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12 Abstract

ﬁ, In financial analysis it is useful to study the dependence between two @& tinoe series

15 as well as the temporal dependence in a univariate time series. This pajpercerned with

16 the statistical modelling of the dependence structure in a univariate findimeelkseries using

17 the concept of copula. We treat the series of financial returns ast ariksr Markov process.

18 The Archimedean two-parameter BB7 copula is adopted to describe thdyimglelependence

19 structure between two consecutive returns, while the log-Dagum distribsgonployed to model

20 the margins marked by skewness and kurtosis. A simulation study is cartiéd evaluate the

g; performance of the maximum likelihood estimates. Furthermore, we apply thd todbe daily

23 returns of four stocks and, finally, we illustrate how its fitting to data can bedwagl when the

24 dependence between consecutive returns is properly describedhhraaopula function.

25

26

27

28

29

30 Key words: Log-Dagum distribution, Archimedean copula function, rktav process, Tail depen-
31 dence, Returns.

32

33

34

35 .

36 1 Introduction

37

38

39 The stylized facts (Cont, 2001) which characterize finantiatkets have been the focus of several
jg studies, many of which have emphasized the fact that theraalpilistribution of financial returns is
jé far from the Normal model since it tends to be asymmetric aza/i-tailed. As alternatives to the
44 classical Gaussian model, a few parametric distributidrfinancial assets, allowing for skewness
45 . . . . :

46 and fat tails, have been proposed in the literature. Thecehamong these is usually a matter of
j; analytical and numerical tractability.

49 It is generally unrealistic to assume independence betwensecutive observations in financial
50 . : . . : -
51 time series. For example, financial data may show a tempeg#mlence structure of its volatility
gg which is often referred to agolatility clustering large (small) absolute returns tend to follow large
54 (small) absolute returns. Indeed, there may exist diffeiems of nonlinear dependence which need
55

56 to be properly modelled. Since the seminal paper by Engl821 % wide variety of ARCH-type
g; models has been introduced to take into account the vojatilistering. However, the traditional
23 assumption of independent and identically distributedi(). innovations carried out in the ARCH-

type model seems to be inappropriate (Bingham and Schmid§)20
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Recently, the copula function has been employed to overcbm@roblem of modelling simul-
taneous dependence between two or more time series. Comvasameady been widely used in
finance and economics since one can describe any multealistribution by modelling its margins
and its copula separately (see, e.g., Frees and Valdez, K889finan and Parsa, 1999; Embrechts et
al., 2003; Cherubini et al., 2004;tHimann, 2004; Mendes and Souza, 2004).

Besides the simultaneous dependence between several tieg #eis also important to model
(nonlinear) temporal dependence in a univariate time se@ae possibility is to treat the time series
as a Markov process. To model a stationary Markov process(18097) described a parametric
approach for both copulas and marginal distributions. &hikior considered a wide class of copulas
and applied a one-parameter copula to daily environmeatal d

Bouye et al. (2002) investigated the dynamic dependence in rears€tan time series using differ-
ent types of Archimedean copula functions for nonlineaoeegressive dependence. Chen and Fan
(2006) proposed to capture nonlinear temporal dependengeivariate time series through a class
of stationary Markov models characterized by nonparametarginal distributions and parametric
copula functions. Savu and Ng (2005) applied Chen and Fanpsgeametric copula approach to
modelling the duration of ultra-high-frequency data aslérative to the autoregressive conditional
duration model.

In order to overcome limits connected with independencemamdhality, in this paper, we propose
to model - in a univariate time series - the dependence beatiwaeconsecutive financial returns using
a copula approach with skewed and heavy-tailed margins. ®ielyrfollow Joe (1997) in adopting
a parametric approach for both the marginal distributiandthe copula function. A two-parameter
Archimedean copula family, called BB7, is chosen to deschiee¢émporal dependence in a Markov
process. Then, the marginal returns are modelled througlbotDagum distribution (Domma and
Perri, 2009) that allows for skewness and heavy tails.

The remaining part of the paper is structured as follows.ti®e@ is devoted to the copula ap-
proach: the BB7 copula function and its main features arednited emphasizing various measures
of dependence and the salient characteristics of the Igg#Danodel. In Section 3 we deal with the
maximum likelihood estimates of the model. A simulationdsfuassessing the stability of the esti-
mation procedure, is carried out in Section 4, while in S&ch we report the results of an empirical
study performed on four real time series, point out somézgtgifacts and fit the BB7 copula approach
to data. Finally, Section 6 summaries the work and offersessaggestions for further research.
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2 TheCopula Approach

The aim of this section is to construct a model for financidmes which allows for temporal de-
pendence, skewness and tail heaviness. In describingiorasion time series we need to model
the temporal dependence and the univariate margins. Inisg,dbis useful to introduce notation
and some preliminary results. More specifically, in the fo@it of the section we illustrate how the
general properties of the copula function make it a suit&dié for modelling dependence between
two or more random variables. We focus on the two-parameatetifedean BB7 copula and provide
original results on ordering dependence properties asagatin the derivation of dependence mea-
sures such as Kendall's tau and the medial correlation caafti (Blomqvist, 1950). In the second
part of the section, we apply the copula approach to theilligion of financial returns. In particular,
following Joe (1997), we attempt to describe the behavia ahivariate time series through a first
order Markov process whose components are log-Dagumiulistd.

2.1 Basic concepts

The copula is a multivariate distribution with Uniforf®, 1) margins. Key references on this topic are
Nelsen (1999), which is a excellent primer, and Joe (1997¢hvprovides a comprehensive review
from a mathematical perspective. For the aim of this paperwi consider a two-dimensional
copula and, without loss of generality, introduce notafmrbivariate distributions.
It is known that the dependence between the random variablasd Y is fully described by the
joint distribution function
Fxy(z,y) =P (X <z,Y <vy).

The idea of separatingxy (x,y) in two parts, one which refers to the dependence structuteten
other which describes the marginal behavior only, leadeeabncept of copula. A bivariate copula,
defined on the unit squaté = [0, 1] x [0, 1], is a bivariate distribution function with univariate Uni-
form margins on/. The connection between the joint distribution functiortwd random variables
and their margins through a copula is established by Sklaesrem. LetX andY be continuous ran-
dom variables with distribution functiofx (z) andGy (y) and joint distribution functiorf'xy (z, y),
respectively. Then, there exists a cop@lauch that for al(z, y) in R?

Fxy(z,y) = C (Fx(z),Gy(y)) - 1)

If Fix(x)andGy(y) are continuous(' is unique.
The converse of Sklar’s theorem is particularly useful fadelling bivariate distribution because
it implies that any group of univariate distributions canjbmed together with different copulas to
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define a valid multivariate distribution. This means thgtqan be rewritten to provide a method for
obtaining a copula from the joint distribution functiéfyy (z, y)

C(u,v) = Fxy (Fy'(u), Gy (v))

whereFy ' (u) andGy' (v) are the inverse functions of the two margins éndv) € 12.
In addition to the copula function, conditional and densiipula are also defined. The first deriva-
tive of the copula function, for instance with respectitoyields the conditional copula df given

U=u
0C (u,v)
ou

The expression of';»(u|v) is defined accordingly. Furthermore, the density copulavisrgby

02‘1(U|u) =

0*C(u,v
clenv) = au(av .

Copulas offer a natural way to study and measure dependetwedserandom variables. There
exist different dependence measures useful in the apiplnsatFor instance<endall’s tau

Txy = P[(X1 = X2) (Y1 = Y2) > 0] = P[(X5 — X5) (Y1 — Y2) < (]
defined as probability of discordance of two pairs of rand@tters, say X, Y1) and (X5, Y>), and
described by the same joint bivariate distributi®gy (z, v), can be written as
0?C(u,v)
Xy = 4/C(u, U)Wdudv — 1.
12

Moreover, themedial correlation coefficierfor a pair(.X, Y) of continuous random variables
Mxy =P[(X —Mx)(Y —My) >0 —P[(X —Mx) (Y —My) <0
where M x and My denote the medians of andY’, can be easily expressed as
Myxy = 4Fxy (Mx, My) —1=4C (3,3) — L.

In many fields, such as finance, insurance and economicspgetant aspect is the dependence
in the tails of a multivariate distribution. Tail dependengescribes the behavior of the variables
when extreme events occur. Intuitively, upper (lower) qaattail dependence is defined as limiting
probability that one margin exceeds (does not exceed) aiodhreshold given that the other margin
has already exceeded (has not already exceeded) a threshold

4
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The most common measures of tail dependence are the taihdepee coefficients. It is well-
known that(.X, Y') is upper tail dependent if the following limit exists and ssftive

Av = lim P[X > F¢'(p)|Y > Fy''(p)] .

p—1—
Consequently( X, Y) is upper tail independent X; = 0. The quantity\; is theupper tail depen-
dence coefficient
Similarly, thelower tail dependence coefficieistdefined as

A= lim P[X < Fg'(p) | Y < Fy'(p)]

p—0F

and (X,Y) is said to be lower tail dependentif, € (0,1]. Itis worth pointing out that, in gen-
eral, copula families depend on one or more parametergdasbociation parametersviost of the
traditional dependence measures are functions of theaenpsers. However, in many situations we
need models that allow for a different degree of lower andeupgil dependence. For instance, in
finance or insurance, more emphasis is given to dependemnwedreextreme losses than between
extreme gains. This kind of asymmetry in the tail dependeacebe modelled, for instance, through
Archimedean copulas.

2.2 The Archimedean BB7 copula

The Archimedean family of copulas has a wide range of apjidica in different fields. Its common
use stems from the fact that they are easy to construct asgg®many nice properties (see Nelsen,
1999; Joe, 1997). Each family belonging to this class carxpeegsed by

Clu,v) = ¢! ((u) + ¢(v))

wherey(t) : [0,1] — [0,00) is thegenerator functiorthat is continuous, strictly decreasing, convex
andy(1) = 0.

Although several common one-parameter Archimedean cephdse been extensively applied,
they are not suitable to describe tail dependence becaedevtker and upper tail coefficients are, in
general, expressed as functions of the unique associaiamgter. The possibility of distinguishing
the dependence in the upper quadrant tail from that in therdaail was the key criterion which led
to the choice of the copula. In particular, the use of Arcldean copulas, in this paper, is restricted
to the family named BB7 in Joe’s classification (Joe, 1997)

9\ —0 _p\—90 _%%
C(u,v;@,é)zl—{l—[(l—u) +(1—v) —1} }, 0>1;0 >0
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wherew = 1 — u, © = 1 — v and generator functiop(t) = [1 — (1 —t)?] ~® _ 1. The lower and
upper tail dependence for the BB7 copula &re= 2-'/% and )\, = 2 — 2/¢, respectively. It is worth
emphasizing that parameteallows us to capture the upper tail dependence only, whénsaglated
to the lower tail dependence. For this characteristic, the Bigula plays an important role among
all the two-parameter Archimedean copulas.
For the methodological developments that we will focus darJave now report the conditional
and density BB7 copula
1_q s
Cop(vju; 0,0) = <1 — w_%> AR i (1—a) e
and
1
c(u,v;60,6) = (1- ﬂe)_6_1 a’ (1 - @9)_6_1 7! <1 — w_%> ’

x w52 [(9— 1) +6(5+1) (w% - 1)} .

1 0

wherew = (1—-a°) "+ (1-2°) " — 1.

These aspects are now integrated with our findings on depeag®operties and measures.

Joe (1997) asserts that the concordance of the BB7 copulasesad rises wheny < 1 and
conjectures that the concordance also increaséswhend > 1. Here we provide some results
regarding Stochastic Monotonicity. In order to prove thad BB7 family satisfies the Stochasti-
cally Increasing Ordering, we start from the result of &a@p and Genest (1993): ! is differen-
tiable, thenY is stochastically increasing iIN or X is stochastically increasing ivi if and only if
g(t) =In (—&‘g—z(ﬂ is convex on(0, co). Indeed, with the BB7 copula, it is a simple matter to verify
that

Polt) _ (041 0 -0 {6002 [a+of 1] + (1 +0i2)
520 [(1 )5 — 1]2

ot? d(1+1¢)? >0

foranyt > 0,6 > 0 andéd > 1. We remind the reader that the Stochastic Monotonicity iespl
the Tail Monotonicity properties and this satisfies the fady Quadrant Dependence properties.
Consequently, the correlation coefficiep),(Kendall’'s tau ¢), Spearman’s rhopls) and the medial
correlation coefficientf1) all assume non-negative values (Lehmann, 1966).

Now we revisit two measures of dependence in terms of the twampeters of the BB7 copula.

Proposition. Kendall's tau index for copula BB7 is given by

TXY(Q,é):l—%[B(Q,%—l)—B((S—FQ,;—l)} (2)

6
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for § > 0 andé < 2, whereB(p, q) is the Beta function.
Proof. For Achimedean copulas, Kendall’'s tau can be written (J887)Las

10 XYy = 1— 4/OOU |:8(P1(U):| du. (3)
0

ou

©CoO~NOUTA,WNPE

13 For the BB7 copula

which, replaced in (3), gives
2_9

4 [ ) 112
21 1 _ 2924 _1

24 Setting firsty = 1 + v and thenz = y~ s, after some algebra, we get

26 A . 2 X 2
o TXY(07 5) = 1- W {/ -T(l — x)§72d$ - / 1‘6+1(1 — x)QQdm}
0 0
29 4 5 )
= 1-—|B(2,-—-1|—-B 2.2 - 1)].
32 502 { ( g > ((5—1- ¥ )1

As regards the medial correlation, after simple algebiia,possible to show that

g; MXy(9,5)—3—4{1— [2(1_2_9)—5_1]—};}51). @

40 In Figure 1 the behavior of Kendall's tau and the medial datien coefficient is illustrated. Both
42 the indices show that the amount of dependence increaséb@y)eands increase.

45 2.3 Copulaand Markov process

The concepts earlier introduced for a generic variélileY”) are now adapted to the case®f_;, ;)

49 which are two consecutive random variables of a stationaaykibV process.

51 Let us assumgY; : t = 1,2,..., T} to be a first order stationary Markov process with continuous
state space. Then, its properties are completely detednbiyéhe joint distribution functions of;_;

54 andY;, sayF'(y;_1,:). From Sklar’s theorem, we can expresgy; i,y;) in terms of the marginal

56 distribution function ofY; and the copula function df;,_; andY;. In this way, the copula approach
58 is suggested as a tool for modelling a stationary Markov gssc instead of specifying the joint
59 distribution function ofY;_; andY; directly, one can specify the marginal distribution funatiof Y;

and the copula function df,_; andY;.

7
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Figure 1: Kendall's tau and medial correlation coefficient.

From now on, we reserve the notatibnto denote the financial return betweeandt — 1
}/t = lnPt —lnPt,1

whereP, is the value of a financial asset (a stock, an exchange ratenarleet index) at time. The
Markovian property seems to be an appropriate assumptrateseribing the behavior of the returns
since it can be observed empirically that current returesugually affected by their recent past. We
restrict our attention to the first order process by assummagonly the immediate past is relevant for
the current returns.

We consider that the retunj and the lagged valug, _; are random variables with identical con-
tinuous marginal distribution function8(y,;; ) and F'(y,_1; ), for the hypothesis of stationarity,
and joint distribution function given by

F (yi-1,y50,8) = C (F(ye—1; @), F(y; ); §)

wherea and§ denote the vectors of marginal and association parameesgectively. Our aim is
to model the conditional behavior & given its immediate past;_;. In this sense, the conditional
copula can be used to define tin@nsition distribution functiorand thetransition density functionf
{Y;} (Joe, 1997)

H(y | ye-1;008) = PlY; <y | Yier = yeoa]) = Cop (Fy; o) | F(yi—1; @); )

8
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h(ye | yi1; 0, &) = ¢ (F(ys—1; ), Fys; ); €) fys; ). (5)

In the sequel we will refer to this approach as tbeditional approachwhereas the termmarginal
approachwill be used for modellingy; regardless of temporal dependence (that is under i.i.d. hy-
pothesis). For the purpose of modelling the dependencetafne we assume that(-, -; -) is the
Archimedean BB7 copula function describedi.2. Moreover, since returns tend to be asymmetric
and heavy-tailed, we propose to model their marginal bendkirough the log-Dagum distribution
whose basic characteristics are summarized in the nextsect

2.4 Characteristics of the marginal distributions

The log-Dagum random variable is obtained by a logarithmsingformation of Dagum random vari-
able (Dagum, 1977, 1980). This distribution, recently stigated in Domma and Perri (2009), seems
to be a flexible parametric family for modelling skewed anptddurtic distributions, since it takes
values orR and the shape is always leptokurtic. Moreover, it can be sgttimetric and asymmetric
(positive or negative).

A wide variety of parametric models has been considereddatititrature to deal with asymmetric
and heavy tailed distributions. We mention, the family @& &hStable distributions (Rachev and Mit-
tnik, 2000), the skew t-Student distribution (Theodossif298; Jones and Faddy, 2003), the normal
inverse Gaussian (Barndorff-Nielsen, 1997), the power e&ptal distribution (Byli et al. 2002),
the beta-type distributions (McDonald and Xu, 1995), thé&elutype distributions (Fischer et al.,
2007), and many others discussed, for instance, in Kleib@atz (2003). The choice among these
is usually a matter of analytical and numerical tractapilithe distribution we consider possesses
interesting shape characteristics, has no particulaiyacal and computational limitations and its
cumulative distribution function, quantiles, mode and neais are given in a closed form. Moreover,
the computational aspects concerning the maximum liketh@d/L) estimates do not involve great
complexity. These reasons should make the log-Dagum lalision a competitive model for data
marked by skewness and kurtosis.

Moreover, there is a certain analogy between log-Dagum ame ®ther well-known distributions.
For instance, its density may be considered as a reparapagiten of the type | generalized logistic
distribution (see Balakrishnan, 1992) and, thus, as a dpease of the exponential generalized beta
distribution of second type (McDonald and Xu, 1995).

A random variableX is log-Dagum distributedX ~ LDa(f, A, v), if its distribution function is

Fy (w8, A 0) = (1+2e™) ™" (6)

9
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wherex € R and, A\, v > 0. The probability density function is
fx (58, A\ v) = BAve " (1 + )xe”’z)_’g_l

From (6) it is easy to verify that the mode of the distributism» = »~!In (\3), always exists and
is unique. Moreover, by solving equatidfy (x; 5, A, ) = p with respect tor, we obtain the simple
and closed expression for tpeth quantile

1 A
T, =— In s .
v p s —1

The first three moments, that will be usefuliid.3, are
In(A\) + W (5) — V(1)

E(X) = - (7)
p(x) = WOVl ¥ E) v ) .
p(xt) = WOV OILIMN)EE - YOI E)+ ¥ 0)

1/3
whereW (), ¥ (.), ¥”(.) are the digamma, trigamma and tetragamma functions, resglgqsee,
e.g., Davis, 1970). After simple algebra, the standardilzed and fourth moments are given, respec-

tively, by
E (Z3) — [\I{” (ﬁ) _3 \IJH (1)]
Y3
Bz = @)
Vs

wherevs = /¥’ (3) + ¥ (1) and ¥ (.) is the pentagamma function. We observe thatZ*) is
always greater than 3 becaud€(53) > 0, for any5 > 0. Consequently, the log-Dagum distribution
always turns out to be leptokurtic and, thus, it can be usedddel data with fat tails.

3 Maximum Likeihood Estimation

Fitting the BB7 copula model to the Markov procdds : t = 1,2,...,T}, with Y; ~ LDa(53,\, v),
requires the estimation of the marginal and associatioarpaters. From the different ML estimation

10
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procedures for copulas we have adoptedfthlemaximum likelihoodnethod in which the marginal
and association parameters are estimated simultaneously.

Given the dependent observations. . . , yr, the log-likelihood function based on the transition
density (5) is

((a:8) = tiewm + iécm,xa; £) (10)
where 7 7
Crtars(@) = In f(yg; @) = In (B) — vy, — (B+ 1) In (14 Ae ")
and

loont(a;§) = Inc(F(y-1;0), Fy; ) §)
= (@-Dha— G+ (1-a")+@—-1)ho—(§+1)n(1—12")

+(%—2)1n(1—w3s)— (§+2) Inw+In [(9—1)+9((5+1) (w%—lﬂ

with marginal and association parametars- (3, A, v) and§ = (9, 6).

Maximization of (10) subject to the constrairits), v, 6 > 0 andf > 1 leads to the ML estimates
of all the parameters of the conditional approach. Thisnojgtation problem does not admit any
explicit solution and requires numerical procedures wiuctld well be computationally intensive.
Under regularity conditions, the ML estimatescofind€ are consistent and asymptotically normally
distributed. Moreover, the negative inverse Hessian mafr{10) evaluated at the ML estimates can
be used as an estimated covariance matrix of the ML estiséloe, 1997).

On the other hand, the maximization@;[:1 (mari () under constraints yields the ML estimates
of parametersx of the marginal approach.

Common dependence measures are usually expressed asrfugatio(.), of association param-
eters&. ML theory provides us with useful results concerning thénestion of the dependence mea-
sures. In particular, under usual regularity conditiohg, asymptotic properties of the ML method
ensure that

Vi |6(€) = 6(8)] — N(0.%¢)

where¢ is the ML estimates of and

e[ o[

with 7(&) the Fisher information matrix in a single observation.
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4 Simulation Study

A simulation study is now carried out to assess the ML estongtrocedure and to investigate, for
a finite sample size, the behavior of the ML estimates. Thennt#a is to generat&” indepen-
dent samples of’ observations from a first order Markov process modelled kyBB7 copula and
with log-Dagum margins. For each sample the ML estimatesodi the association and marginal
parameters are computed and an empirical version of the stpere error (MSE) is provided.

In this section, the algorithm for evaluating the perforemief ML estimates of the association
and marginal parameters is described first and, then, dataxgen and the choice of starting values
are discussed in detail. Final simulation results completesection.

4.1 Estimation

As the likelihood function cannot be maximized analytigalhe ML estimates of the parameters are
found by numerical methods involving the starting pointsnti@ed in§ 4.3 as initial estimates in
the optimization routine. We implemented in MATLAB a proced based on a sequential quadratic
programming method. With this method, the function adoigdes a quadratic programming sub-
problem at each iteration. An estimate of the Hessian ofdgdikelihood is updated at each iteration
using the BFGS formula.

The procedure for assessing the performance of ML estinmbesed on the following steps:

1. choose real values of parametgrs\, v, 0, 5 which specify the marginal distribution and the
copula;

2. establish sample size

3. generatd random samples of data vectdss 1, y:) of sizeT following the procedure illus-
trated in§ 4.2;

4. determine the initial valueg,, Ao andv,, for the marginal parameters afig oy, for the asso-
ciation parameters, according to the criteria describe&ddir3;

5. calculate, for thé-th of the K samples of siz&, the ML estimateg/” , A% o 9 5.

6. compute the mean of the estimates overralsamplesy((r) = K28 (¥ wherel(
stands for each element of the veataf”, A%, 587 9% 5y for the corresponding parameter
¢ amonggB, \, v, 0, 6;
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7. determine the sample bidg(;), and the sample mean square erfatSE((r), of the ML
estimates calculated at the previous step

b(Cr) = u(lr) — ¢, MSE((r) =K1Y (¢ -0

K
k=1

4.2 How tosmulatethedata

To generate the data we use the algorithm based on the @ovadiBB7 copula distribution and the
guantiles of the log-Dagum marginal distribution.

Pairs of consecutive data from a first order Markov procesg beathought of as observations
of a pair of variablegY;_;,Y;) with joint distribution 7. We are assuming that(y,_1,y;) is de-
fined through the two-parameter BB7 copula functiofu, v; 0, §) with marginsLDa(3, A, v). Thus,
we only need to find a suitable sequence(ofv), for each fixed value of the parameters vector
(B, \,v,0,6), in order to obtain the corresponding pairs of observatigns, v;). The data genera-
tion algorithm works as follows:

step 1: generate a random number, sgy from a Uniform(0, 1) such that, for any,
0 < Cop(v|ug; 0,6) < 1;

step 2: iterate the following procedurg + 1 times: generate; from a Uniform(0, 1) and compute
v; as the (numerical) solution of the equatioh (v|u;0,0) = w; wherew, = v;1, i =
1,...,T + 1, butu, defined at step 1,

step 3: the simulated data are the pair of vectfys 1, y¢) with i-th element

A i A
yg_)lz— In — , yt():— In — , 1=1,...,T
v uzﬁ_l Ui-}—ﬁ_l

4.3 How to choose starting values

The choice of suitable starting points is an important isausl numerical optimization algorithms.
In this context, we adopt two distinct procedures to chobseinitial values for the marginal and
association parameters in order to encompass their differeanings.

Marginal parameters. Appropriate starting values for marginal parametgrs, andv, are obtained
by themethod of momentsquating the first three sample moments to the corresportdieg mo-
ments of the log-Dagum distribution, given in (7)-(9), amdvég the equations with respect to the

unknowns.
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Let ]\Z be the sample moment of ordeof Y;. Firstly, we obtain an estimate @f say(,, solving
numerically the equation

—~

(3) — 0"(1) B ]/\Zg M,

W) +w@P s S

beingS = 4/ ]\72 — ]\712.

Afterwards, the preliminary estimates fdrandv are given as functions gf,

Ao = exp {]\71\/\1”(60) (1) —U(5) + \11(1)} - \/\Iﬂ(@o) + ‘1"(1).

S? S?

Association parameters. In order to find a suitable pair of starting points for the asstion pa-
rameters, we perform a procedure which minimizes the diffee between the medial correlation
coefficient and an empirical version of it. Létl,, /T/l/t and M;_4, MH denote the population and
the sample medians &t andY;_;, respectively. The measure of dependence mentiong@.ih and

§ 2.2, now referred to the pafly;_1, ;)

Mt—l,t(ev 5) =P [(Yt - Mt) (Yt—l — Mt—l) > 0] - P [(Yt — Mt) (Yt—l — Mt) < 0]

is compared with its sample version
2c—T

T
wherec indicates the number of positive products of the sample amedeviations, say the element-

M1y =

wise products of; — 1ﬁ/lvt andy¢_1 — lf\/lvt_l, wherel is a column vector of ones of conformable
size.

Note that we only consider data with positive medial cotrefa The starting association parame-
ters are the paift,, Jo) which solves the optimization problem

min(M;14(0,8) - Mi-1s)  subjectto 6> 1,6 >0.

4.4 Simulation results

We restricted the simulation study to a few combinations @lugs of the parameters:
6 =0515X=1,v=100,0 = 1.1,1.5 andd = 0.2,1. Actually, we considered many other
values for the parameters, but the results were not signtficdifferent from those obtained with
the aforementioned values. The choice of the selected vaumainly motivated by their represen-
tativeness of a wide range of ML estimates obtained in arpreéiry study in which the conditional
approach was fitted to different financial data.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

ig Table 1:ML estimates for the parameters, bias and MSE assuming\that andv = 100.

17 bias MSE

18 8 6 5| n| B A D 0 5 B A b 6 5 B A s 6 5

19 0.5 1.1 0.2 25 |0.6932 1.3568 116.4598 1.1221 0.1864932 0.3568 16.4598 0.0221 -0.01¥64727 2.1222 2783.5321 0.0477 0.0692

20 100|0.5452 1.1858 103.5930 1.1044 0.1898452 0.1858 3.5930 0.0044 -0.01@R0440 0.7962 515.0156 0.0124 0.0225

21 250/0.5151 1.0710 102.2144 1.1010 0.19868151 0.0710 2.2144 0.0010 -0.00470153 0.2518 220.6872 0.0061 0.0105
500 |0.5052 1.0427 101.3600 1.0982 0.1984€052 0.0427 1.3607 -0.0018 -0.00160065 0.0807 89.3769 0.0033 0.0055

22 15000.5021 1.0111 100.3500 1.0995 0.2008021 0.0111 0.3528 -0.0005 0.0003.0020 0.0208 25.5916 0.0010 0.0018

23 1| 25 |0.8420 1.2831 115.2771 1.2270 0.82248420 0.2831 15.2770 0.1270 -0.171068195 2.6240 3653.1463 0.2491 0.8745

24 100|0.6076 1.2394 105.4515 1.1229 0.9301076 0.2394 5.4514 0.0229 -0.069B1820 1.1853 587.1129 0.0289 0.1926

25 2500.5348 1.0628 101.4600 1.1096 0.976®348 0.0628 1.4600 0.0096 -0.02350275 0.2538 175.0398 0.0100 0.0812

26 5000.5144 1.0375 101.3432 1.0977 0.9962144 0.0375 1.3431 -0.0023 -0.00380122 0.0021 90.0023 0.0046 0.0461
15000.5051 1.0098 100.4400 1.0990 1.000.B051 0.0098 0.4416 -0.0010 0.0013.0034 0.0297 27.5113 0.0018 0.0128

27 1.5 0.2 25 |0.6006 1.6505 134.4379 1.4323 0.2528006 0.6505 34.4379 -0.0677 0.032B3462 3.4521 5677.2752 0.3219 0.1129

28 100|0.5599 1.2796 107.4658 1.4825 0.23@D599 0.2796 7.4658 -0.0175 0.03420708 1.2631 962.1720 0.0905 0.0422

29 250/0.5178 1.1039 103.2698 1.4989 0.1983@178 0.1039 3.2698 -0.0011 -0.007W00218 0.3157 328.2868 0.0334 0.0157

30 500(0.5109 1.0415 101.5400 1.5013 0.198®109 0.0415 1.5439 0.0013 -0.00360090 0.0983 144.3747 0.0161 0.0077

31 1500 0.5041 1.0018 100.5100 1.4993 0.198D0041 0.0018 0.5146 -0.0007 -0.001B0026 0.0222 43.4389 0.0052 0.0026

1| 25 |0.7468 1.5045 129.2929 1.4857 0.9102468 0.5045 29.2929 -0.0143 -0.08MR6468 3.2669 5221.6529 0.4817 1.1405

32 100|0.6539 1.3485 107.6083 1.5031 0.970.1539 0.3485 7.6083 0.0031 -0.028B2768 2.1082 1223.3325 0.1618 0.3964

33 2500.5435 1.1231 103.8853 1.4876 0.992®435 0.1231 3.8853 -0.0124 -0.00™10519 0.5050 409.7021 0.0494 0.1139

34 5000.5327 1.0398 100.8700 1.5080 0.980@327 0.0398 0.8722 0.0080 -0.019D0208 0.1808 185.6391 0.0255 0.0554

35 15000.5069 1.0142 100.6791 1.4993 0.9944€069 0.0142 0.6791 -0.0007 -0.00360050 0.0420 54.2930 0.0080 0.0160

36 15 1.1 0.2 25 |2.8999 1.7446 114.0950 1.1303 0.23%#B999 0.7446 14.0950 0.0303 0.0343.0351 4.2341 1243.4969 0.0516 0.0899
100|2.0770 1.1908 101.7093 1.1060 0.189%770 0.1908 1.7093 0.0060 -0.01(BL0804 1.0441 294.2359 0.0130 0.0225

37 250/1.6833 1.0693 101.1691 1.1021 0.1933833 0.0693 1.1691 0.0021 -0.00625081 0.2968 120.1334 0.0060 0.0105

38 500(1.5742 1.0461 100.7500 1.1024 0.1908742 0.0461 0.7500 0.0024 -0.00821631 0.1180 55.9578 0.0034 0.0054

39 1500 1.5258 1.0093 100.2800 1.0999 0.1998258 0.0093 0.2773 -0.0001 -0.00@B0364 0.0334 16.2936 0.0009 0.0017

40 1| 25 |3.5305 1.3960 111.0139 1.2073 0.9089305 0.3960 11.0139 0.1073 -0.09471.7557 3.1168 1082.5054 0.1999 0.9021

a1 100|2.3996 1.1008 100.3061 1.1177 0.900B996 0.1008 0.3061 0.0177 -0.09931255 1.0244 261.5235 0.0254 0.2134
2501.8504 1.0249 100.3605 1.1069 0.9843504 0.0249 0.3605 0.0069 -0.01883020 0.3120 99.2082 0.0095 0.0826

42 500|1.6426 1.0167 100.4500 1.1035 0.986A426 0.0167 0.4481 0.0035 -0.014D2975 0.1348 52.4535 0.0053 0.0427

43 1500 1.5479 0.9974 100.2500 1.0994 0.990.0479 -0.0026 0.2477 -0.0006 -0.009B0565 0.0397 16.7592 0.0016 0.0128

44 1.5 0.2 25 (2.4618 2.1271 123.4661 1.3801 0.24@3618 1.1271 23.4661 -0.1199 0.04228025 5.8040 1922.7497 0.1973 0.1125

45 100|2.1517 1.3402 103.7283 1.4957 0.199$517 0.3402 3.7283 -0.0043 -0.00GR0101 1.8839 527.6009 0.0770 0.0315

46 2501.7484 1.1031 101.9046 1.4986 0.194@2484 0.1031 1.9046 -0.0014 -0.009%9282 0.4026 210.5594 0.0320 0.0154

47 500(1.6178 1.0406 100.5600 1.5078 0.1944178 0.0406 0.5594 0.0078 -0.00%42415 0.1619 96.2569 0.0150 0.0072
1500 1.5466 0.9970 99.9290 1.5051 0.190M466 -0.0030 -0.0706 0.0051 -0.0010524 0.0404 29.3305 0.0049 0.0024

48 1| 25 |3.0958 1.7938 124.5383 1.3931 0.8666G958 0.7938 24.5383 -0.1069 -0.1320.3620 4.8516 2323.6832 0.2454 0.8617

49 100|2.1561 1.4806 107.7377 1.4494 0.93246561 0.4806 7.7377 -0.0506 -0.06M64541 2.1766 516.8924 0.0858 0.3666

50 250(2.0162 1.0864 101.0619 1.5061 0.9905162 0.0864 1.0619 0.0061 -0.00957565 0.5607 196.2678 0.0432 0.1112

51 500|1.6641 1.0511 101.0100 1.5004 0.9923641 0.0511 1.0051 0.0004 -0.007b4136 0.2147 94.9761 0.0193 0.0548

52 15001.5897 0.9763 99.7510 1.5084 0.98@4€897 -0.0237 -0.2492 0.0084 -0.01%60925 0.0550 30.6906 0.0072 0.0173

53

54

55

56

57

58

59

60
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Since the estimation procedure of both marginal and adsatiparameters may be of great com-
putational complexity, the simulation study has been peréa with each combination of selected
parameters fof{ = 1000 samples with increasing size= 25, 100, 250, 500, 1500.

The study allowed us to attain two goals: to check the rditglif our estimation procedure and to
investigate the behavior of the estimators for a finite sarse. The results, summarized in Table 1,
confirm the good performance of the estimators. As expetitedherformance is modest for smaller
sample sizes but improves remarkably as the sample sizeas®s. In a few cases we observe an
oscillatory behavior of the bias, that is, it registers éases followed by slight nonregular increases.
Nevertheless, the mean square error seems to approachnveltywalues and certainly decreases as
the sample size rises, an evident indication that all thenag¢s are consistent.

5 Empirical Analysis

The conditional approach is now applied to real data in otdejo beyond the normality and i.i.d.
hypotheses traditionally assumed for the distributionrmdriicial returns. Firstly, we highlight certain
stylized facts that mark consecutive financial retirnandY;_;. In particular, through an empirical
study, we note evidence of non-normality in the returns, al as the presence of dependence.
Then, we model the data with the conditional and the margipptoach showing how the use of the
copula may considerably improve the fitting to data when ddpace between consecutive returns is
ascertained.

5.1 Departurefrom normality and independence

For our analysis we consider the daily returns of four ltabtocks:Generalifrom January 8th, 1999
to January 7th, 200Banca Popolare ItaliangBpi) from January 2nd, 1995 to August 7th, 2006;
Telecomfrom January 8th, 1999 to January 7th, 200#%cali from October 27th, 1999 to January
19th, 2005.

The descriptive statistics given in Table 2 highlight tHas teturns are negatively or positively
skewed with a rather high level of kurtosis for Tiscali and Bmcks. The Normal assumption for
describing the data seems to be inadequate and this is cedfioy the value of the Jarque-Bera
statistic test and the QQ-plot in Figure 2. The QQ-plot inurg3, instead, shows that the log-Dagum
distribution strongly fits the empirical distribution of [eeom and Generali series, whereas it is less
suitable for Bpi and Tiscali. Such behavior may be referabléhé fact that the latter two series are
characterized either by high kurtosis and, as we will sex,|latrong evidence of temporal dependence
between consecutive returns which is indeed underratddsmtarginal approach.
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Table 2:Descriptive statistics for daily returns.

Generali Bpi  Telecom Tiscali

mean -0.0005 0.0002 -0.0006 -0.0008
standard deviation 0.0192 0.0171 0.0280 0.0386
skewness -0.0351 0.0600 -0.2324 1.2079
kurtosis 5.0013 20.759 5.9827 11.005
JB Test 212.12 38530 478.93 4099.8
Generali Telecom
. 0.1t -
$0.05* $0,05*
2 < 0,05
005t -0.1r
rd
o -0.15-
VST 4 0 1 2 3 4 Y% 2

2 - 0 1 -1 0 1
Standard Normal Quantiles Standard Normal Quantiles

Tiscali Bpi

0.4f

0.3

0.2r

0.1

Empirical Quantiles
Empirical Quantiles

-0.1f

Yy 3 3 4 4 3 =2

-2 -1 0 1 -1 0 1
Standard Normal Quantiles Standard Normal Quantiles

Figure 2:Normal QQ-plot for daily returns.

The typical i.i.d. hypothesis underlying most common statal procedures is to be treated with
great caution when modelling financial returns. Many awgh@ve studied the dependence between
two or more financial assets. Here, our main intention isvwestigate the temporal dependence for a
financial time series.

It is well-known (see Fama, 1971; Pagan 1996) that movenuéméturns in liquid markets do not
exhibit significant correlation. The lack of correlatiorsHzeen widely discussed and is often cited as
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Generali Telecom

0.1 T T T T T T T 0.15

0.05p

Empirical Quantiles
Empirical Quantiles

-0.05f

-0 . . . I . . . 0. . . . . .
-01.08 -0.06 -0.04 -0.02 0 0.02 004 006 0.08 62 -015 -01 -00! 0.05 01 0.15

5 0
Log-Dagum Quantiles Log-Dagum Quantiles
Tiscali Bpi
0.3 T 0.1
0.2r
0.05f 3
8 3
= rd =
g 01 g
& &
® © 0
Q L
g 0 3
& &
-0.05F
-0.1
-0 . . . . . . -0 01 . . . . .
=62 -015 -01 -0.05 0 0.05 0.1 0.15 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
Log-Dagum Quantiles Log-Dagum Quantiles

Figure 3:Log-Dagum QQ-plot for daily returns.

support for theefficient market hypothes{Fama, 1991). Nevertheless, uncorrelation does not mean
that the return movements are independent. Other formsminear dependence may exist which
cannot be conveyed by the traditional dependence measures.
Common measures of nonlinear dependence are based on theraeitdion of various powers of
the absolute returns
pp = corr([Yial",[Vil"). (11)

Typical choices for- arel and2. Forr = 1, the correlation is the highest, which means that the
absolute returns are more predictable than other powerstofiis. The choice = 2 provides a
measure of the phenomenon alatility clusteringor volatility-volatility correlation large/small
return variations are more likely to be followed by large&dimeturn variations. Figure 4 shows this
phenomenon for the daily returns of the considered stocks.
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Generali Telecom

0.1 T T T T T 0.15

Returns
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Returns
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Tiscali Bpi

0.5

0.4f

0.3r

0.21

Returns
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oaf
ol

-0.1
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Figure 4:Daily returns and volatility cluster phenomenon.

5.1.1 Graphical assessment of dependence: the chi-plot

Thechi-plotproposed by Fisher and Switzer (1985, 2001) is a rankeddlzasphical tool that reveals
more detailed and explicit information regarding the natirdependence between two variables. In
particular it has a characteristic pattern depending ortlhvenehe variables (i) are independent, (ii)
have some degree of monotone relationship, (iii) have a wamglex dependence structure.

For our aim, let us consider the bivariate variafdfe ,, ;) and Iet(y,fi_)l, i be thei-th data point
(1 =1,...,T) from the vectors of sample observatidiys_1, y:). Moreover, let/(A) be the indicator

function taking value$ or 1 according asi is true or false. For each data po(@ﬁ)l, yt(i)) set

T

1 , ; : ;

Zi= == > I < 9w < y”)
T—14=
JF
1 < : : 1 < : :
Wi=rm— > 1y <), Gi= oy 2 Iy < w”)
VD Ve

and
S; = sign{(W; = 0.5) - (G; — 0.5)}
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wheresign(-) denotes thaign function Now, define the quantities

- Z; — WiGi
N WG Gy

and

The chi-plot is the scatterplot of the paifs;, x;). At each sample poir(tyﬁ)l,yt(i)). Xi € [—1,1]
measures the departure from bivariate independenck, i$f a strictly increasing function df;_,
theny,; = 1 for all the sample points; similarly, i¥; is a strictly decreasing function a&f,_;, then
xi=—1,i=1,2,...,T. Moreover,); € [—1,1] is a measure of the distance(@f”,, y"") from the
center of the dataset as expressed by the median.of, y¢).

When the bivariate data come from independent margingsalues tend to be uniformly concen-
trated in a strip around the horizontal lings= 0. The width of the strip is determined so that
approximately100p% of pairs (1, x;) lies between two control lines, say = +c,/vT. Thec,
valuesl1.54, 1.78 and2.18 correspond t = 0.90,0.95 and0.99, respectively (Fisher and Switzer,
2001). However, whery; andY;_; are dependent, the valuesgfshow clustering structures. In
particular, ifY; andY;_,; are characterized by a positive relationshipyalues will tend to be positive
and the converse for negative dependence. DependenceehatinandY; ; should be revealed by
departures from this zero-centered horizontal strip.

Recently, different uses of the chi-plot have been suggeBtadnstance, Genest and Boies (2003)
discussed the connection between ranked marginal dataopoutbs. Abberger (2005) used the chi-
plot to explore local dependence in the tails of a bivariag&ritdution. He stated that lower/upper tail
independence is present in the data when the chi-plot exlam the left/right side of the graph to the
zero line.

5.2 Checking for dependence

With the aim of assessing possible forms of dependence ipate(Y;, Y;_1), an empirical study of
the concerned time series is now performed. Preliminamltesegarding monotone dependence (i.e.
nonzero grade correlation) betwegrandY;_; are shown in Table 3. Here we consider Kendall’s tau,
Spearman’s rho, Pearson’s correlation coefficient, theahedrrelation coefficient and the measures
of nonlinear dependencey;; andpyy, given in (11).

A slight form of monotone association emerges from the ofezkdata even ipy;; and pjy put
more emphasis to nonlinear dependence. Nonlinear depemdemparticularly evident for Tiscali,
Bpi and Generali series.
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Table 3:Measures of dependence between consecutive daily returns.

T Ps P M Pl P2

10 Generali 0.0110 0.0167 0.0523 0.0174 0.2177 0.2476
11 Telecom 0.0365 0.0534 0.0533 0.0079 0.1199 0.0671
12 Tiscali 0.0748 0.1110 0.2155 0.0675 0.3434 0.3816
Bpi 0.0374 0.0547 0.1340 0.0338 0.3348 0.1824

©CoO~NOUTA,WNPE

17 Generali Telecom

2 1 0.5r b 0.5r

26 -0.5r 1 -0.5r

1 -05 0 05 1 1 -05 0 05 1

29 ' n ' n
Tiscali Bpi

0.5 1 0.5

-0.5p b -0.5r

05 1

46 Figure 5:Chi-plot for daily returns.

49 To investigate the structure of the dependence underlfi@géries more thoroughly, we integrate
51 the descriptive measures with the chi-plot analysis disgggan Figure 5. In general, we can observe
that y; values are centered around zero, but are not uniformlyillised alongn-axis: clustering
>4 structures and a certain pattern of positive and negatipertience appear. More specifically, the
56 chi-plot for Generali series highlights the absence of a&tgtionship between the returns fgr< 0,
58 whereas positive dependence is visiblesjpr- 0. A possible form of upper tail dependence should
29 be considered. For Telecom, we note a rather bent coursg for) indicating a slight local positive
dependence. Moreover, mogt values are positive and lie outside the upper control line. ti@
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contrary, ; values seem to be reasonably uniformly distributedsfox 0. No tail dependence is
shown. The graph produces approximately a horizontal dragtenoting independence between the
consecutive returns. The graphical analysis for Tiscadisdaot show any dependence structure for
n; < 0 sincey; values are uniformly concentrated around zero. On the didwed, for positive values
of n, the chi-plot reveals the presence of positive dependehaecomplex nature sincg; values
appear in terms of increased scatter outside the upperotding. In particular, for values; near to

1, x; values appear unusually high. Thegeorrespond to large peripheral returns which are of the
same sign. The evidence of peripheral dependence seemsvieyagpper tail dependence. As far as
the Bpi series is concerned, both positive and negative aggnudependencies appear. Fpr< 0

the graph traces a bent course while fipr> 0 almost ally; values are scattered outside the upper
control line. Upper tail dependence is detected. To comglwe can state that the Bpi and Tiscali
series are marked by a prominent dependence while Gereddilaracterized by a modest degree of
dependence. Independence between consecutive retums &eappear in Telecom data.

5.3 Fitting modelsto the data

Since the empirical analysis of the daily returns showseawie of possible forms of dependence
between the returns, the adoption of the copula approaceapparticularly appropriate to ascertain
and measure the temporal dependence betwgandY;_;.

This section is devoted to the comparison between the nargimd conditional approach used to
model the data. The former considers the returns as a segjeénd.d. observations from a log-
Dagum distribution. The latter relies on the assumptiom teirns are generated from a first order
stationary Markov process which here is modelled through a &&tla function with log-Dagum
margins. The performance of the two approaches is comparedeans of the values of the log-
likelihood functions and the Akaike Information CriterioAlC)

AIC = 20+ 2 (12)

where/ denotes the log-likelihood function evaluated in the MLirastes (either for the marginal
and conditional approach) ands the number of parameters. Models with smaller AIC valued@
be preferred to those with larger ones.

Tables 4 and 5 report the ML estimates of the parameters ofinarand conditional models
together with the aforementioned indices. We prelimiyastbserve that marginal estimates are sig-
nificant for all the series, whereas the estimates of assmtiparameters are significant for Generali,
Tiscali and Bpi.

22
URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



Page 25 of 30 Communications in Statistics - Simulation and Computation

©CoO~NOUTA,WNPE

Table 4:ML estimates and p-value for the parameters of the margippl@ach.
| B A v | ¢ AIC

Generali| 0.9522 1.0225 99.586 3247.6 -6489.3
p-value | 0.0000 0.0000 0.000(
Telecom| 0.9083 1.1162 69.155 2771.9 -5537.9
p-value | 0.0000 0.0000 0.000(
Tiscali 1.3439 0.5917 48.050 2725.1 -5444.3
p-value | 0.0000 0.0000 0.000(
Bpi 1.0265 0.9350 123.9808162.4 -16319
p-value | 0.0000 0.0000 0.000(

Table 5: ML estimates and p-value for the parameters of the conditiapproach.
\ g A v 0 ) \ 1 AlIC

Generali| 0.9553 1.0105 100.22 1.0426 0.06023254.2 -6498.1
p-value | 0.0000 0.0000 0.0000 0.0128 0.0138
Telecom| 0.9115 1.1084 69.101 1.0349 0.03952772.8 -5535.5
p-value | 0.0000 0.0000 0.0000 0.0666 0.0860
Tiscali | 1.2658 0.6222 50.48 1.0793 0.11642775.8 -5541.6
p-value | 0.0000 0.0000 0.0000 1.59E-05 5.38E-05
Bpi 1.000 0.9478 128.90 1.0478 0.08228232.3 -16455
p-value | 0.0000 0.0000 0.0000 9.00E-07 1.68E-07

Looking at AIC for Tiscali and Bpi series, it is quite evidehat the conditional approach based on
the BB7 copula shows a better fitting to data than the margiradoggh. The conditional approach
seems to hold for Generali returns as well. On the contrheyntarginal approach should be adopted
for modelling Telecom series.

These results are perhaps not surprising since Tiscali ansEBps are marked by stronger depen-
dence than Generali and Telecom series, as shown in theopseempirical analysis. This is further
confirmed by the fact that the estimates of the associaticempetersf) andd, are highly significant
for the Tiscali and Bpi series, significant for Generali, bottfor Telecom. This means that when tem-
poral dependence characterizes the series, an approact adows for this aspect is to be preferred.
On the other hand, when there is no dependence, it would ber hetadopt a more parsimonious
approach that ignores it. Thus, the marginal approach ipaaeu to fit better to data which show
independence, and the conditional approach should bered@iherwise, even if the series denote
a low level of dependence. Our results confirm this expemtatiloreover, in the light of these con-
siderations, the log-Dagum QQ-plot of Figure 3 should be nwwe informative and be explained
in terms of dependencegteris paribus The poor fitting of the marginal log-Dagum approach for
Tiscali and Bpi series may also be ascribed to the ascertaioedegligible temporal dependence.
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Table 6:ML estimates and p-value for medial correlatioit) and Kendall’s tau(7).
‘ M T
Generali| 0.0485 0.0510
p-value | 0.0002 0.1889
Telecom| 0.0358 0.0384
p-value | 0.0007 0.2962
Tiscali | 0.0880 0.0939
p-value | 0.0000 0.0430
Bpi 0.0602 0.0642
p-value | 0.0000 0.0187

Furthermore, the QQ-plot highlights a very good marginainfit for Telecom and Generali series
where the temporal dependence is quite irrelevant. ThisldHarther strengthen the validity of the
conditional approach when temporal dependence is found.

Table 6 provides the ML estimates for Kendall's tau and thdialeorrelation coefficient obtained
by substituting in (2) and (4) the ML estimates éfand . The medial correlation coefficient is
significantly different from zero for all the series, whileKdall's tau appears significant for Bpi and,
to a lesser extent, for Tiscali. Similar conclusions may t@wh from Table 7 which reports the ML
estimates of the measurgs = 2~/% and\; = 2 — 2/? discussed i§ 2.2. The);, estimates are not
significantly different from zero whil@; are highly significant for Tiscali and Bpi and significant for
Generali, as expected from the results highlighte$l52.

The estimated dependence measures seem to be consistetiievgrevious considerations be-
cause they highlight particular forms of dependence (dlobical) only for the series which exhibit
marked temporal dependence.

These outcomes are very promising since they support theecbbthe conditional approach for
modelling the temporal dependence in univariate time sefiibis conclusion is not limited to the use
of the BB7 copula, it is definitely more general and we expedtithzolds for other choices of the
copula as well. We recommend, therefore, the copula approasituations in which non-negligible
dependence is found in the observed data. In this sensdiripegy analysis of the data may provide
useful indications on the type and the level of the depenelenc

6 Final Remarks

In many applications, the hypotheses of independence amdatity of the data are usually assumed
for convenience because easier to be handled. Howeveg, dhessituations where neglecting depen-
dence and non-normality effects may yield misleading modald unrealistic estimates of unknown

24
URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



Page 27 of 30 Communications in Statistics - Simulation and Computation

©CoO~NOUTA,WNPE

Table 7:ML estimates and p-value for;, and \.
R Ao
Generali| 9.97E-06  0.0558
p-value | 0.4241 0.0092
Telecom| 2.42E-08 0.0462
p-value | 0.4690 0.0579
Tiscali 0.0026 0.0993
p-value | 0.2578 2.05E-06
Bpi 0.0002 0.0623
p-value | 0.2727 1.86E-07

parameters. The care of dependence and non-normality lescionportant to extend the standard
model towards more efficient ones. Nevertheless, if theipusvassumptions are relaxed, much less
tractable models are necessary.

This paper is an attempt to deal with temporal dependenaeeleet consecutive returns in uni-
variate financial time series. We have assumed that the fadaeturn at timef — 1 influences the
behavior of the return at time In this spirit, a conditional approach has been employedaricial
returns have been modelled through a first order stationamkd process using a copula function
and taking into account departure from Normal distributiinparticular, to describe the dependence
structure underlying a time series we have considered tohidedean two-parameter BB7 copula
whereas, in order to capture skewness and kurtosis thattimadata, we have chosen the log-Dagum
distribution. Finally, the conditional approach has beempared through empirical analysis with the
marginal one. The latter relies on the independence assumipttween consecutive returns which
are log-Dagum distributed.

Our main findings highlight that the conditional approachf@ens better than the marginal one
for time series which exhibit structures of temporal demsog. Models based on the conditional
approach should better fit the data and provide a more religpresentation of reality. This aspect
assumes particular importance, for instance, in financeevihés hard for financial institutions and
regulators to avoid dramatic underestimation of appropriesk measures. However, we observe
that the results obtained in the paper are not only relevanfiriancial applications, but also for
the analysis of any real-life time series where the assumpif independence and normality seems
inappropriate.

Obviously, to understand more fully the potential of thipegach, further investigations are re-
quired. Some problems are still open and need an in-deptly.stor instance, it would be useful
to analyze the characteristics of the conditional distrdyuof a variable at time given its behavior
att — 1. At the same time, we could extend the concept of temporatnignce by considering a
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higher-order Markov process and assess the performanag approach for forecasting analysis.
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