t=1

|σt − σ̂t|
σt

, (11)

where σt and σ̂t are the sequences of simulated and estimated volatilities respectively. Since

(11) does not depend on the absolute order of magnitude of the volatilities, it is an effective tool

to compare the impact of misspecification on σ̂t under different models;

ii) Frequency of Underestimated Volatilities, FUV henceforth,

FUV =
1
T

T∑
t=1

Iσ̂t<σt (12)

that measures the fraction of times in which the estimated volatilities are smaller than the

simulated ones.

7
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In the following we focus the analysis on: i) the marginal empirical distribution of the parameter

estimates (α̂0, α̂1, β̂1) and δ̂ or ν̂, see Table 1; ii) the joint empirical distribution of (α̂1, β̂1), see Figure

2; iii) the empirical distribution of MRE and FUV, see Table 2.

3.1 Marginal empirical distribution

The results on the marginal distribution of the estimated parameters are presented in Table 1 for

model A and it is constructed as follows: the left part (columns “GEDν” “N” and “tδ”) refers to

the estimates with the WS constraint, while the right part (columns “GEDu
ν ” “Nu” and “tuδ ”, where

u stands for unconstrained) refers to the estimates performed without it. The upper part of the

table indicates simulations with T = 250, while the lower part with T = 1, 000. Besides, each upper

and lower part is divided according to the innovation distribution used in the simulation step (rows

“GED6” “N” and “t3”). Therefore each table can be thought made of four subtables formed by nine

“squares”. Each square refers to a particular pair of simulated vs. fitting distributions, the fitting

distributions in the columns and the simulated distributions in the rows. We kept this structure for

comparison purpose across the various models in all the tables and figures. For simplicity of exposition

we omit tables related to models B, C and D although they are available from the authors on request.

Let us consider a single subtable made of nine “squares”. Where do we have misspecification?

On the principal diagonal (squares GED6-GEDν , N -N , t3-tδ and analogously GED6-GEDu
ν , N -Nu,

t3-tuδ ) we have no misspecification. For the other squares there are three cases:

i) the fitting distribution belongs to a family that incorporates the underlying distribution of the

innovations (squares N -GEDν , N -tδ and analogously N -GEDu
ν , N -tuδ ): we call this case “type-1

misspecification”;

ii) the fitting distribution has heavier tails than the underlying one (squares GED6-N , GED6-tδ

and analogously GED6-Nu, GED6-tuδ ): we call this case “type-2 misspecification”;

iii) the fitting distribution has lighter tails than the underlying one (squares t3-GEDν and t3-N and

analogously t3-GEDu
ν and t3-Nu): we call this case “type-3 misspecification”.

In Table 1 for each square, we show the median and in brackets the median absolute deviation

from the median, MAD henceforth, of the 5, 000 fitted parameters. There is an extra parameter ν̂

when the model is fitted with the GED family (columns GEDν and GEDu
ν ) as well as δ̂ for the t case

(columns tδ and tuδ ).

Let us consider for simplicity model A, Table 1, whose underlying parameters α1 and β1 are well

inside the WS region, see Figure 1. Even when there is no misspecification (squares GED6-GEDν ,

N -N , t3−tδ, N -GEDν , N -tδ), there is a clear tendency to underestimate parameters α1 and β1 and
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overestimate α0 even if this behaviour is less marked for parameter α1. Moreover it seems to be much

more pronounced when T = 250, but is still clearly present for T = 1, 000. This is not surprising

since this phenomenon has been already noticed when the QML method is performed on relative small

samples, see Bollerslev and Wooldrige (1992). In order to overcome this problem alternative methods

have been proposed in the literature: see for example Mikosch and Straumann (2002) or, for a more

promising approach, Baille and Chung (2001). The shape parameters ν̂ and δ̂ are instead estimated

reasonable well.

As expected the main difference between the case T = 250 and T = 1, 000 refers to the estimated

standard errors that tend to reduce roughly with a factor 0.5. In both cases the presence of misspecifi-

cation both of type-2 and type-3 does not seem to impact deeply on the median: the negative bias on

α̂1 and β̂1 seems more a small sample size effect then a problem of correct specification. Instead the

misspecification increases the standard error of the estimates: this is apparent for example comparing

the cases GED6-N and GED6-tδ and the cases t3-GEDν and t3-N with T = 1, 000. Things are less

clear when the sample size is T = 250: consider for example the case GED6 for which the minimum

MAD, across the fitting innovations, is attained at least for one parameter when the distribution is

normal. However a clearer picture of the effects of misspecification on the estimates is provided in the

next Subsection where the empirical joint distribution of the parameter is presented.

Surprisingly, the relaxation of the WS constraint does not make a big difference, at least for the

median of the estimated parameters: the maximisation process works pretty well, converging soon to

the correct values even without the boundary not only for model A, which simulated parameter are

well inside the boundary of SS, but also for the other models (data not shown).

3.2 Joint distribution under misspecification

The joint empirical distribution of parameters α̂1 and β̂1 are plotted for model A in Figure 2. In order

to have a clearer picture, we smoothed the joint distribution for all models through a Gaussian kernel

density, see for example Silverman (1986) for a general introduction to kernel estimates.

Let us first consider the estimates without the WS constraint. Even when there is no misspecifi-

cation, in the case T = 250 with simulated t3 innovations, we observe a non negligible density outside

the WS boundary (see square t3-tuδ ). Although this is expected in model D, where the parameters are

simulated outside the WS boundary, for model A (but the same happens for models B and C, data not

shown), it can give rise to a spurious “IGARCH effect”: adding the WS boundary the estimates are

“pushed” toward the boundary (see square t3-tδ). Moving to the case T = 1, 000, we notice that this

effect is considerably but not totally reduced, particularly in model A where the simulated parameters

are well inside the WS domain. Also models B and C show a similar behaviour.
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This situation becomes even more evident in type-3 misspecification: for example compare squares

t3-Nu with t3-N in model A with T = 1, 000, Figure 2. We claim that this behaviour is due to

a misspecification effect : if the fitting innovations have lighter tails than the underlying ones, the

estimated parameters are tied on the WS boundary in the constrained maximisation, whereas they

spread around in the unconstraint one. Therefore it seems that the so called “IGARCH effect”, often

found in the empirical literature, can be simply an artifact generated by two main causes:

i) small sample size, for example T = 250, and fat tails innovations, for example t3 distribution,

even under a correct specification of the innovations;

ii) misspecification of type-3, namely underlying innovations with fatter tails than the fitting inno-

vations.

Moreover it is interesting to note that misspecification of the type-2 does not have the same impact

on the empirical distribution of α̂1 and β̂1: for example consider squares GED6-Nu and GED6-Nu

for model A in Figure 2. Same remarks can be extended to models B, C, data not shown.

3.3 Errors on forecasted volatilities

In the two previous Subsections we analysed the impact of misspecification on the parameters esti-

mates: we roughly found that marginally the misspecification does not impact deeply on the median

of the estimated parameters, according to the general theoretical results that assure asymptotic unbi-

asedness for different families of fitting innovations (Newey and Steigerwald, 1997). Then we observed

that results are less clear for the joint distribution of α̂1 and β̂1, where misspecification of type-3

combined with the WS boundary can give rise to a spurious “IGARCH effect”.

In this Subsection we analyse how misspecification impacts on the forecasted volatilities. To this

aim we computed MRE (11) and FUV (12) on volatilities: the idea behind is that MRE measures

the average relative error on volatilities, while FUV measures the fraction of times that the “true”

(underlying) volatility is beyond the estimated one. Therefore the index FUV does not carry any

information about the magnitude of the error on volatility, but only about the sign of the difference.

The median and MAD estimators of the two indexes for the 9 cases of model A are shown in Table 2.

Let us start with the no misspecification case (GED6-GEDν , N -N , t3-tδ) in model A, Table 2.

The median of MRE, first row of each square, increases moving from GED6-GEDν to N -N and

finally to t3-tδ: as the tails of the underlying innovations become fatter, the median increases and it is

roughly double in the case T = 250 than in the case T = 1, 000. The median of FUV is always around

0.5, with the exception of the t3 simulated case with T = 250. This means that in general under

no misspecification there is no systematic underestimating or overestimating of volatilities, with the
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exception of the Studentt case with T = 250. Again, we see that if the underlying innovations have

fat tails, then even with no misspecification we can have a systematic bias on volatilities. Moving to

T = 1000, we observe that the median of FUV is around 0.5 even in the t3-tδ case. Analysing the

forecasted volatilities in the absence of misspecification, we meet the same pattern that we had with

the estimated parameters.

Misspecification of type-2 does not seem to have a great impact on the median values of both MRE

and FUV, for example compare squares GED6-N , GED6-tδ. Misspecification of type-3 can be seen

analysing squares t3-GEDν and t3-N . We notice two main effects: i) the median of MRE is higher in

the misspecified cases t3-GEDν and t3-N than t3-tδ, particularly when T = 1, 000; when T = 250 it is

very high in all cases; ii) the median of the FUV is very low in the t3-GEDν case, low in the t3-N case

and around 0.5 in the t3-tδ case. Therefore with this type of misspecification we have a systematic

overestimate of volatilities, that is remarkable in the t3-GEDν case. Similar comments apply also for

models B, C and D, data not shown. Summarising also for the forecasted volatilities we discovered

the same asymmetric patter highlighted in the previous Subsections:

i) if the tails of the fitting distribution are heavier than the underlying ones, we don’t see big effects

on the median of MRE and FUV;

ii) if the tails of the fitting distribution are too light then the median of MRE increases, but more

strikingly the median of FUV becomes very low, indicating that the estimated volatilities are

typically higher than the underlying ones. This behaviour could be simply described as follows: if

the tails of the fitting distribution are too light then to match the time series of the unconditional

distribution (1), the volatility need to be systematically overestimated.

4 Concluding remarks

In this work we investigated two general issues in fitting GARCH models: the impact of misspecifi-

cation and the relevance of the WS boundary “α1 + β1 = 1”. For what concerns the first issue, the

situation is quite complex. A first general remark is that both ML and QML estimates show some

instability even if the case of no misspecification with samples size T = 250, especially when the tails

of the underlying innovations are Paretian (t case). Therefore it seems necessary to develop alterna-

tive parameter estimate methods in order to overcome these difficulties: Baille and Chung (2001) and

Mikosch and Straumann (2002) are promising new approaches.

The impact of the misspecification generates an even greater variability on the estimated param-

eters. Firstly we saw that its effect is “asymmetric”: if the tails of the underlying innovations are

lighter than the fitting ones then there isn’t any noticeable effect, while if the opposite holds the
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impact is severe. Moreover we noticed that this greater variability often gives rise to a spurious

“IGARCH effect” when the estimate is performed under the WS constraint. This should be stressed

since many empirical works and many numerical implementations of GARCH models add the WS

boundary without even mentioning it. In our opinion it would be worth to investigate on real data

sets all the cases for which the estimated parameters satisfy exactly the WS boundary.

In our opinion this leads directly to an open methodological problem: how to performe ML esti-

mates on the SS domain that depends on the unknown shapes of the innovations? If we agree that

the WS boundary is too restrictive, then a possible crude solution could by a post-validation of the

estimated parameters by calculating numerically the SS region with the estimated innovations, and

verifying ex-post that they lie inside it. The proposed solution, here applied, has the disadvantage

that the boundary is not implemented inside the maximisation process.

The second interesting issue is the impact of misspecification on the volatilities. Our main result

is that if the tails of the underlying innovations are heavier than the fitting innovations, there is

a systematic overestimate of volatilities. The intuitive idea behind this empirical evidence is the

following: in order to compensate the light tailedness of the fitting innovations one should have

systematically larger volatilities. This phenomenon can be easily identified both through a high value

of MRE and a small frequency in FUV.

Finally extensions of this analysis to Garch(p, q) models and for a broader class of innovations that

preserve asymptotic unbiasedness and normality are of course possible.
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Mikosch, T. and Stărică, C. (2004b). Non-stationarities in financial time series, the long-range depen-

dence and the IGARCH effect. Review of Economics and Statistics, 86, 378-390.

Mikosch, T. and Straumann, D. (2002). Whittle estimation in a heavy-tailed Garch(1, 1) model.

Stochastic Processes and their Applications, 100, 187-222.

Mittnik, S., Paolella, M.S. and Rachev, S.T. (2002). Stationarity of stable power-Garch processes.

Journal of Econometrics, 106, 97-107.

Nakatsuma, T. and Tsurumi, H. (1996). ARMA-GARCH models: Bayes estimation versus MLE and

Bayes non-stationarity test. Available at the Web site:

13

Page 14 of 18

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html

Nelson, D.B. (1990). Stationarity and persistence in the Garch(1, 1) model. Econometric Theory, 6,

318-334.

Nelson, D.B. (1991). Conditional heteroscedasticity in asset returns: a new approach. Econometrica,

59, 347-370.

Newey, W.K. and Steigerwald, D.G. (1997). Asymptotic bias for quasi-maximum likelihood estimators

in conditional heteroscedasticity models. Econometrica, 65, 587-599.

Rockinger, M. and Jondeau, E. (2002). Entropy densities with an application to autoregressive con-

ditional skewness and kurtosis. Journal of Econometrics, 106, 119-142.

Sheppard, K. (2002). UCSD GARCH Toolbox. Version 2.0.9. Available at the Web site:

http://www.kevinsheppard.com/wiki/UCSD GARCH
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Figure 1: (a) SS domain for normal innovations derived through a Monte Carlo integration, dotted lines,

with different samples size: left panel n = 1, 000, central panel n = 10, 000 and right panel n = 100, 000.

Superimposed the WS domain, solid straight line, and the SS domain, solid line, using (4) and (7) respectively.

Capital letters on the right panel show the coordinates in the stationarity domain of the simulated models.

(b) SS domain for different innovations derived through a Monte Carlo integration with n = 100, 000: normal

distribution, black bold solid line; standardised t distribution, light grey lines and from right to left with δ = 60,

dotted line, δ = 30, dashed line, δ = 9, dashed-dotted line and δ = 3 solid line, outermost line; standardised

GED, dark grey lines and from left to right with ν = 1, solid line, ν = 2, dashed line, ν = 4 dashed-dotted

line and ν = 6 dotted line, innermost line. Capital letters show the coordinates in the stationarity domain of

the simulated models.

17

Page 18 of 18

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 0.5 1

0

0.5

1
β 1

β 1
β 1

β 1
β 1

β 1

α
1

0 0.5 1

0

0.5

1

α
1

0 0.5 1

0

0.5

1

α
1

0 1 2

0

0.5

1

α
1

0 1 2

0

0.5

1

α
1

0 1 2

0

0.5

1

α
1

GED
ν

N t
δ

GED
ν

u Nu t
δ

u

G
E
D

6
N

t 3
G
E
D

6
N

t 3

Figure 2: Model A, α0 = 0.1, α1 = 0.1 and β1 = 0.5. Normal kernel contour plot of the joint distribution(
α̂1, β̂1

)
with dark grey cross for the simulated parameters.
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