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1 Introduction

In the last three decades, Monte Carlo (MC) simulation has become a very popular tool. This success

can be traced back to at least two reasons: first, the widespread availability of cheap computing power

resulted in more feasible execution times; second, the development of models where no analytical solutions

exist has forced researchers to resort to computer-intensive methodologies. The latter remark also applies

to the case when only asymptotic approximations exist, and the small sample behavior of estimators or

test statistics must be investigated by means of stochastic simulation.

In some cases, however, standard MC is not the most appropriate tool; this happens, for example,

when we deal with rare events. Suppose that one were interested in the estimation of the probability

p = P (X ≥ c) for some “large” threshold c. The Crude MC (CMC) approach consists in simulating N

observations x1, . . . , xN from the distribution of X and computing the estimate

p̂MC =
1
N

N∑

i=1

1{xi≥c}, (1)

where 1A is the indicator function of the set A. If c is the α quantile of the distribution, we expect∑N
i=1 1{Xi≥c} to contain only N · (1 − α) non-zero summands, so that, for very large values of α, N

must be very large to obtain an estimator with good properties. Formally, this can be seen by means

of the standard efficiency measure for estimators of rare event probabilities, namely the relative error

τ =:
√

var(1{Xi≥c})/E(1{Xi≥c}); see, for, example, Asmussen and Binswanger (1997). For the CMC

estimator the relative error diverges as p → 0:

τ =

√
p(1− p)

p
≈ 1√

p
→∞ as p → 0.

The difficulty becomes even more relevant when we are interested in estimating the moments of the

conditional distribution of X, as the following example shows.

Example 1. Consider the estimation of µc = E(X|X ≥ c) when X has the standard lognormal distribu-

tion, i.e. X ∼ Logn(0, 1). The CMC estimator is given by

µ̂MC
c =

1
#{Xi ≥ c}

N∑

i=1

Xi1{Xi≥c}, (2)

where X1, . . . , XN is a random sample from X. Figure 1 shows the MSE of µ̂MC
c as a function of c,

obtained by repeating B = 10000 times the following two steps:

1. Simulate N = 106 standard lognormal random numbers; notice that such a large value of N is

necessary in order to get a reasonable estimate of the variance for the largest values of c considered

in the example;

2. Use (2) to compute the CMC estimate of µc.

2
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Then, we compute the mean and the variance, respectively given by ˆ̄µc =

∑B
i=1 µ̂

(i)
c /B and var(µ̂c) =∑B

i=1(µ̂
(i)
c − ˆ̄µc)2/B, where µ̂

(i)
c is the i-th estimate (i = 1, . . . , B) obtained in the simulation procedure;

finally, the bias is equal to b(µ̂c) = ˆ̄µc − µc. In the lognormal case we know from elementary probability

theory the true conditional expectation:

µc = E(X|X ≥ c) = eµ+σ2/2 · 1− Φ(ξ − σ)
1− Φ(ξ)

,

where φ(·) and Φ(·) are respectively the density and the distribution functions of the standard normal

distribution and ξ = (log(c)−µ)/σ. It follows that in this example E(X|X ≥ c) = exp{1/2}(1−Φ(log(c)−
1))/(1− Φ(log(c))).

FIGURE 1 HERE

It can be seen that the MSE increases sharply as c gets larger. As for the variance of the estimator, it

is very close to the MSE, thus no graphical representation is given. The latter result is not surprising in

view of the fact that bias2 = O(1/N), whereas variance = O(1/N2), so that in simulations bias2 is small

if N is large enough.

Importance Sampling (Hammersley and Handscomb 1964; see Casella and Robert 2004, sect. 3.3 or

Glasserman 2003, sect. 4.6 for reviews) is a very powerful variance reduction technique. The setup is

based on standard MC, and Importance Sampling (IS) shares many desirable properties with it; the

main difference is that IS does not simulate observations from the probability measure of interest P , but

from an instrumental probability measure P̃ which assigns “more weight” to the event of interest. Not

surprisingly, the features of P̃ are of crucial importance, because they can result in either large efficiency

gains or poor quality estimators. Thus, IS is commonly considered one of the most effective but also most

complex variance reduction techniques.

The theory of IS is well established for light-tailed distributions: the IS density is usually based on

exponential tilting (more concretely, on the moment generating function), and efficiency results are known,

at least asymptotically. On the other hand, when working with heavy-tailed distributions, no all-purpose

recipe for finding the IS probability measure is available; moreover, from the theoretical point of view,

the lack of exponential moments makes it difficult to develop limit results. Thus, the properties of the

estimators must often be studied numerically.

In this article we derive an IS technique for the computation of tail probabilities when the distribution

of interest is a sum of iid lognormal distributions. More precisely, the IS density used in this paper

belongs to the Defensive Mixture class (Hesterberg 1985) and the optimal density is found by means of

the minimum Cross-Entropy method. The main contribution of the paper is twofold. First, we develop a

methodology which combines these two tools, namely Defensive Mixtures and Cross-Entropy minimization;

second, a comparison with more standard IS techniques shows that the approach proposed here has

very favorable properties. Technically, this procedure has marked similarities with maximum likelihood

3
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estimation of the parameters of a mixture distribution, so that it can be tackled by means of the EM

algorithm.

We also extend the IS solution found in this setup to the estimation of the quantiles of a compound

Poisson-lognormal distribution. This model is frequently employed in the analysis of the total loss dis-

tribution in actuarial and operational risk applications. In the latter field, IS can be of paramount

importance, because the computation of risk measures (also for regulatory prescriptions contained in the

New Basel Accord on Banking Supervision; see Basel Committee on Banking Supervision 2005) requires

the estimation of extreme quantiles, for which CMC suffers from the drawbacks shown in example 1

above.

The rest of the paper is organized as follows. Section 2 reviews the basic IS methodology and gives some

details about heavy-tailed distributions; Section 3 uses the minimum Cross-Entropy approach to derive

the parameters of the IS density for the estimation of the tail probability of a finite sum of lognormal

distributions; Section 4 presents the results of several simulation experiments aimed at verifying the

properties of the estimators; Section 5 applies the technique to a compound Poisson-lognormal distribution

and computes tail probabilities in an operational risk setup; Section 6 concludes and discusses some

directions for future research.

2 Importance Sampling for sums of lognormals

2.1 Preliminaries: basic Importance Sampling

Most of the time, MC simulation is devoted to the computation of a definite integral. Let X be a random

variable defined on some probability space (Ω,F , P ) and assume that it is absolutely continuous with

density f(·); moreover, let h(·) be a known function. Consider evaluating the following integral:

µ = Ef (h(X)) =
∫

X
h(x)f(x)dx. (3)

Sometimes, the density of X is too complex, and the analytical evaluation of (3) is difficult or even impossi-

ble. A readily available solution is MC simulation, which consists in simulating x1, . . . , xN independently

from f(·) and computing µ̂MC = (1/N)
∑N

i=1 h(xi). The convergence of µ̂MC follows from the strong law

of large numbers. The rate of decrease of the variance of the estimator is equal to O(1/N), so that the

variance is equal to σ2/N for some σ. If σ is very large, the achievement of the desired precision level

requires an extremely large N .

To introduce IS, note that (3) has the following alternative representation:

µ = Ef (h(X)) =
∫

X
h(x)

f(x)
g(x)

g(x)dx,

where g(·) is also a density. It follows that

µ = Eg

(
h(X)f(X)

g(X)

)
, (4)

4
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where the expectation is taken with respect to the density g(·). Equation (4) provides another method of

simulating X:

Algorithm 1 (Importance Sampling)

• Simulate x1, . . . , xN independently from g(·);

• Compute

µ̂IS =
1
N

N∑

i=1

h(xi)
f(xi)
g(xi)

. (5)

Intuitively, the instrumental distribution g “assigns a larger probability” (in a sense to be made more

precise later) to the event of interest. The estimator µ̂IS is called an importance sampling estimator of

µ, and g(·) is the importance sampling density. The ratio r(x) = f(x)/g(x), usually referred to as the

likelihood ratio, can be interpreted as a weight, so that (5) is a weighted mean.

Unbiasedness, consistency and asymptotic normality of the estimator µ̂IS follow from the asymptotic

theory of standard MC, under the conditions that the support of g includes the support of f and that g

is such that the variance of the estimator is finite. This has the interesting implication that the choice of

g can be based on efficiency criteria; in particular, we could seek a density g∗ which is easy to simulate

and is such that varg∗(µ̂IS) is small. A necessary condition for the variance of (5) to exist is that

Eg

(
h2(X)f2(X)

g2(X)

)
= Ef

(
h2(X)f(X)

g(X)

)
=

∫

R
h2(x)

f2(x)
g(x)

dx < ∞.

As pointed out by Casella and Robert (2004, sect. 3.3.2), this implies that we should analyze carefully

the behavior of r(X) in the tails of the distribution, because importance sampling distributions with

an unbounded likelihood ratio are likely to give estimators with infinite variance and/or widely varying

weights. Loosely speaking, “good” IS distributions g should have a thicker right tail than f . Two types

of sufficient conditions for the finiteness of Ef (h2(X)f(X)/g(X)) have been proved by Geweke (1989):

f(x)
g(x)

< M ∀x ∈ X and varf (h) < ∞; (6)

X is compact, f(x) < F and g(x) > ε ∀x ∈ X , (7)

where F is a positive constant and ε is a small positive constant. As for the conditions (6), if the variance

of the simple Monte Carlo estimate is finite without importance sampling, and if the likelihood ratio is

bounded, then the variance with importance sampling is bounded. We use defensive mixture sampling

(described below) to bound the likelihood ratio. However, it is worth noting that there are IS algorithms

which satisfy neither (6) nor (7).

The function g that minimizes the variance of the estimator can be found explicitly (Casella and Robert

2004, Rubinstein and Kroese 2008). However, the result is of little help in applications as it requires the

knowledge of
∫

h(x)f(x)dx, i.e. the integral we are interested in. Thus, the obvious question is: how do

we choose the IS density? Ideally, we would like to find a standard procedure which works in all setups.

5
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Solutions of this type, mainly based on tilted densities (Ross 2006), are often available when working with

light-tailed distributions. For heavy-tailed distributions the problem has to be solved differently, mostly

on a case-by-case basis.

2.2 Importance Sampling for sums of lognormal random variables

Given k iid random variables X1, . . . , Xk, the rate at which pk
def= P (X1+ · · ·+Xk > ck) → 0 for c > E(X)

and ck = kc has been thoroughly investigated by the theory of Large Deviations (Durrett 1996, sect. 1.9).

Essentially all the results assume the existence of the moment generating function of X; see Mikosch and

Nagaev 1998 for a review of the Large Deviations methodology in the heavy-tailed setup. Furthermore,

the problem studied by Large Deviations is somewhat different from what is being investigated in this

paper, because here we are concerned with fixed values of pk and k, not with an asymptotic (as pk → 0)

tail probability.

It is well known that, although the lognormal distribution has all finite moments, its moment generating

function does not exist (see, for example, Moran 1984). As a consequence, both the IS procedure based

on tilted densities and the theory of Large Deviations are of little help in this case; thus, different tools

are needed both to find an IS density and to investigate the speed of convergence.

In this paper we tackle the problem by means of Defensive Mixtures (DM ; Hesterberg 1995, Davison

and Hinkley 1997, p. 457). When considering a single r.v., this approach builds the IS density as a mixture

of the distribution of interest itself and of another distribution, usually, but not necessarily, belonging to

the same parametric class. For example, in the setup of example 1, with X ∼ Logn(µ, σ2), a reasonable

choice for the IS density is a mixture of X and another lognormal distribution with a larger expected

value: X2 ∼ Logn(µ2, σ
2
2), with µ2 = µ + t, t ∈ R+. The IS density would therefore be given by:

g(x) = πf(x; µ, σ2) + (1− π)f2(x; µ2, σ
2
2), 0 < π < 1, (8)

where f and f2 are respectively the density of X and X2.

In a multivariate setup, namely when we estimate the tail probability of Y =
∑k

i=1 Xi, a defensive

mixture density is a mixture of the joint density:

gk(x) = πfk(x) + (1− π)gk(x),

where gk is some other k-dimensional density. Suppose now that fk has independent marginals:

fk(x) =
k∏

i=1

f(xi).

Then typically one would let gk also have independent marginals:

gk(x) =
k∏

i=1

g(xi).

6
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If the Xi’s are lognormal, the individual components g(xi) could be lognormal, or a mixture of lognormals,

so that in general one would have the following compound mixture distribution:

gk(x) = π

k∏

i=1

f(xi) + (1− π)
k∏

i=1

(λg(xi) + (1− λ)g2(xi)).

In this paper we restrict ourselves to the case λ = 0, so that with probability π we sample from a

Logn(µ, σ2) population and with probability (1− π) from a Logn(µ2, σ
2
2) population.

As pointed out by Hesterberg (1995), this approach has the advantage of providing weights bounded

above by 1/π; furthermore, it is quite clear that conditions (6) and (7) are satisfied. On the other hand,

the main difficulty is that, in principle, three parameters (π, t and σ2) have to be chosen.

2.3 An asymptotically efficient approach

The lognormal distribution is subexponential (Embrechts et al. 1997, sect. 1.3.2 or Asmussen et al. 2000,

sect. 2.1) and heavy-tailed; more precisely, it belongs to the Maximum Domain of Attraction (MDA) of

the Gumbel distribution (Embrechts et al. 1997, sect. 3.3). For the sum of random variables belonging to

the intersection of the subexponential class and of the MDA of the Gumbel distribution, Asmussen et al.

(2000) propose an IS density which satisfies the theoretical requirement of asymptotic efficiency (see e.g.

Sadowsky 1993). The marginal density is of the form (Asmussen et al. 2000, p. 310)

gA(x) =





η
x(log(x))2 x ∈ (a, +∞),

γl(x) x ∈ [0, a],
(9)

where a > e (where e is the base of natural logarithm), η > 0, l is an arbitrary strictly positive density

on [0, a] and γ is a normalizing constant; the joint density is the product of independent marginals.

This distribution is very heavy-tailed, to the extent that for most choices of the parameters there is a

relatively high probability of obtaining extremely large values: for example, with η = 0.25 and a = 2.8, the

probability of observing a value larger than 106 is more than 1%, and for larger values of η this probability

is even higher. Simulation experiments with 10000 replications demonstrated at least two overflows.

However, if the goal is estimating pk, then one does not need to have gA be so heavy-tailed beyond the

threshold, as it would indeed be nearly optimal to have gA(x)/f(x) approximately constant for y > ck.

In fact, as noted by Asmussen and Kroese (2006, p. 550), the properties of the IS estimator obtained

using (9) are rather poor for most parameter configurations. Intuitively, the variance of p̂IS based on gA

is large because the distribution of the likelihood ratio is strongly concentrated around zero. As a result,

the variance of the likelihood ratio is small, but the IS estimator p̂IS is almost entirely determined by the

few weights which are away from zero, so that it is highly unstable.

More formally, fix ε > 0, let h = 1{x≥c} and Aε =: {xi : r(xi) > ε}. Then, if the IS density is

such that one gets some fairly large weights in the region of interest, p̂ ≈ (1/N)
∑

xi∈Aε
h(xi)r(xi) with

xi ∼ gA. The relative error is given by τ =
√

pAε(1− pAε)/p, whose magnitude is ultimately determined

by pAε : if pAε is smaller than p, the performance can be even worse than CMC. The reason is that the

7
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IS density has a much heavier tail than the target density, so that the simulation produces many large

observations, for which both the likelihood ratio and the product r(x)h(x) are essentially zero. Thus, the

density (9) “puts more weight” than f on [c,+∞), but a non-negligible percentage of this weight is on

the interval [c1, +∞), where c1 is such that P (X > c1) ≈ 0; this also explains why Aε usually contains

few observations.

In our opinion, in applications, an asymptotically bounded relative error is not the most relevant

requirement of an IS estimator, because the aim consists mainly in the estimation of tail probabilities for

small but fixed values of p, so that the limiting behavior of the estimator as p → 0 is less important than

the properties of the estimator for the true value of p, namely the value of p to be estimated. Therefore,

we abandon the criterion of asymptotic efficiency and follow a different road.

2.4 Determining the optimal IS density

The most obvious approach to the selection of the parameters in (8) would be to choose numerical values of

these parameters which minimize the variance of the IS estimator. As before, we assume to be interested

in the estimation of pk for some large threshold ck > E(Y ); putting hk(x) = 1{Pk
i=1 xi>ck}, this probability

can be written as

pk =
∫

[0,∞)k

hk(x)fk(x)dx = Efk
(hk(X)). (10)

We must find a k-variate density gk such that we simulate N iid vectors (of length k) x∗1, . . . , x
∗
N from gk

and take p̂IS
k = (1/N)

∑N
i=1 hk(x∗i )rk(x∗i ) as an estimate of pk, where the weight rk(x) = fk(x)/gk(x) is

the likelihood ratio.

Now minimizing the variance of p̂IS
k is equivalent to minimizing the expected value Efk

(rk(X)hk(X)).

To see why, notice that p̂IS
k is the CMC estimator of Egk

(hk(X)rk(X)). We have:

var(p̂IS
k ) =

1
N2

var

(
N∑

i=1

hk(Xi)rk(Xi)

)
=

1
N

var(hk(X)rk(X)) =

=
1
N

Egk
[hk(X)2rk(X)2]− p2

k ∝ Egk
(hk(X)2rk(X)2) =

∫

[0,∞)k

hk(X)2
fk(x)2

gk(x)2
gk(x)dx =

=
∫

[0,∞)k

hk(X)2
fk(x)
gk(x)

fk(x)dx = Efk
(hk(X)2rk(X)) = Efk

(hk(X)rk(X)). (11)

However, there are at least two difficulties with this approach. First, evaluating (11) can be complicated

because it depends on both π and t. Second, and more important, the random variable (1/N)
∑N

i=1 rk(Xi)

with Xi ∼ g may have a very large variance and/or be too concentrated around zero. Thus, minimizing

(11) is not enough, because it implies minimization of the variance of the estimator but can produce an

estimator whose convergence to the true value is too slow for practical purposes; namely, there are cases

where consistency is just formal and the estimator is biased for any reasonable sample size. Therefore,

an analysis of the whole distribution of rk(X) is necessary: for example, if we use the IS density (9), the

variance of rk(X) is small but the variance of p̂ is not.

8
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Let’s now focus on the density (8); for simplicity, we put σ2

2 = σ2
1 = σ2, although the EM algorithm

presented below (see sect. 3.1) could easily be extended to the estimation of σ2
2 as well. The main reason

for introducing such an IS density is that it guarantees bounded weights. This issue, which turns out

to be crucial in the sum of lognormals case, is indeed negligible when working with a single lognormal

distribution: taking π = 0 in (8), some straightforward algebra shows that

r(x) =
1

xσ
√

2π
exp

{
−(log(x)−µ)2

2σ2

}

1
xσ
√

2π
exp

{
−(log(x)−(µ+t))2

2σ2

} = exp
{

t2 − 2µt− 2t log(x)
2σ2

}
.

This is a monotonically decreasing function, and limx→0 r(x) = +∞. Thus, r(x) is unbounded when x is

small, but the only xi’s which contribute to p̂IS are those belonging to the set Ac = {xi : xi ≥ c}, so that

r(x) is bounded for x ∈ Ac, and the upper bound is r(c). Thus, in the single lognormal case, one can use

an IS density of the form Logn(µ + t, σ2) and minimize directly (11) with respect to t. However, in this

setup one can integrate the density numerically, therefore we do not present further details here.

If X1, . . . , Xk are independent, (10) can be rewritten as

pk = Efk
(hk(X)) =

∫

[0,∞)k

hk(x1, . . . , xk)f(x1) · · · f(xk)dx1 · · · dxk.

If gk has independent components, i.e. gk(x) =
∏k

i=1 g(xi), the IS approach is based on the fact that

pk = Efk
(hk(X)) = Egk

(hk(X)rk(X)).

With these hypotheses, the likelihood ratio is equal to

rk(x) =
∏k

i=1 f(xi)∏k
i=1 g(xi)

. (12)

When k > 1, the distribution of rk(X) has a disturbing feature: the values of rk(x) which actually

contribute to the estimator are those with x1, . . . , xk such that
∑k

i=1 xi > c. It is clear that
∑k

i=1 xi can

be larger than c even though one or more of the xi’s is arbitrarily small; but this implies that, if π = 0,

rk(x) is unbounded. In addition to the aforementioned difficulties, the behavior of rk(X) as k → ∞ is

somewhat pathological, as summarized by the following theorem.

Theorem 1 If both fk and gk have independent marginals, and under the condition

Egk
(| log(fk(X)/gk(X))|) < ∞,

the following results hold true:

Eg

(∏k
i=1 f(Xi)∏k
i=1 g(Xi)

)
= 1 for any k ∈ N ;

lim
k→∞

∏k
i=1 f(Xi)∏k
i=1 g(Xi)

= 0 with P̃ -probability 1.

9

Page 10 of 31

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Proof. See Casella and Robert (2004, p. 551) or Glasserman (2003, p. 259).

The theorem has two implications. The first one, sometimes termed “weight degeneracy” (Casella and

Robert 2004, p. 552) consists in the fact that, as k gets large, the distribution of the weights becomes

more and more skewed, with most weights close to zero; in the limit an extremely large sample size is

needed to get a single non-zero weight. However, the estimator is useless because it is essentially computed

with only one observation. For intermediate values of k the estimator is downward biased unless N is

very large. On the other hand, as π decreases, the maximum of the likelihood ratio gets larger: when

using a defensive mixture, it is easy to see that maxx rk(x) = π−1. The speed of convergence to zero is a

decreasing function of π: as π gets small, there is an increasing probability of large values of the Xi’s, for

which the likelihood ratio is small.

Second, a naive optimization of (11) is unfeasible, because (i) two parameters have to be found (π

and t), (ii) they also depend on k and c and (iii) numerical integration over a large dimensional space is

problematic. Moreover, optimizing has its own costs; if the reduction of variance is approximately the

same for all the numerical values of the parameter(s) in some interval(s), then it would be legitimate to

choose any value(s) in the interval(s). Some numerical results on this issue will be given in section 4.

3 The Cross-Entropy approach

The crucial aspect of IS consists in finding the optimal instrumental density. This issue is actually twofold:

one has to first choose the parametric form of the IS density, then to define an optimality criterion and

use it for finding the parameters. In this section we propose the criterion of minimum Cross-Entropy

(CE). In section 3.1 we apply it to the setup where the IS density belongs to the DM class, namely is

a mixture of lognormals. Then we turn to the case where the IS density belongs to the same parametric

family (i.e., lognormal) of the density of interest: in section 3.2 we implement the standard CE approach,

in section 3.3 the Adaptive CE technique.

3.1 The Defensive Mixture approach

Hesterberg (1995) finds the numerical values of the parameters of the defensive mixture mostly on the

basis of heuristic considerations. Here we develop a technique, based on the EM algorithm (Dempster et

al. 1977), for determining the parameters according to the minimum CE approach. Thus, the parameters

minimize the CE between the distribution of interest and the IS distribution, i.e. the defensive mixture.

The method of CE minimization was first proposed by Rubinstein (1997); see also Rubinstein and

Kroese (2004) and Asmussen et al. (2005). Referring the interested reader to these references for details,

we start by noting (Asmussen et al. 2005, pag. 60) that the optimal IS probability measure P̃ should

be “as similar as possible” to the original probability measure conditioned on the event of interest, which

we define as P (c). How can we measure the discrepancy? The most commonly used approach consists in

10
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using the Cross-Entropy or Kullback-Leibler distance (Kullback 1968) between the two distributions:

D(P (c), P̃ ) = E(c) log
P (c)

P̃
. (13)

As pointed out in the preceding section, minimization of the variance of the estimator may not be straight-

forward. On the other hand, the CE approach is usually easier to implement and an instrumental distri-

bution that is good by the CE criterion tends to be good in terms of variance as well. In particular, the

two methods give the same IS density if the minimization of the Kullback-Leibler distance is performed

over all densities (Rubinstein and Kroese 2004, pag. 67).

In the present setup, the probability measure P̃ is restricted to be of the form (8) and is therefore

identified by parameters π and t. When the probability measure P̃ is absolutely continuous with density

fθ, where θ is a vector of parameters, it can be shown that minimizing D(P (c), P̃ ) is equivalent to

max
θ

E(c)

(
k∑

i=1

log(fθ(Xi))

)
.

It is now clear that there is a close relation between entropy minimization (namely, minimization of (13))

and likelihood maximization. The log-likelihood of k observations is indeed given by

k∑

i=1

log(fθ(xi)) = k

∫
log(fθ(x))Pk(dx) = −kD(Pk, Pθ) + const, (14)

where Pk is the empirical distribution. Comparing (13) to (14), it follows that maximum likelihood results

can be translated into minimum CE results by replacing Pk with P (c).

The second fundamental result we need in the following is borrowed from Asmussen (2000, lemma

5.6), to which the interested reader is referred for details and a proof. The lemma states that, given

A(c) = {X1 + · · · + Xk > c}, where Xi’s are subexponential distributions with distribution function F ,

A(c) occurs if k − 1 of the Xi’s have distribution F and one has the conditional distribution of X given

X > c. Notice that this is very similar to the definition of subexponential random variables.

How do these results combine to provide a method for determining the optimal parameters of the IS

density? We explain this issue by focusing on our setup. First, notice that MLE of the parameters of a

lognormal mixture is equivalent to MLE of the parameters of a normal mixture. To see why, recall that

a normal mixture in two populations X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) is obtained by sampling from

X1 with probability π and from X2 with probability 1 − π. On the other hand, a lognormal mixture in

two populations Y1 ∼ Logn(µ1, σ
2
1) and Y2 ∼ Logn(µ2, σ

2
2) is obtained by sampling from Y1 = eX1 with

probability π and from Y2 = eX2 with probability 1− π. Thus, when taking logarithms of Y1 and Y2, one

samples from log(Y1) = X1 with probability π and from log(Y2) = X2 with probability 1− π.

Therefore we can consider the MLEs of the parameters π and µ2
def= µ + t of a normal mixture (see,
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for example, Flury 1997, sect. 9.2):

π̂ =
1
k

k∑

i=1

π1i =
∫ ∞

−∞
π1iFk(dx), (15)

µ̂2 =
1

k(1− π̂)

k∑

i=1

π2ixi =
1

1− π̂

∫ ∞

−∞
xπ2iFk(dx), (16)

where Fk is the empirical distribution function and π2x = 1 − π1x is the posterior probability that x

belongs to the second population. Defining φµ,σ2 as the N(µ, σ2) density, π1x is given by

π1x =
πφµ,σ2(x)

πφµ,σ2(x) + (1− π)φµ2,σ2(x)
. (17)

Putting c̃ = log(c), the conditional density of X|X > c̃ is equal to

φ
(c̃)
µ,σ2(x) =

φµ,σ2(x)
1− Φµ,σ2(c̃)

1{x>c̃},

where Φµ,σ2 is the N(µ, σ2) distribution function. Now the values of π and µ2 (π∗ and µ∗2, say) which

minimize entropy are given by (15) and (16) with Fk replaced by Φ(c̃)
µ,σ2 . More precisely, from Asmussen

(2000, lemma 5.6) we know that (k−1) observations have density φµ,σ2 and one has density φ
(c̃)
µ,σ2 , so that

π =
k − 1

k

∫ ∞

−∞
π1xφµ,σ2(x)dx +

1
k
· 1
1− Φµ,σ2(c̃)

∫ ∞

c̃

π1xφµ,σ2(x)dx, (18)

µ2 =
k − 1

k(1− π)

∫ ∞

−∞
xπ2xφµ,σ2(x)dx +

1
k(1− π)

· 1
1− Φµ,σ2(c̃)

∫ ∞

c̃

xπ2xφµ,σ2(x)dx. (19)

Now the key to the solution of the system formed by (18) and (19) consists in noting that equations (17),

(18) and (19) are the equations of the EM algorithm for maximum likelihood estimation of the parameters

of a random variable X distributed as a two-population normal mixture with parameters (µ, σ2) and

(µ2, σ
2) respectively, where (k − 1) observations are from the mixture itself and one observation is from

the distribution of X|X ≥ c̃. In particular, (17) implements the E-step, (18) and (19) the M-step. Hence,

in order to get the optimal values π∗ and µ∗2, we iterate (17), (18) and (19) until convergence; note that

the integrals in (18) and (19) have to be solved numerically at each iteration.

3.2 The standard Cross-Entropy approach

In this subsection we sketch the standard CE approach. By “standard CE approach” (Rubinstein and

Kroese 2004, sect. 2.3) we mean that the IS density is chosen in the same parametric family of the

variable of interest and that the CE method is used to find the optimal tilting parameter. In the present

setup this implies g ∼ Logn(µ2, σ
2), where µ2 = µ + t (t ≥ µ). Therefore, the optimal value of t is

determined by minimizing the Kullback-Leibler distance, and in this case the analogy with maximum

likelihood estimation provides a simple solution: given k observations x1, . . . , xk, the MLE of µ is given

by:

µ̂ =
1
k

k∑

i=1

xi =
∫ ∞

−∞
xFk(dx),

12
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where xi = log(yi). Following the same reasoning of the preceding subsection and using the well-known

expression of the expected value of the truncated normal distribution, the optimal value of µ2 can be

obtained analytically:

µ∗2 =
k − 1

k

∫ ∞

−∞
xφ(x)dx +

1
k
· 1
1− Φ(c)

∫ ∞

(c̃−µ)/σ

xφ(x) = (20)

=
k − 1

k
µ +

1
k

(
µ + σ

φ((c̃− µ)/σ)
1− Φ((c̃− µ)/σ)

)
.

Notice that the optimal value µ∗2 completely determines the IS density.

3.3 The Adaptive Cross-Entropy approach

As pointed out by Rubinstein and Kroese (2004, p. 38), the standard CE approach (from now on ST )

does not work well if the probability of the event of interest is too small (below 10−5); to overcome this

difficulty, Rubinstein and Kroese (2004, sect. 3.4) propose a multilevel algorithm which is based on a two-

step adaptive procedure (also called “Adaptive Cross-Entropy” - ACE) where not only the parameter µ

but also the threshold c is updated at each iteration. While referring the interested reader to Rubinstein

and Kroese (2004) for theoretical properties of this technique, in the next section we give some details

about the implementation to our setup. It is worth stressing that the ACE approach is computationally

quite heavy, because each iteration consists of two phases: in the present setup, the updating of µ is done

using standard numerical methods, while c is updated by means of MC simulation.

4 Some simulation experiments

In this section we focus on the estimation of tail probabilities for the random variable Y =
∑k

i=1 Xi with

Xi ∼ Logn(0, 1) and k = 10. Table 1 shows the optimal values of the parameters of the IS density in

the three approaches (DM , ST and ACE) presented in the preceding section. In the first case the IS

density is a defensive mixture and the optimal parameters π∗ and t∗DM are determined by means of the

EM algorithm. In the remaining two cases the IS density is a lognormal density and the optimal value of

t is found respectively using (20) and the multilevel algorithm proposed by Rubinstein and Kroese (2004,

sect. 3.4). The latter algorithm is implemented with N = 10000 MC replications and a sample quantile

equal to 1 − ρ = 0.99; different values of ρ produce almost identical results. According to remark 3.9 in

Rubinstein and Kroese (2004, p. 74), we iterate the algorithm ten more times after the stopping criterion

is satisfied.

TABLE 1 HERE

From the table it can be seen that in the DM approach the optimal value of π remains almost constant

as c increases, but the tail of the IS density gets heavier because tDM increases. As for the other two

approaches, in ACE the parameter t is much more sensitive to c than in ST .
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As pointed out above, the performance of any IS estimator is related to the features of the distribution

of rk(X). Table 2 gives some details about this distribution in the DM , ST and ACE approaches with

c ∈ {65, 80, 100, 150, 200, 300, 400, 500} and k = 10.

TABLE 2 HERE

The results show quite clearly that rk,DM has many more desirable distributional properties than

rk,ST and rk,ACE . In particular, we stress that approximately half of the observations simulated in the

DM approach are used for the computation of the estimator, even for the largest thresholds, and this

percentage is much larger than for ST and ACE (see the values of f c in table 2). Moreover, it is worth

pointing out that the distribution of rk,DM maintains satisfactory features as c increases. On the other

hand, in the ST approach the average of the weights remains approximately stable as c grows, but the

number of observations exceeding the threshold is very small, especially for large c. Finally, and somewhat

surprisingly, we see that rk,ACE has quite poor properties as well: the average of the weights tends to zero

as c increases, and the number of observations actually used for the computation of the tail probability

reduces considerably as c gets large. These features are typical of the weight degeneracy mentioned in

Section 2.4. The different properties of the distributions of rk,DM and rk,ACE are clearly related to the

fact that the weights in the DM case are bounded above, whereas in the ACE approach, they are not. As

we are now going to see, these results have a strong impact on the properties of the resulting estimator.

In the same setup used above for the simulation of rk(X), we investigate the properties of the three

estimators of pk with N = 10, 000 (see Table 3). To assess the stability of the estimators, we repeated

the simulation B = 1, 000 times and computed the MC estimate of the standard error of the estimator

ŝe(p̂) = (1/B)var(p(i)), where p(i) (i = 1, . . . , B) is the estimate obtained at the i-th replication. The

estimators are not guaranteed to be unbiased; therefore, neither the standard deviation nor the relative

error are good measures of performance, because both of them are only appropriate when the estimator is

unbiased. As a consequence we estimated a version of the relative error (we call it “MSE Relative Error”)

based on the MSE instead of the variance: τMSE
def=

√
MSE(1{Xi≥c})/E(1{Xi≥c}). The problem with

τMSE is that we do not know the true value of p and therefore, in principle, we can’t compute the MSE;

however, using here the conclusions drawn from the results in Figure 3 (see below), p̂DM seems to have

essentially reached convergence for sample sizes larger than 100, 000. As the estimator is consistent, we

computed p̂DM for all c’s with a sample size as large as N = 5, 000, 000 and computed τMSE treating the

value so obtained as the true value. Table 3 displays the results.

TABLE 3 HERE

Before commenting the outcomes in table 3, we investigate the asymptotic properties of the estimators

and give some graphical representations. Figure 2 shows the histograms of the simulated distributions of

p̂DM and p̂ACE respectively for the cases c = 65 and c = 500; whereas the first estimator is approximately

normal as expected from the theory of MC simulation, the latter has a very skewed distribution, in

particular for c = 500.
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FIGURE 2 HERE

Figure 3 shows the convergence of p̂DM and p̂ACE as a function of N for two different values of c,

namely c = 200 and c = 500; notice also that the final sample size is NACE = 10, 000, 000 for ACE and

only NDM = 500, 000 for DM , because p̂DM remains essentially constant for NDM > 500, 000.

FIGURE 3 HERE

As expected, the DM approach clearly outperforms ACE, but there is a marked difference between the

two cases: for c = 200, p̂ACE shows an acceptable precision, although only for the largest sample sizes

(the final values are p̂DM = 9.1 ·10−7 and p̂ACE = 3.75 ·10−7). On the other hand, for c = 500 p̂ACE does

not seem to reach convergence, even though it moves in the “right” direction as the sample size increases.

From Table 3 and Figure 3 we can derive some interesting conclusions. First, the DM approach is

always preferable to ST and ACE, because it is approximately unbiased even for small sample sizes and

has a much lower MSE Relative Error. Notice that the value of τMSE for p̂DM remains stable up to

the second decimal digit for all values of c, whereas τMSE deteriorates considerably for p̂ACE when the

probability of interest gets smaller: in particular, for c = 500 the ratio of the two MSE Relative Errors is

approximately equal to 25.

The estimator p̂ACE is approximately unbiased and has a low MSE Relative Error only for very large

N . This fact has the obvious implication that computing time increases; moreover, it is not clear how

large N should be. As for the ST approach, it only performs well for relatively large probabilities; for the

largest values of c the tilting parameter is clearly too small. For these reasons, the DM approach seems

to be preferable in all instances.

Finally, it may be relevant to measure the performance of the DM approach when the parameters are

not optimized. This issue is of interest because, as pointed out by Hesterberg (1985), the results may

not be very dependent on the exact shape of the second component of the mixture. If this is the case,

it means that the overall cost of sampling is just slightly larger with non-optimized parameters, so that

one may consider avoiding optimization (which has its own costs, both in human time and in machine

time) and use parameters chosen in a more heuristic way (see Hesterberg 1995, sect. 6, for some possible

solutions). Table 4 is similar to Table 3, but the results only concern the DM approach and are obtained

with π = 0.9 and tDM ∈ {3, 4, 5, 6, 7, 8}.

TABLE 4 HERE

The outcomes are quite interesting. First, it can be seen that the estimator is essentially unbiased for

all the values of tDM used in the experiment. However, the stability of the estimator is clearly dependent

on tDM , and even a small departure from the optimal value causes a non-negligible increase of τMSE .

Consider, for example, the case c = 65: the optimal τMSE is equal to 0.04 (see Table 3) and corresponds

to tDM = 4.265 (Table 1). Using tDM = 4, which is not very different from the optimal value, gives a

four times larger MSE Relative Error; with tDM = 6, the MSE Relative Error is almost 40 times larger.
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As for the cost of optimizing, DM has a much more favorable performance, because its computing time

is approximately equal to 0.03 seconds for any c, whereas for ACE the time increases from 1.6 to 10.5

seconds as c gets large.

5 Computing tail probabilities in Operational Risk

Operational risk management (see Davis 2006 for an overview of problems and techniques) is usually de-

fined as the area of risk management concerned with non-financial losses: it includes internal and external

frauds, employment practices and workplace safety, clients, products, and business practices, damage to

physical assets, business disruption and system failures, execution, delivery and process management. It

has recently become more and more important, both because of the regulators’ pressure and of the amount

of losses.

Operational risk presents peculiar features with respect to market and credit risk; it follows that its

measurement and management require different tools. In particular, the distribution of losses is mostly

modeled directly because operational losses are not related to underlying financial factors. This character-

istic has been the key to the development of a purely statistical approach which assumes a fully parametric

model for the losses and estimates its parameters using historical observations.

The Loss Distribution Approach is the most advanced approach contemplated by the Basel II Accord;

it is based on the well known actuarial methodology which estimates the whole loss distribution for each

business line by modeling separately the frequency and the severity of losses; see Embrechts et al. (1997)

or Klugman et al. (1998) for details. The standard parametric model currently used in applications is the

compound Poisson-lognormal distribution. Thus, the joint probability density function of Y =
∑K

i=1 Xi

and K over a fixed time horizon T is given by:

fY,K(y, k) = P (K = k) · fY (y),

where K ∼ Poisson(λ) and Xi ∼ Logn(µ, σ2) model respectively the frequency and severity of losses. The

marginal distribution of Y is the infinite mixture (often called compound) distribution

fY (y) =
∞∑

i=0

P (K = i) · fYi(y). (21)

The most common risk measure is the Value at Risk (VaR); the VaR at level α is the α quantile of

(21), so that 1− α is the tail probability of L. However, (21) is not known in closed form; therefore, the

only way of estimating quantiles relies on MC simulation. Moreover, the Basel II Accord prescribes large

confidence levels (up to 99.9%), and CMC encounters the problems mentioned in the preceding sections.

The CMC procedure consists of the following steps:

1. simulate a random number k∗ from the Poisson(λ) distribution;

2. simulate k∗ random numbers x∗1, . . . , x
∗
k∗ from the Logn(µ, σ2) distribution and compute y∗ =∑k∗

i=1 x∗i .

16
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Repeating B times (where B is a large number) steps 1. and 2. above, we simulate the loss distribution;

the VaR at confidence level α is given by the α quantile of the empirical distribution.

As for the application of IS to the compound Poisson distribution, some methods are discussed by

Asmussen and Glymm (2007, chap. 6) for the light-tailed case; in the heavy-tailed setup, Asmussen and

Kroese (2006) propose a solution which also incorporates control variates and stratification techniques.

Here we show how the procedure outlined in this paper can be extended to the random sum framework.

Recall the functional form of (21) and put P (K = k) = qk, k = 0, 1, . . .. We have

P (Y > c) =
∞∑

i=1

qi

∫ ∞

c

fYi
(y)dy; (22)

thus, we can apply to each summand the IS procedure developed above. The only problem is that we

have to truncate the series; however, given the properties of the Poisson distribution, the series can usually

be truncated after few terms. Obviously, the decision has to be made on the basis of the value of λ; for

example, with λ = 1, P (K ≥ 7) ≈ 8.3 · 10−5; this implies that, if we simulate 10000 random numbers

to estimate (22), we can stop when K = 6 or at most when K = 7, so that the sum contains just 5

(respectively 6) summands (the first term, corresponding to k = 0, can also be discarded because the loss

is zero).

In this application we consider the example used by Bee (2006) for estimating a Poisson-lognormal

model with truncated data; the estimated parameter values of the Poisson-lognormal model were λ̂ =

6.931, µ̂ = 1.404, σ̂2 = 2.823 and NT = 950.63 (NT is the estimated number of truncated data; see Bee

2006 for details). First of all, we have to compute the optimal parameters of the IS densities. We do not

give the numerical values of the optimal parameters for all c’s and k’s but consider that, for example, for

c = 1000 in the DM approach π∗ increases from 0.467 when k = 2 to 0.935 when k = 20 (as seen in sect.

3, the case k = 1 is special because r1(x) is bounded even for π = 0, so that there is no need to use the

DM approach: for k = 1 we obtained π ≈ 6−10). As for tDM , it decreases from 7.35 for k = 1 to 6.76 for

k = 20 (with λ = 6.931, the probability of a value larger than 20 is approximately equal to 1.25 · 10−5;

hence, we truncated the series (22) at k = 20). In the ST approach tCE ranges from 5.95 for k = 1 to

0.297 when k = 20, and in the ACE approach from 5.93 to 0.390.

Table 5 shows estimated tail probabilities and MSE relative errors obtained with the DM , ST , ACE

and CMC approaches with N = 10000; not surprisingly, and according to the results of the simulations of

the preceding section, DM has the best performance; notice, however, that the ST approach also works

well if the threshold is not too large.

TABLE 5 HERE

6 Conclusions

Estimating rare events probabilities by means of the standard MC method is in general very inefficient.

On the other hand, when the functional form of the density of the variable of interest is not known,

17
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deterministic numerical approaches cannot be applied. Borrowing an idea first introduced by Hesterberg

(1995), in this paper we have developed a mixture-based IS strategy for the estimation of tail events

probabilities when the distribution of interest is a finite sum of lognormal random variables and for the

compound Poisson-lognormal distribution. We solved the problem of finding the values of the parameters

of the mixture by means of the CE method: in particular, by exploiting the relationship between minimal

CE and maximum likelihood, we showed that the parameters can be found using the EM algorithm. With

the help of simulation experiments we verified that this technique works better than the standard and

adaptive CE approaches. Finally, we applied the methodology to the computation of tail probabilities in

operational risk.

Several issues remain open to future research. First, although the lognormal distribution is by far the

most common choice, in practice different distributional hypotheses for the severity of losses are sometimes

used, according to the estimated tail heaviness: in particular the Gamma or the Generalized Pareto. While

in the first case the implementation of IS should not be too difficult, as the Gamma distribution has the

moment generating function, so that we can use the approach based on tilted densities, in the latter

setup the problem would require some further research. Second, in the Poisson-lognormal compound

distribution, importance sampling could also be applied by leaving unchanged the parameters of the

lognormal and twisting the Poisson parameter, i.e. increasing the number of losses. Although this topic

is aside from the main object of interest of this paper, it should be studied for its possible relevance

in applications. Finally, it may be of interest to compute other risk measures: the so-called Expected

Shortfall is the conditional expectation of the loss given that it exceeds some fixed value. The extension

of the methods proposed here to the computation of Expected Shortfall requires further investigation.
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Table 1: Optimal parameter values in the three approaches with k = 10 and Xi ∼ Logn(0, 1).

π∗ t∗DM t∗ST t∗ACE

c = 65 0.893 4.265 0.439 0.636

c = 80 0.895 4.489 0.459 0.540

c = 100 0.896 4.726 0.481 1.251

c = 150 0.898 5.148 0.520 1.150

c = 200 0.899 5.441 0.548 2.043

c = 300 0.899 5.850 0.587 2.287

c = 400 0.900 6.137 0.615 2.455

c = 500 0.900 6.359 0.637 2.366
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Table 2: Descriptive statistics for the distributions of rk,DM , rk,ST and rk,ACE with

k = 10; “maxc” is the maximum of the weights corresponding to observations such that∑k
i=1 xi > c, “r̄c” is the average of the observations such that

∑k
i=1 xi > c, “f c” is the ratio

of the number of observations such that
∑k

i=1 xi > c to the number of simulations.

c = 65 c = 80 c = 100 c = 150 c = 200 c = 300 c = 400 c = 500

r̄DM 0.94 0.99 0.87 0.96 1.02 1.02 1.09 0.94

r̄ST 1.05 1.02 1.03 1.39 0.98 0.87 0.84 0.81

r̄ACE 0.87 0.17 1.67 0.20 0.31 9 · 10−3 4 · 10−5 7 · 10−5

maxDM 3.10 3.04 3.00 2.94 2.91 2.89 2.88 2.88

maxST 26.16 37.49 57.15 460.03 114.28 34.47 26.02 55.20

maxACE 52.78 22.96 1112.88 65.41 129.47 4.97 0.04 0.03

r̄c
DM 10−3 3 · 10−4 10−4 10−5 2 · 10−4 2 · 10−7 4 · 10−8 8 · 10−9

r̄c
ST 0.15 0.07 0.01 - - - - -

r̄c
ACE 0.11 4 · 10−5 3 · 10−5 2 · 10−9 4 · 10−10 8 · 10−14 7 · 10−7 4 · 10−16

maxc
DM 0.03 9 · 10−3 7 · 10−3 2 · 10−4 4 · 10−5 3 · 10−6 5 · 10−7 10−7

maxc
ST 0.77 0.14 0.01 - - - - -

maxc
ACE 1.47 0.03 8 · 10−4 5 · 10−4 7 · 10−9 9 · 10−10 10−12 2 · 10−15

fc
DM 0.532 0.509 0.532 0.512 0.471 0.471 0.433 0.471

fc
ST 0.007 0.004 0.002 0.001 0 0 0 0

fc
ACE 0.017 0.115 0.047 0.016 0.004 0.004 0.033 0.005
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Table 3: Some results from the simulation of the three estimators p̂DM , p̂ST and p̂ACE with k = 10.

c = 65 c = 80 c = 100 c = 150

p̂DM 5.71 · 10−4 1.74 · 10−4 4.89 · 10−5 4.84 · 10−6

p̂ST 5.71 · 10−4 1.75 · 10−4 4.93 · 10−5 4.86 · 10−6

p̂ACE 5.70 · 10−4 1.65 · 10−4 3.79 · 10−5 1.59 · 10−6

τMSE,p̂DM 0.04 0.04 0.04 0.04

τMSE,p̂ST 0.30 0.57 0.95 3.30

τMSE,p̂ACE 0.42 1.09 1.34 1.63

c = 200 c = 300 c = 400 c = 500

p̂DM 9.12 · 10−7 7.98 · 10−8 1.32 · 10−8 3.13 · 10−9

p̂ST 7.97 · 10−7 6.58 · 10−8 7.82 · 10−10 3.87 · 10−8

p̂ACE 5.39 · 10−7 2.95 · 10−9 9.77 · 10−12 9.37 · 10−14

τMSE,p̂DM 0.04 0.04 0.04 0.04

τMSE,p̂ST 5.05 12.89 1.60 391.59

τMSE,p̂ACE 7.26 1.22 1.00 1.00
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Table 4: Some results concerning the estimation of p̂DM with k = 10 with

non-optimized parameters. The second subscript refers to the value of tDM

used.

c = 65 c = 80 c = 100 c = 150

p̂DM,3 5.71 · 10−4 1.74 · 10−4 4.91 · 10−5 4.83 · 10−6

p̂DM,4 5.71 · 10−4 1.75 · 10−4 4.90 · 10−5 4.88 · 10−6

p̂DM,5 5.68 · 10−4 1.75 · 10−4 4.89 · 10−5 4.90 · 10−6

p̂DM,6 5.78 · 10−4 1.74 · 10−4 4.86 · 10−5 4.91 · 10−6

p̂DM,7 5.96 · 10−4 1.57 · 10−4 4.65 · 10−5 4.82 · 10−6

p̂DM,8 4.41 · 10−4 1.70 · 10−4 4.15 · 10−5 5.15 · 10−6

τMSE,p̂DM,3 0.13 0.16 0.22 0.38

τMSE,p̂DM,4 0.16 0.17 0.19 0.26

τMSE,p̂DM,5 0.33 0.25 0.24 0.25

τMSE,p̂DM,6 1.54 1.00 0.49 0.33

τMSE,p̂DM,7 3.26 1.70 1.42 0.74

τMSE,p̂DM,8 7.98 6.52 5.20 2.56

c = 200 c = 300 c = 400 c = 500

p̂DM,3 9.11 · 10−7 8.27 · 10−8 1.32 · 10−8 3.44 · 10−9

p̂DM,4 9.09 · 10−7 8.03 · 10−8 1.29 · 10−8 3.13 · 10−9

p̂DM,5 9.01 · 10−7 7.84 · 10−8 1.32 · 10−8 3.06 · 10−9

p̂DM,6 9.21 · 10−7 7.90 · 10−8 1.30 · 10−8 3.14 · 10−9

p̂DM,7 9.23 · 10−7 7.81 · 10−8 1.32 · 10−8 3.10 · 10−9

p̂DM,8 8.89 · 10−7 8.11 · 10−8 1.32 · 10−8 3.10 · 10−9

τMSE,p̂DM,3 0.56 1.13 1.73 2.74

τMSE,p̂DM,4 0.33 0.50 0.63 0.87

τMSE,p̂DM,5 0.25 0.29 0.36 0.40

τMSE,p̂DM,6 0.30 0.27 0.28 0.30

τMSE,p̂DM,7 0.54 0.40 0.36 0.33

τMSE,p̂DM,8 1.63 1.01 0.75 0.60
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Table 5: Estimates and MSE relative errors for operational risk data.

c = 1000E c = 3000E c = 5000E c = 7500E c = 10000E

p̂DM 0.00486 0.00033 8.53 · 10−5 2.77 · 10−5 1.22 · 10−5

τMSE(p̂DM ) 0.012 0.013 0.014 0.015 0.015

p̂ST 0.00486 0.00033 8.40 · 10−5 2.74 · 10−5 1.18 · 10−5

τMSE(p̂ST ) 0.043 0.155 0.306 0.560 0.534

p̂ACE 0.00484 0.00031 8.92 · 10−5 2.40 · 10−5 9.37 · 10−6

τMSE(p̂ACE) 0.050 0.335 1.226 1.409 1.346

p̂MC 0.00484 0.00033 7.66 · 10−5 3 · 10−5 1.17 · 10−5

τMSE(p̂MC) 0.137 0.517 1.041 2.058 2.969

Page 25 of 31

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

10 20 30 40 50

0
1

2
3

4
5

6
7

c

M
S

E

Figure 1: MSE of the Monte Carlo estimator of E(X|X>c)
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Fig. 2: Distribution of the DM and ACE estimators for c=200 and c=500
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Fig. 3: Convergence of the DM and ACE estimators for c=200 and c=500
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Responses to referees of the paper “Importance Sampling for Sums

of Lognormal Distributions, with Applications to Operational Risk”

Referee 1

As a general comment, let me say that an earlier version of this paper contained a section devoted

to IS for a single lognormal distribution. When writing the version revised by the referees, unfor-

tunately, in several places I did not update the notation, so that, as pointed out by the referee (for

example in comment 37), there are sentences referring explicitly or implicitly to the single lognormal

case.

Specific Comments

As for comments 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 26, 28, 29, 31, 32, 33, 35,

37, 38, 39, 40, 41, 43 and 46 the referee is right and I accepted (i.e., inserted in the paper) your

remarks. I think the referee can just look at the new version of the paper to see whether now it is

ok.

1. I ran the simulation again with B = 10000; in the first version I used a small B because, as

the referee points out, in this case high accuracy is not necessary.

6. In the revised version only the MSE is shown, also according to the suggestion of another

referee.

19, 20. Unfortunately, the two conditions were sloppily presented. I rewrote them completely.

21. I looked into Hammersley and Handscomb but could not find any reference to previous work

on importance sampling. If the referee knows where any further reference on this can be found,

I would be glad to include it in the paper.

22. One reason is that in section 5 k is the realization of a discrete r.v. K. I think in the actuarial

and operational risk literature K is the common notation, so that I would rather continue to
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use k. A second reason is that N is already used in equations (1) and (2) of example 1 with

a different meaning.

24. Tilted densities are cited above (page 614) where there is also a reference to Ross (2006). There

is no formal definition, if necessary I can add it.

25., 44. I added to the paper much of what you write. The confusion in the old version came from the

fact that this part referred mainly to the case of a single lognormal distribution.

27., 45. I added some comments at the end of section 2 and the results of a simulation experiment in

section 4.

30. As for the first part of the comment, e is the base of natural logarithm. As for the second

part, the referee is right, the density must be strictly positive on [0, a]. As for the third part,

I checked the article (Asmussen et al. 2000) where this density is proposed and could not find

anything about this issue. As I do not use this approach in the paper, I decided not to explore

it.

34. The sentence written in the old version of the paper was wrong, the optimal densities differ,

this is actually clear from theorem 1 of the old version. Unfortunately, after a bit of reflection I

conjectured that the methodology I use later for determining the IS density for the estimation

of P (Y > c) cannot be readily extended to the estimation of the conditional expectation.

Thus, I decided to delete any reference to the latter problem, because, in case I am able to

come up with a different solution, space constraints would not allow to add the details (both

theoretical and numerical) to the paper. Given these remarks, I think that a solution to the

problem of estimating the conditional expectation would be important enough for another

paper to be written.

36. It is the form of the marginal density, and it is now written explicitly in the paper.

42. The theorem was presented without mentioning the hypothesis of independent marginals (both

in fk and in gk). Having introduced this condition, I think it makes sense to leave it where it

was in the first version.

45. This suggestion is interesting. I performed the comparison; the results are reported in table 4.

47. Concerning the CE approach, the optimization is done analytically, as already written just

before formula (22). The ACE optimization is based on MC simulation, as written on page

1344−48; however, in the new version I elaborate on this.
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48. The referee is right, the notation is undefined. Considering that another referee complained

about this, and suggested that reporting the lemma does not seem to be strictly necessary, I

decided to remove it, and explain in words what it means.

Referee 2

In its present form, the manuscript is much too long.

I merged sections 2 and 3 of the old version into a single section. The paper was shortened in other

places as well.

Conditions (6), (7) are very restrictive, and there are many excellent importance sampling algorithms

where they do not hold.

I added this remark.

I can not make sense of the sentence “Notice that ...” p. 8.

The sentence written in the old version of the paper was wrong, the optimal densities differ, this is

actually clear from theorem 1 of the old version. Unfortunately, after a bit of reflection I conjectured

that the methodology I use later for determining the IS density for the estimation of P (Y > c) cannot

be readily extended to the estimation of the conditional expectation. Thus, I decided to delete any

reference to the latter problem, because, in case I am able to come up with a different solution,

space constraints would not allow to add the details (both theoretical and numerical) to the paper.

Given these remarks, I think that a solution to the problem of estimating the conditional expectation

would be important enough for another paper to be written.

I can not make sense of the statement some lines later that minimizing the variance is the same as

minimizing the stated expected value.

This issue is thoroughly explained in the new version.

Simulation of compound Poisson sums is discussed, for example, in Asmussen & Glynn, Stochastic

Simulation. Algorithms and Analysis. Springer 2007. There are much better methods than the

truncation schemes discussed in the paper.

I added the reference. However, Asmussen and Glymm (2007) only discuss the light-tailed case;

the heavy-tailed case is treated explicitly in Asmussen and Kroese (2006), which is now mentioned

explicitly in section 5.

Rubinstein’s 1981 has appeared in a second edition (co-authored with Kroese).

I updated the reference.
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Referee 3

As for comments 2, 3, 4, 5, 6, 9, I accepted (i.e., inserted in the paper) the referee’s remarks.

I think the referee can just look at the new version of the paper to see whether now it is ok.

I had a native English speaker read the paper, so that the language should now be correct.

1. As for the introduction, the referee is right, and I added more details about what I claim to be

new. As for the abstract, I added something, but unfortunately space constraints are strict,

and I couldn’t add much.

7. I rewrote this part, it should now be clearer.

8. This section has been partly rewritten. The logarithmic transformation of the observations is

now made explicit (the transformation c∗ = log(c) was already written just above the place

where it was first used). I fixed the references (I use Latex, but not Bibtex) and added an

extra half space.

10. The referee is right, the notation is undefined. Considering that another referee complained

about this, and that the lemma does not seem to be strictly necessary, I decided to remove it,

and explain in words what it means.

11. I merged sections 2 and 3 of the old version into a single section, and the paper was shortened

in other places according to the referee’s suggestions.

12. I tried to prepare some 3D graphs, but they do not look very easy to read, so that in my opinion

2D graphs and tables are preferable (I decided to omit standard errors in table 3 because they

are not of particular interest here). I added a table (number 4 in the new version) containing

the results of a new analysis. Finally, I tried to improve the discussion of the results and the

conclusions.

13. I enlarged the text of all the figures. As for figure 1, according also to a remark of another

referee, I discarded the one showing the variance. In figure 3 the results are now shown as a

function of the logarithm of the sample size.
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