
HAL Id: hal-00514347
https://hal.science/hal-00514347

Submitted on 2 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Meta Analytic Approach to Testing for Panel
Cointegration
Christoph Hanck

To cite this version:
Christoph Hanck. A Meta Analytic Approach to Testing for Panel Cointegration. Communications in
Statistics - Simulation and Computation, 2009, 38 (05), pp.1051-1070. �10.1080/03610910902750039�.
�hal-00514347�

https://hal.science/hal-00514347
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 

 

 
 

 

 

A Meta Analytic Approach to Testing for Panel Cointegration 
 

 

Journal: Communications in Statistics - Simulation and Computation 

Manuscript ID: LSSP-2008-0161.R2 

Manuscript Type: Original Paper 

Date Submitted by the 
Author: 

12-Jan-2009 

Complete List of Authors: Hanck, Christoph; Universiteit Maastricht, Quantitative Economics 

Keywords: Panel cointegration tests, Monte Carlo study, Meta Analysis 

Abstract: 

We propose new tests for panel cointegration by extending the 
panel unit root tests of Choi (JIMF 2001) and Maddala and Wu 

(OBES 1999) 
to the panel cointegration case. The tests are flexible, 
intuitively appealing and relatively easy to compute. We 
investigate the finite sample behavior in a simulation study. 
Several variants of the tests compare favorably in terms of both 
size and power with other widely used panel cointegration tests. 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

panel ci meta approach commstat rev3.tex 
panel ci meta approach commstat rev3.bbl 

 

 

 

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation



For Peer Review
 O

nly
A Meta Analytic Approach to Testing for Panel

Cointegration∗

Christoph Hanck†

January 12, 2009

Abstract

We propose new tests for panel cointegration by extending the panel unit root
tests of Choi [2001] and Maddala and Wu [1999] to the panel cointegration case.
The tests are flexible, intuitively appealing and relatively easy to compute. We
investigate the finite sample behavior in a simulation study. Several variants of the
tests compare favorably in terms of both size and power with other widely used
panel cointegration tests.

Keywords: Panel cointegration tests, Monte Carlo study, Meta Analysis

∗Partial support by DFG under Sonderforschungsbereich 475 and Ruhr Graduate School in Economics
is gratefully acknowledged. I am indebted to an anonymous referee whose suggestions greatly helped
improve the paper.
†Universiteit Maastricht, Tongersestraat 53, 6211 LM Maastricht, The Netherlands. Tel. (+31) 43-

3883815, c.hanck@ke.unimaas.nl.

Page 1 of 24

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

1 Introduction

There is wide consensus in economics that cointegration is an important statistical concept

which is implied by many economic models. In practice, however, evidence of cointegration

or non-cointegration is often weak because of the rather small sample sizes typically

available in macroeconometrics. To overcome this problem, the cointegration methodology

has recently been extended to panel data. This allows the researcher to work with larger

samples, thereby improving the performance of tests and estimators.

Pedroni [2004] and Kao [1999] generalize the residual-based tests of Engle and Granger

[1987] and Phillips and Ouliaris [1990], Larsson et al. [2001] extend the Johansen [1988]

tests to panel data while McCoskey and Kao [1998] propose a test for the null of panel

cointegration in the spirit of Shin [1994].

The present paper studies some new tests for panel cointegration, extending the p-value

combination panel unit root tests of Maddala and Wu [1999] and Choi [2001] to the cointe-

gration setting. In this framework, it is straightforward to account for unbalanced panels

and arbitrary heterogeneity in the serial correlation structure of the series. Moreover, the

tests are simple to implement and intuitively appealing. We explore the finite sample

performance of the tests in a simulation study. Certain variants of the tests compare

favorably with many of the previously proposed panel cointegration tests.

The next section introduces the tests. Section 3 presents the finite sample study. Section

4 concludes.

2 P-Value Combination Tests for Panel Cointegra-

tion

The present section develops the tests for panel cointegration. The following notation

is used throughout. xik is a (Ti × 1) column vector collecting the observations on the

kth variable of unit i of the panel, where i = 1, . . . , N and k = 1, . . . , K. To the K

1
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variables we may add time polynomials of order up to 2, i.e. constants, trend and squared

trend terms. The number of observations Ti per unit may depend on i, i.e. the panel

may be unbalanced. Denote by pi the marginal significance level, or p-value, of a time

series cointegration test applied to the ith unit of the panel. Let θi,Ti
be a time series

cointegration test statistic on unit i for a sample size of Ti. FTi
denotes the exact, finite Ti

null cumulative distribution function (cdf) of θi,Ti
. Since the tests we shall consider here

are one-sided, pi = FTi
(θi,Ti

) if the test rejects for small values of θi,Ti
and pi = 1−FTi

(θi,Ti
)

if the test rejects for large values of θi,Ti
. However, FTi

is unknown in practice, such that

we need to work with a suitable approximation which will be described in more detail

below.

We are interested in testing the following null hypothesis

H0 : There is no (within-unit) cointegration for any i, i = 1, . . . , N, (1)

against the alternative

H1 : There is (within-unit) cointegration for at least one i, i = 1, . . . , N.

The alternative H1 states that a rejection is evidence of 1 to N cointegrated units in the

panel. That is, a rejection neither allows to conclude that the entire panel is cointegrated

nor does it provide information about the number of units of the panel that exhibit

cointegrating relationships.

The main idea of the suggested testing principle has been used in meta analytic studies

for a long time [cf. Fisher, 1932; Hedges and Olkin, 1985]. Consider the testing problem

on the panel as consisting of N testing problems, one for each unit of the panel. That is,

conduct N separate time series cointegration tests and obtain the corresponding p-values

of the test statistics.1 We make the following assumptions [see Pedroni, 2004].

Assumption 1 (Continuity)

As Ti → ∞, θi,Ti
has a continuous asymptotic cdf Fi under H0 for all i =

1Both Maddala and Wu [1999] and Choi [2001] suggest extending their panel unit root tests to the
cointegration case. However, to the best of our knowledge, they do not provide an actual implementation
nor do they investigate the performance of the tests. Furthermore, our approach is more general and
likely to be more accurate in some respects to be discussed below.

2
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1, . . . , N .

Assumption 2 (Cross-Sectional Uncorrelatedness)

xik,t = xik,t−1 + ξik,t, t = 1, . . . , Ti, i = 1, . . . , N, k = 1, . . . , K. Let ξi,t ≡

(ξi1,t, . . . , ξiK,t)
′. We require E[ξi,tξ

′
j,s] = 0 ∀ s, t = 1, . . . , Ti and i 6= j. The

error process ξi,t is generated as a linear vector process ξi,t = Ci(L)ηi,t, where

L is the lag operator and Ci are coefficient matrices. ηi,t is vector white noise.

Remark 1. Assumption 1 asymptotically ensures, among other things, a uniform p-value

distribution of the time series test statistics under H0 on the unit interval: pi ∼ U [0, 1] (i ∈

NN) [see, e.g., Bickel and Doksum, 2001, Sec. 4.1]. It is satisfied by the time series

cointegration tests considered in this paper.

Remark 2. The second assumption is strong [see, e.g., Banerjee et al., 2005]. It implies

that the different units of a panel must not be linked to each other beyond relatively simple

forms of correlation such as common time effects which can be eliminated by demeaning

across the cross sectional dimension. This assumption is likely to be violated in many

typical macroeconomic panel data sets. We will return to this issue below.

We now present the test statistics. Combine the N p-values of the individual time series

cointegration tests, pi, i = 1, . . . , N , as follows to obtain three test statistics for panel

cointegration:

Pχ2 = −2
N∑
i=1

ln(pi) (2a)

PΦ−1 = N−
1
2

N∑
i=1

Φ−1(pi) (2b)

Pt =

√
3(5N + 4)

π2N(5N + 2)

N∑
i=1

ln

(
pi

1− pi

)
(2c)

When considered together we refer to Eqs. (2a) to (2c) as P tests from now on. The P

tests, via pooling p-values, provide convenient tests for panel cointegration by imposing

minimal homogeneity restrictions on the panel. For instance, the different units of the

panel can be unbalanced. Furthermore, the evidence for (non-)cointegration is first inves-

tigated for each unit of the panel and then compactly expressed with the p-value of the

3
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time series cointegration test. Hence, the coefficients describing the relationship between

the different variables for each unit of the panel can be heterogeneous across i. Thus, the

availability of large-T time series allows for pooling the data into a panel without having

to impose strong homogeneity restrictions on the slope coefficients as in traditional panel

data analysis.2 Under Assumptions 1 and 2, as Ti → ∞ for all i, the test statistics are

asymptotically distributed as

Pχ2 →d χ
2
2N

PΦ−1 →d N (0, 1) (3)

Pt
approx.→d T5N+4,

where χ2 is a chi-squared distributed random variable and T denotes Student’s t distri-

bution. The subscripts give the degrees of freedom.

Remark 3. We require that Ti →∞ for all i, as, unlike in Fisher’s [1932] original contri-

bution, the P tests are not exact when dealing with nonstationary data. This is because,

as FTi
is unknown, we need to employ an approximation to FTi

for finite T . This matters

because the null hypothesis (1) is not a simple one and the available test statistics are

not pivotal in finite samples. H0 is satisfied by a wide class of multivariate nonstationary

processes. See, for instance, the fairly general framework of Phillips and Ouliaris [1990].

Hence, for finite T , the p-values of the test need no longer be uniformly distributed on the

unit interval, even if the true Data Generating Process (DGP) of the time series is from

the null hypothesis set of nonstationary but non-cointegrated processes. Thus, we need

Ti →∞ for all i to ensure that pi ∼ U [0, 1] under H0 so as to be able to invoke the limiting

distribution in (3). We do not need N → ∞ to obtain (3). Of course, these asymp-

totic distributions are, as usual, only approximations to the finite-sample ones.

Section 3 evaluates their accuracy via extensive simulation experiments.

Using consistent time series cointegration tests, pi →p 0 under the alternative of cointe-

gration. Hence, quite intuitively, the smaller pi, the more it acts towards rejecting the

null of no panel cointegration. The decision rule therefore is to reject the null of no panel

2For an overview of panel data models relying on N →∞ asymptotics see Hsiao [2003].

4
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cointegration when Pχ2 exceeds the critical value from a χ2
2N distribution at the desired

significance level. For (2b) and (2c) one would reject for large negative values of the panel

test statistics PΦ−1 and Pt, respectively.

We now discuss how to obtain the p-values required for computation of the P test statis-

tics. Hanck [2008] shows that using accurate p-values is crucial to achieve a precise control

of the type I error rate in meta analytic panel testing. The null distributions of both resid-

ual and system-based time series cointegration tests converge to functionals of Brownian

motion. Hence, analytic expressions of the asymptotic cdfs Fi are hard to obtain, and

p-values of the tests cannot simply be obtained by evaluating Fi. A remedy frequently

adopted in the literature is to approximate Fi (which, in turn, is typically used to approx-

imate FTi
) by Monte Carlo simulation. However, this approach is unsatisfactory for (at

least) the following reason. These simulations are typically only performed for one sam-

ple size which is meant to provide an approximation to the asymptotic distribution. This

sample size need neither be large enough to be useful as an asymptotic approximation

nor does it generally yield an accurate estimate of FTi
for other sample sizes. MacKinnon

et al. [1999] show for certain special cases where analytic expressions of the asymptotic

distribution functions Fi are available that this approach may deliver fairly inaccurate es-

timates of Fi. In the time series case, it is now fairly standard practice to report p-values

of unit root and cointegration tests using the results of the response surface regressions

introduced by MacKinnon [1991]. We follow this approach here.

The null hypothesis (1) formulates no precise econometric characterization of (non-) coin-

tegration. This is to allow for generality in testing the long-run equilibrium properties

of the series, enabling the researcher to use whichever time series tests seem suitable to

test for time series (non-)cointegration in the different units of the panel. We use p-values

of the Augmented Dickey-Fuller (ADF ) cointegration tests [Engle and Granger, 1987] as

provided by MacKinnon [1996].3 That is, the p-values are obtained from the t-statistic of

3MacKinnon improves upon his prior work by using a heteroscedasticity and serial correlation robust
technique to approximate between the estimated quantiles of the response surface regressions. Our
application is based on a translation of James MacKinnon’s Fortran code into a GAUSS procedure which
is available upon request. The procedure implements all panel data tests developed in this section.

5
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γi − 1 in the OLS regression

∆ûi,t = (γi − 1)ûi,t−1 +
P∑
p=1

νp∆ûi,t−p + εi,t.

Here, ûi,t is the usual residual from a first stage OLS regression of one of the xik on the

remaining xi,−k. Alternatively, one could capture serial correlation by the semiparametric

approach of Phillips and Ouliaris [1990]. Finally, we obtain the p-values for the Johansen

[1988] λtrace and λmax tests provided in MacKinnon et al. [1999]. That is, we test for the

presence of h = 0 cointegrating relationships by estimating the number of significantly

non-zero eigenvalues of the matrix Π̂i estimated from the Vector Error Correction Model

∆xi,t = −Πixi,t−P +
P−1∑
p=1

Γi,p∆xi,t−p + εi,t

by the λtrace-test

λtrace,i (h) = −T
K∑

k=h+1

ln (1− π̂k,i) (4)

and the λmax-test

λmax,i (h|h+ 1) = −T ln (1− π̂h+1,i) . (5)

Here, π̂k,i denotes the kth largest eigenvalue of Π̂i. In (4), the alternative is a general

one, while one tests against h + 1 cointegration relationships in (5). For small T , the

Johansen [1988] tests are known to be oversized [see e.g. Cheung and Lai, 1993]. To

remove this size distortion, we employ Cheung and Lai’s [1993] small sample degree of

freedom correction. As mentioned above, this is particularly important in our framework

as the size distortions in the time series tests would (via unduly small p-values) otherwise

“add up” when combined over N to form the panel test statistics [Hanck, 2008], to yield

an arbitrarily severely size-distorted panel test.

To summarize, we obtain the p-values required for performing the P tests from the most

widely used time series cointegration tests.

6
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3 Finite Sample Performance

We now present a Monte Carlo study of the finite sample performance of the tests proposed

in the previous section. The Data Generating Process (DGP) is similar to the one used

by Engle and Granger [1987]. The extension to the panel data setting is discussed in Kao

[1999]. For simplicity, only consider the bivariate case, i.e. K = 2:

DGP A

xi,1t − αi − βxi,2t = zi,t, a1xi,1t − a2xi,2t = wi,t

where

zi,t = ρzi,t−1 + ezi,t, ∆wi,t = ewi,t

and (
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

Remark 4. When |ρ| < 1 the equilibrium error in the first equation is stationary such that

xi1,t and xi2,t are cointegrated with βi = (1 − αi − β)′.

Remark 5. When writing the above DGP as an error correction model [see, e.g., Gonzalo,

1994] it is immediate that xi2,t is weakly exogenous when a1 = 0.

We investigate all combinations of the following values for the parameters of the model:

β = 2, a1 ∈ {0, 1}, a2 = −1, σ ∈ {0.5, 1}, ρ ∈ {0.9, 0.99, 1} and ψ ∈ {−0.5, 0, 0.5}.

The fraction of cointegrated series in the panel is increased from 0 to 1 in steps of 0.1,

i.e. δ ∈ {0, 0.1, . . . , 1}. The dimensions of the panel are N ∈ {10, 20, 50, 100, 150} and,

after having discarded 150 initial observations, T ∈ {10, 30, 50, 100, 250, 500}, for a total

of 2 × 1 × 2 × 3 × 3 × 11 × 5 × 6 = 11, 880 experiments. For a given cross-sectional

dimension, the unit specific intercepts are drawn as αi ∼ U [0, 10] and kept fixed for all

Ti. Each experiment involves M = 5, 000 replications.4 We choose a common β for

all i in order to be able to compare the performance of our tests with results for other

4Uniform random numbers are generated using the KM algorithm from which Normal variates are cre-
ated with the fast acceptance-rejection algorithm, both implemented in GAUSS. Part of the calculations
are performed with COINT 2.0 by Peter Phillips and Sam Ouliaris.

7
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panel cointegration tests as reported by Gutierrez [2003]. The p-values are from the

Engle and Granger [1987] ADF test, holding the number of lagged differences fixed at

1. We further test for cointegration using the λtrace-test for h = 0 vs. an unrestricted

number of cointegrating relationships. As the null hypothesis (1) is tested against

an unspecified number of cointegrating relationships, we employ λtrace rather

than λmax. The setup of course alternatively allows for using λmax if one is

concretely interested in testing against exactly one cointegrating relationship.

For brevity, we only give the results for ψ = 0, a1 = 0 and σ = 1.5 Table I shows the

empirical size of the tests (ρ = 1) at the nominal 5% level using the ADF - and λtrace-

tests as the underlying time series tests. The main conclusions are as follows. First, the

Engle/Granger-based tests control size rather well. Only for very small T do we observe

an (albeit tolerable) size distortion. As predicted analytically by Hanck [2008], the tests’

size distortions “add up” over N to become more size distorted as N increases. These

mild distortions vanish quickly with increasing T . The Pχ2 test seems to have slightly

better size than the other two.6

Second, the Johansen-based tests are oversized in panels of small time series dimensions.

As pointed out above, this is because the underlying λtrace-test overrejects for short time

series when using asymptotic critical values. Apparently, the Cheung and Lai [1993]

correction factors employed here do not completely eliminate that distortion. This is not

entirely surprising as Cheung and Lai [1993] conduct their response surface

regressions for T > 33, such that the corrections used here for T = 10 are

effectively only extrapolations. (For T = 10, we found the corrected univariate

λtrace-test to have a finite-sample size of around 10%. The uncorrected finite-sample size

exceeds 30%.) This flaw then inevitably carries over to the panel tests via erroneously

5The full set of results of the finite sample study are available upon request. Broadly speaking, a lower
σ seems to have little, if any, systematic effect. Correlation in the error processes (ψ 6= 0) has a slightly
negative effect on power.

6We also investigate whether using MacKinnon’s [1996] p-values improves the behavior of the tests
relative to obtaining quantiles by generating only one set of replicates. For smaller panels, the lat-
ter approach (with 50,000 replications) exhibits non-negligible upward size distortions even when using
quantiles specifically generated for the sample sizes considered. Interestingly, however, there does not
seem to be a trend towards higher distortions with increasing N . For medium- and large-dimensional
panels neither approach has a clear advantage over the other.

8
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Table I—Empirical Size of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 0.058 0.062 0.068 0.069 0.072 0.241 0.345 0.604 0.829 0.932
30 0.049 0.047 0.044 0.048 0.042 0.050 0.046 0.044 0.036 0.032
50 0.055 0.051 0.044 0.044 0.044 0.051 0.044 0.039 0.036 0.034
100 0.047 0.050 0.046 0.047 0.051 0.052 0.046 0.047 0.043 0.031
250 0.050 0.046 0.057 0.049 0.049 0.052 0.044 0.044 0.048 0.050
500 0.053 0.048 0.051 0.048 0.050 0.049 0.050 0.051 0.047 0.045

(ii) PΦ−1

10 0.051 0.047 0.039 0.030 0.026 0.203 0.277 0.484 0.720 0.842
30 0.045 0.043 0.038 0.037 0.029 0.049 0.045 0.036 0.033 0.025
50 0.054 0.044 0.041 0.040 0.037 0.046 0.039 0.033 0.030 0.030
100 0.049 0.052 0.048 0.047 0.045 0.051 0.048 0.043 0.041 0.026
250 0.053 0.044 0.052 0.047 0.044 0.048 0.047 0.048 0.048 0.048
500 0.052 0.051 0.049 0.048 0.051 0.053 0.048 0.050 0.050 0.050

(iii) Pt
10 0.052 0.047 0.038 0.027 0.025 0.215 0.293 0.509 0.740 0.860
30 0.046 0.043 0.038 0.037 0.028 0.051 0.045 0.034 0.035 0.024
50 0.055 0.045 0.043 0.040 0.035 0.047 0.038 0.034 0.031 0.030
100 0.049 0.050 0.050 0.048 0.045 0.051 0.048 0.042 0.041 0.026
250 0.054 0.045 0.052 0.048 0.044 0.048 0.046 0.048 0.047 0.050
500 0.053 0.050 0.050 0.046 0.051 0.052 0.048 0.051 0.050 0.049

Note: ρ = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

small p-values. (Note, though, that time series as short as T ≈ 10 are rather uncommon

in typical macroeconometric applications.) This size distortion vanishes for T > 30, such

that the λtrace-based P tests can be recommended for application at least for T > 50.

We now relate our results to those of some other recently proposed panel cointegration

tests.7 We first give the key statistics of the various tests that are considered. For more

details refer to the original contributions. Furthermore, Banerjee [1999], Baltagi and Kao

[2000] or Breitung and Pesaran [2008] provide surveys of the literature.

Pedroni [2004]

Pedroni [2004] derives seven different tests for panel cointegration. These may be cate-

gorized according to what information on the different units of the panel is pooled. The

7Gutierrez [2003] provides a power study of these tests. He does however not analyze the finite sample
size, whence our study should be viewed as complementary to his.
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“Group-Mean” Statistics are essentially means of the conventional time series tests [see

Phillips and Ouliaris, 1990]. The “Within” Statistics separately sum the numerator and

denominator terms of the corresponding time series statistics. Let Ai =
∑T

t=1 ẽi,tẽ
′
i,t,

where ẽi,t = (∆êi,t, êi,t−1)′. The êi,t are obtained from heterogenous Engle/Granger-type

first stage OLS regressions of an xik on the remaining xi,−k, possibly including some

deterministic regressors. We consider the “Group-ρ”, “Panel-ρ” and (nonparametric)

“Panel-t”-test statistics which are given by, respectively,

Z̃ρ̂NT−1 =
N∑
i=1

A−1
22i(A21i − T λ̂i),

Zρ̂NT−1 =

(
N∑
i=1

A22i

)−1 N∑
i=1

(A21i − T λ̂i) and

Zt̂NT
=

(
σ̃2
NT

N∑
i=1

A22i

)−1/2 N∑
i=1

(A21i − T λ̂i).

The expressions λ̂i and σ̃2
NT estimate nuisance parameters from the long-run conditional

variances. After proper standardization, all statistics have a standard normal limiting

distribution. The decision rule is to reject the null hypothesis of no panel cointegration

for large negative values.

Kao [1999]

Kao [1999] proposes five different panel extensions of the time series (A)DF -type tests.

We focus on those that do not require strict exogeneity of the regressors. More specifically,

DF ∗ρ =

√
NT (ρ̂− 1) +

3
√
Nσ̂2

ν

σ̂2
0ν√

3 +
36σ̂4

ν

5σ̂4
0ν

and

DF ∗t =
tρ +

√
6Nσ̂2

ν

2σ̂0ν√
σ̂2

0ν

2σ̂2
ν

+
3σ̂2

ν

10σ̂2
ν

.

Here, ρ̂ is the estimate of the AR(1) coefficient of the residuals from a fixed effects panel

regression and tρ is the associated t-statistic. The remaining terms play a role similar

10
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to the nuisance parameter estimates in the Pedroni [2004] tests. Again, both tests are

standard normal under the null of no panel cointegration and reject for large negative

values.

Larsson et al. [2001]

The panel cointegration test of Larsson et al. [2001] applies a Central Limit Theorem to

(4). Defining λtrace = N−1
∑N

i=1 λtrace,i, their panel cointegration test statistic is given by

ΥLR =
√
N

λtrace − E[λtrace]√
Var[λtrace]

 .

Under some conditions, including
√
NT−1 → 0, Larsson et al. [2001] can show that

ΥLR
T,N−→ N (0, 1). The moments are obtained by stochastic simulation and are tabulated

in the paper. The null hypothesis of no cointegration at a level α is rejected if the test

statistic exceeds the (1 − α)-quantile of the standard normal distribution, i.e. for large

values.

Table II reports the empirical sizes of the other panel cointegration tests presented above.

All the other tests have difficulty to control size for small T .8 In addition, Kao’s tests

also seem to require a larger N to work well. In contrast, the empirical size of Pedroni’s

tests improves quite rapidly with T for any N . The small size distortion of the λtrace test

seems to carry over to a corresponding severe size distortion for the system-based ΥLR

test, which however vanishes quite fast with T . Comparing these results with those for the

P tests, we find the P tests to compare quite favorably with existing panel cointegration

tests in terms of finite-sample size.

Table III shows the size-adjusted power of the P tests at ρ = 0.9. The major findings

are as follows. Both the Engle/Granger- and Johansen-based tests behave consistently in

that power for all variants eventually grows with both dimensions. The use of panel data

8These size distortions are well in line with results found by Kao [1999] and Larsson et al.
[2001] (cf. their Tables 4 and 2, resp.). Pedroni [2004] conducts experiments for T > 40 only.
Any remaining differences are due to differences in the underlying DGP. As these results
suggest that the asymptotic approximations should be used with care for very small T ,
future research might attempt to provide correction factors similar to those of Cheung and
Lai [1993].
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Table II—Empirical Size of the Other Cointegration Tests

T N 10 20 50 100 150 10 20 50 100 150

(i) Zρ̂NT−1 (ii) Zt̂NT

10 0.022 0.025 0.050 0.084 0.131 0.471 0.680 0.941 0.998 1.000
30 0.096 0.109 0.147 0.224 0.276 0.139 0.187 0.303 0.460 0.597
50 0.101 0.090 0.119 0.152 0.177 0.102 0.101 0.147 0.203 0.250
100 0.097 0.100 0.103 0.133 0.154 0.070 0.076 0.090 0.111 0.126
250 0.095 0.083 0.082 0.084 0.087 0.066 0.061 0.067 0.073 0.071
500 0.088 0.084 0.078 0.072 0.083 0.059 0.064 0.062 0.065 0.068

(iii) Z̃ρ̂NT−1 (iv) DF ∗t
10 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.043 0.097 0.177
30 0.014 0.006 0.002 0.001 0.000 0.080 0.064 0.061 0.059 0.066
50 0.027 0.018 0.010 0.006 0.002 0.105 0.079 0.073 0.062 0.064
100 0.042 0.036 0.028 0.020 0.022 0.124 0.100 0.084 0.072 0.066
250 0.054 0.045 0.053 0.046 0.036 0.144 0.110 0.081 0.072 0.072
500 0.063 0.054 0.054 0.056 0.056 0.154 0.105 0.084 0.072 0.067

(v) DF ∗ρ (vi) ΥLR

10 0.093 0.108 0.195 0.315 0.433 0.260 0.362 0.614 0.828 0.932
30 0.074 0.073 0.084 0.091 0.105 0.063 0.058 0.047 0.045 0.036
50 0.081 0.066 0.072 0.078 0.079 0.058 0.051 0.046 0.043 0.044
100 0.084 0.078 0.072 0.070 0.067 0.065 0.058 0.058 0.053 0.039
250 0.087 0.075 0.074 0.059 0.060 0.063 0.055 0.057 0.062 0.063
500 0.087 0.071 0.064 0.057 0.062 0.062 0.059 0.063 0.058 0.060

Note: ρ = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level.

is therefore justified, as it yields a power gain over univariate approaches. The Johansen-

based tests appear to require somewhat larger T to achieve high power under this DGP.9

Second, the PΦ−1 and the Pt tests outperform the Pχ2 test at least for the ADF variant.

This finding is in line with the results reported by Choi [2001] for his panel unit root tests.

Whether to choose the PΦ−1 or the Pt in any application would be a matter of taste. Third,

in each of the cases, power tends to grow faster along the time series dimension. More

specifically, the power of the tests rises quickly between T = 50 and T = 100. The

simulation evidence therefore suggests that the P tests are particularly useful in medium

to relatively long panels. Figure I plots the power of the Engle/Granger-based tests for

N = 100 as the fraction of cointegrated variables in the system, δ, increases. Panels (a)

and (b) depict the cases T = 50 and T = 100, respectively. It can be seen that the power

of the P tests rises to one substantially quicker when the underlying time series are longer.

9See below for their performance under other DGPs.
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Table III—Size-Adjusted Power of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 0.061 0.065 0.069 0.081 0.083 0.049 0.043 0.044 0.042 0.034
30 0.085 0.124 0.185 0.276 0.372 0.037 0.036 0.031 0.019 0.022
50 0.138 0.236 0.454 0.717 0.843 0.052 0.038 0.051 0.039 0.040
100 0.502 0.765 0.990 1.000 1.000 0.091 0.098 0.219 0.234 0.348
250 1.000 1.000 1.000 1.000 1.000 0.547 0.748 0.994 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000 1.000

(ii) PΦ−1

10 0.059 0.068 0.085 0.102 0.111 0.048 0.041 0.043 0.037 0.036
30 0.095 0.151 0.250 0.380 0.552 0.035 0.037 0.031 0.022 0.019
50 0.191 0.284 0.575 0.851 0.948 0.050 0.042 0.052 0.047 0.042
100 0.508 0.805 0.992 1.000 1.000 0.100 0.104 0.234 0.295 0.383
250 0.995 1.000 1.000 1.000 1.000 0.440 0.591 0.982 0.999 1.000
500 1.000 1.000 1.000 1.000 1.000 0.898 0.986 1.000 1.000 1.000

(iii) Pt
10 0.060 0.070 0.086 0.103 0.114 0.048 0.044 0.043 0.038 0.037
30 0.092 0.148 0.244 0.382 0.555 0.035 0.035 0.033 0.019 0.020
50 0.185 0.286 0.561 0.835 0.939 0.052 0.042 0.051 0.045 0.043
100 0.500 0.789 0.991 1.000 1.000 0.096 0.101 0.236 0.290 0.378
250 0.997 1.000 1.000 1.000 1.000 0.476 0.648 0.987 0.999 1.000
500 1.000 1.000 1.000 1.000 1.000 0.950 0.997 1.000 1.000 1.000

Note: ρ = 0.9, ψ = 0, σ = 1, δ = 0.5 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

Now, let us compare the power results of Table III and Figure I with those obtained for the

other panel cointegration tests considered here, presented in Table IV. The ADF -based

P tests are somewhat less powerful than the residual-based panel tests Z̃ρ̂NT−1, Zt̂NT
and

Zρ̂NT−1 for shorter panels. Overall, the Z̃ρ̂NT−1 test performs best.10 However, the P

tests’ power for longer panels is similar or even better that that of Pedroni’s tests. The

ADF -based P tests’ power exceeds that of DF ∗ρ and DF ∗t . Finally, the P tests always

outperform the system-based ΥLR test by Larsson et al. [2001].

We think that the power experiments for DGP A are somewhat restrictive. Apart from

10It is however not clear whether this attractive performance would be available in practice, as these
numbers are based on size-adjusted critical values and as the Z̃ρ̂NT−1 test appears to be rather undersized
at least for small T (cf. Table II).
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(a) T = 50, N = 100. (b) T = N = 100.
ρ = 0.9, ψ = 0, σ = 1 and a1 = 0

Figure I—Power of the P panel cointegration tests

the unit specific intercepts, no heterogeneity is allowed for. But, in many practical appli-

cations, the units of a panel, say, countries, differ in their short-run dynamic adjustment

behavior. We therefore elicit how the performance of the tests changes when we introduce

heterogeneity in the serial correlation properties. Since, to the best of our knowledge, no

power comparison of the different panel cointegration tests under these circumstances is

available in the literature, we also include the tests presented above.

Consider the following modification of DGP A to introduce higher order serial correlation

in the equilibrium error zt.
11 Following Said and Dickey [1984], define

DGP B

xi1,t − αi − βxi2,t = zi,t, a1xi1,t − a2xi2,t = wi,t,

zi,t = ρizi,t−1 + ezi,t, ezi,t =

ζ̃i∑
pi=1

ϕi,pi
ei,t−pi

, ∆wi,t = ewi,t,(
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

We draw, for each series in the panel, the order of the AR-process according to ζ̃i = [ζi],

where ζi ∼ U [1, 2], i = 1, . . . , N and [y] rounds to the nearest integer. We then generate

the AR-coefficients from ϕi,p ∼ U [0.1, 0.35], pi = 1, . . . , ζ̃i. In the size study, ρi = 1 for

i = 1, . . . , N . To study power, we let ρi ∼ U [0.9, 1] for i = 1, . . . , δN , while ρi = 1 for

11I am grateful to an anonymous referee for suggesting this extension.
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Table IV—Size-Adjusted Power of other Cointegration Tests

T N 10 20 50 100 150 10 20 50 100 150

(i) Zρ̂NT−1 (ii) Zt̂NT

10 0.061 0.072 0.094 0.126 0.165 0.063 0.070 0.092 0.106 0.126
30 0.121 0.189 0.356 0.547 0.731 0.098 0.156 0.289 0.440 0.619
50 0.232 0.331 0.573 0.844 0.935 0.186 0.264 0.487 0.736 0.863
100 0.399 0.616 0.873 0.986 0.999 0.347 0.509 0.799 0.964 0.995
250 0.617 0.785 0.967 0.997 1.000 0.558 0.728 0.939 0.994 1.000
500 0.716 0.851 0.989 1.000 1.000 0.669 0.816 0.976 0.999 1.000

(iii) Z̃ρ̂NT−1 (iv) DF ∗t
10 0.061 0.072 0.086 0.102 0.124 0.051 0.042 0.029 0.031 0.025
30 0.111 0.171 0.291 0.461 0.645 0.120 0.195 0.361 0.575 0.726
50 0.215 0.365 0.664 0.919 0.979 0.236 0.365 0.631 0.870 0.957
100 0.630 0.892 1.000 1.000 1.000 0.392 0.594 0.862 0.980 0.996
250 1.000 1.000 1.000 1.000 1.000 0.554 0.717 0.939 0.996 1.000
500 1.000 1.000 1.000 1.000 1.000 0.610 0.768 0.965 0.998 1.000

(v) DF ∗ρ (vi) ΥLR

10 0.064 0.055 0.047 0.063 0.058 0.048 0.043 0.042 0.042 0.035
30 0.094 0.149 0.240 0.371 0.498 0.037 0.035 0.031 0.019 0.020
50 0.177 0.263 0.428 0.685 0.815 0.052 0.037 0.049 0.042 0.040
100 0.306 0.469 0.705 0.905 0.972 0.095 0.101 0.229 0.266 0.375
250 0.456 0.596 0.843 0.975 0.997 0.526 0.717 0.993 1.000 1.000
500 0.531 0.656 0.897 0.982 0.999 0.978 1.000 1.000 1.000 1.000

Note: ρ = 0.9, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level.

i = δN + 1, . . . , N .12

Tables V to VIII report results on size and size-adjusted power of the tests for σ = 1, ψ =

0, a1 = 0 and δ = 0.5. The number of lagged differences for the ADF regression is chosen

according to the automatic procedure suggested by Ng and Perron [2001]. As regards size,

Tables V shows that the P tests to maintain their good performance, with the exception

of very small T . The Kao and ΥLR tests are slightly, whereas Pedroni’s are quite severely

oversized (Table VI).

It is not possible to compare the size-adjusted power with the results from Table III

because the alternative is now different. But, Tables VII and VIII show that the ADF -

based P tests as well as Pedroni’s tests generally outperform Kao’s and the ΥLR test. This

is intuitive as the P and Pedroni [2004] tests are designed to accommodate cross-sectional

12We also parameterized DGP B with other combinations of distributions for the ζ̃i and ϕi,pi . The
additional results, which were qualitatively very similar, are available upon request.
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Table V—Size of the P Tests with AR(p) Errors

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 0.104 0.113 0.086 0.069 0.053 0.559 0.781 0.977 0.999 1.000
30 0.050 0.035 0.029 0.019 0.010 0.042 0.043 0.036 0.034 0.037
50 0.045 0.042 0.032 0.025 0.016 0.048 0.047 0.042 0.043 0.045
100 0.042 0.042 0.033 0.027 0.024 0.054 0.054 0.051 0.055 0.058
250 0.042 0.048 0.034 0.037 0.034 0.065 0.068 0.073 0.087 0.097
500 0.046 0.043 0.038 0.040 0.034 0.066 0.081 0.090 0.107 0.122

(ii) PΦ−1

10 0.018 0.006 0.000 0.000 0.000 0.481 0.696 0.943 0.997 1.000
30 0.028 0.017 0.007 0.003 0.001 0.043 0.039 0.031 0.025 0.026
50 0.030 0.029 0.015 0.009 0.002 0.043 0.038 0.032 0.036 0.034
100 0.036 0.032 0.025 0.017 0.013 0.051 0.048 0.043 0.044 0.049
250 0.041 0.044 0.028 0.028 0.025 0.064 0.067 0.069 0.077 0.087
500 0.045 0.043 0.038 0.034 0.030 0.056 0.077 0.081 0.090 0.101

(iii) Pt
10 0.043 0.021 0.003 0.000 0.000 0.509 0.720 0.954 0.998 1.000
30 0.033 0.021 0.009 0.004 0.002 0.043 0.039 0.031 0.026 0.027
50 0.031 0.032 0.018 0.011 0.003 0.046 0.039 0.034 0.035 0.034
100 0.036 0.034 0.024 0.018 0.014 0.052 0.050 0.045 0.046 0.049
250 0.042 0.043 0.029 0.028 0.028 0.064 0.069 0.073 0.080 0.088
500 0.047 0.045 0.039 0.035 0.031 0.061 0.078 0.085 0.094 0.105

Note: ρi = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level. ζi ∼ U [1, 2], i = 1, . . . , δN and ϕi,p ∼ U [0.1, 0.35]

heterogeneity. In the case of Pedroni’s tests it is however not clear to what extent this

result is practically useful in view of the large size distortions found above.

DGPs A and B closely mirror the framework of residual-based cointegration tests. This

potentially affords the residual-based tests (i.e. the ADF -based P tests as well as Kao’s

[1999] and Pedroni’s [2004]) a relative advantage against the system-based tests (i.e. the

λtrace-based P tests and Larsson et al.’s [2001]).13 To verify this claim, we consider the

following Vector Error Correction-type DGP. This DGP is more closely related to the

latter system-based tests, as, for instance, it is not built around an equilibrium error zi,t

whose stationarity properties the residual-based tests attempt to detect. Also, it does not

require a left-hand side variable.

13Indeed, Tables III-VIII report that the λtrace-based P tests and the ΥLR test are generally less
powerful than the residual-based tests under DGPs A and B.
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Table VI—Size of other Cointegration Tests, AR(p) Errors

T N 10 20 50 100 150 10 20 50 100 150

(i) Zρ̂NT−1 (ii) Zt̂NT

10 0.070 0.143 0.364 0.701 0.876 0.692 0.906 0.999 1.000 1.000
30 0.343 0.502 0.811 0.978 0.999 0.463 0.668 0.940 0.998 1.000
50 0.347 0.519 0.802 0.966 0.995 0.393 0.609 0.900 0.994 1.000
100 0.392 0.538 0.809 0.963 0.995 0.411 0.609 0.892 0.991 0.999
250 0.380 0.506 0.762 0.938 0.984 0.458 0.650 0.906 0.992 1.000
500 0.400 0.521 0.767 0.942 0.987 0.515 0.704 0.939 0.997 1.000

(iii) Z̃ρ̂NT−1 (iv) DF ∗t
10 0.000 0.000 0.000 0.000 0.000 0.010 0.008 0.015 0.026 0.039
30 0.128 0.194 0.329 0.548 0.708 0.094 0.077 0.083 0.110 0.137
50 0.256 0.403 0.686 0.912 0.976 0.127 0.130 0.121 0.146 0.167
100 0.384 0.583 0.869 0.989 0.999 0.171 0.153 0.143 0.170 0.182
250 0.471 0.689 0.939 0.995 1.000 0.179 0.163 0.163 0.170 0.190
500 0.514 0.716 0.955 0.999 1.000 0.206 0.166 0.158 0.180 0.200

(v) DF ∗ρ (vi) ΥLR

10 0.100 0.124 0.229 0.401 0.540 0.580 0.792 0.976 0.999 1.000
30 0.111 0.106 0.135 0.172 0.227 0.053 0.048 0.043 0.038 0.040
50 0.108 0.119 0.123 0.163 0.192 0.057 0.054 0.045 0.051 0.048
100 0.119 0.117 0.123 0.142 0.166 0.065 0.063 0.059 0.066 0.069
250 0.122 0.118 0.118 0.131 0.149 0.080 0.082 0.086 0.100 0.117
500 0.129 0.117 0.117 0.140 0.153 0.076 0.096 0.102 0.125 0.144

Note: ρi = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level. ζi ∼ U [1, 2], i = 1, . . . , δN and ϕi,p ∼ U [0.1, 0.35]

DGP C Let X1,t = (x1,1t, . . . , xN,1t)
> and X2,t = (x1,2t, . . . , xN,2t)

>. X1,t and X2,t are

generated as (
∆X1,t

∆X2,t

)
= αβ>

(
X1,t−1

X2,t−1

)
+ Γ

(
∆X1,t−1

∆X2,t−1

)
+ εt,

where

α = −α̃ ·

(
IN 0N

0N IN

)
and β> =

(
IN −IN
0N 0N

)
.

with IA (0A) the A-dimensional identity (zero) matrix, Γ = 0.15I2N and εt ∼ N (0, I2N).

For α̃ = 0, xi,1t and xi,2t, i = 1, . . . , N , are independent nonstationary processes. We then

study size of the tests. For α̃ > 0, this formulation ensures cointegrating relationships

xi,1t − xi,2t, such that we analyze power of the tests. By increasing α̃, the degree of

reversion to the cointegration relationship increases, such that the tests should become

more powerful. For the degree of mean reversion, we choose α̃ ∈ {0, 0.05, 0.1, 0.15, 0.2}.
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Table VII—Size-Adjusted Power of the P Tests with AR(p) Errors

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 0.108 0.120 0.096 0.079 0.064 0.546 0.788 0.982 1.000 1.000
30 0.058 0.053 0.048 0.033 0.034 0.041 0.033 0.038 0.031 0.018
50 0.077 0.081 0.086 0.116 0.124 0.044 0.040 0.058 0.042 0.020
100 0.149 0.215 0.378 0.600 0.735 0.079 0.069 0.170 0.168 0.106
250 0.663 0.898 0.998 1.000 1.000 0.300 0.344 0.861 0.942 0.905
500 0.975 1.000 1.000 1.000 1.000 0.707 0.858 1.000 1.000 1.000

(ii) PΦ−1

10 0.017 0.005 0.001 0.000 0.000 0.468 0.699 0.955 0.998 1.000
30 0.039 0.026 0.016 0.008 0.006 0.036 0.028 0.033 0.020 0.009
50 0.069 0.063 0.069 0.085 0.093 0.041 0.036 0.041 0.029 0.012
100 0.155 0.218 0.406 0.640 0.780 0.066 0.056 0.140 0.129 0.076
250 0.589 0.833 0.995 1.000 1.000 0.211 0.260 0.721 0.863 0.781
500 0.927 0.997 1.000 1.000 1.000 0.534 0.717 0.996 1.000 1.000

(iii) Pt
10 0.045 0.022 0.004 0.000 0.000 0.502 0.728 0.962 0.998 1.000
30 0.045 0.034 0.023 0.011 0.008 0.036 0.028 0.032 0.022 0.009
50 0.073 0.071 0.077 0.091 0.103 0.040 0.036 0.044 0.029 0.013
100 0.157 0.222 0.406 0.635 0.776 0.068 0.059 0.147 0.139 0.079
250 0.610 0.847 0.995 1.000 1.000 0.246 0.287 0.769 0.890 0.825
500 0.951 0.999 1.000 1.000 1.000 0.619 0.781 0.999 1.000 1.000

Note: Half of the series has ρi ∼ U [0.9, 1], ρi = 1 else. ψ = 0, σ = 1 and a1 = 0.
M = 5, 000. 5% nominal level. ζi ∼ U [1, 2], i = 1, . . . , δN and ϕi,p ∼ U [0.1, 0.35]

Results are summarized in Table IX.14 As regards size, a pattern comparable to the results

of DGP A emerges. For example, the system-based PΦ−1,λ and ΥLR tests are oversized

for very small T . We also again observe a mild “adding up” of size distortions for the

PΦ−1,DF and the DF ∗t test. A notable exception are the tests by Pedroni, that seem to

be quite severely undersized under DGP C. Concerning power, we find that the above

conjecture that this error-correction DGP is more favorable to the system-based tests is

corroborated. In particular, unlike in Tables III and IV, the system-based PΦ−1,λ and ΥLR

tests are, together with the DF ∗t test, the most powerful ones under DGP C.

To summarize, the P tests discussed in this paper enjoy a rather consistently attractive

14Results for the other tests considered above are available upon request. Broadly speaking, the other
P tests behave very much like the PΦ−1 test when using the same time series test, with the Pχ2 again
being slightly less powerful. Furthermore, the other tests by Kao and Pedroni are somewhat less powerful
than the ones reported here.
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Table VIII—Size-Adjusted Power of other Cointegration Tests, AR(p) Errors

T N 10 20 50 100 150 10 20 50 100 150

(i) Zρ̂NT−1 (ii) Zt̂NT

10 0.089 0.156 0.438 0.785 0.935 0.732 0.925 1.000 1.000 1.000
30 0.461 0.669 0.944 0.998 1.000 0.560 0.797 0.986 1.000 1.000
50 0.556 0.752 0.969 0.999 1.000 0.574 0.802 0.985 0.999 1.000
100 0.692 0.863 0.992 1.000 1.000 0.667 0.868 0.995 1.000 1.000
250 0.799 0.924 0.999 1.000 1.000 0.804 0.937 0.999 1.000 1.000
500 0.872 0.960 1.000 1.000 1.000 0.873 0.967 1.000 1.000 1.000

(iii) Z̃ρ̂NT−1 (iv) DF ∗t
10 0.000 0.000 0.000 0.000 0.000 0.009 0.006 0.008 0.015 0.027
30 0.208 0.314 0.607 0.875 0.968 0.140 0.145 0.202 0.316 0.434
50 0.481 0.718 0.969 0.999 1.000 0.255 0.276 0.395 0.559 0.701
100 0.838 0.975 1.000 1.000 1.000 0.385 0.448 0.620 0.812 0.915
250 0.996 1.000 1.000 1.000 1.000 0.530 0.601 0.802 0.939 0.983
500 1.000 1.000 1.000 1.000 1.000 0.596 0.688 0.874 0.970 0.995

(v) DF ∗ρ (vi) ΥLR

10 0.096 0.134 0.230 0.417 0.582 0.569 0.794 0.982 1.000 1.000
30 0.149 0.172 0.248 0.364 0.484 0.048 0.038 0.041 0.034 0.018
50 0.200 0.232 0.340 0.501 0.619 0.052 0.049 0.064 0.047 0.022
100 0.274 0.341 0.499 0.688 0.811 0.087 0.075 0.186 0.182 0.115
250 0.393 0.467 0.671 0.851 0.938 0.310 0.355 0.853 0.941 0.899
500 0.465 0.550 0.762 0.912 0.973 0.701 0.854 1.000 1.000 1.000

Note: Half of the series has ρi ∼ U [0.9, 1], ρi = 1 else. ψ = 0, σ = 1 and a1 = 0.
M = 5, 000. 5% nominal level. ζi ∼ U [1, 2], i = 1, . . . , δN and ϕi,p ∼ U [0.1, 0.35]

performance in terms finite sample size and power across a range of realistic and chal-

lenging scenarios. The P tests may therefore be useful in a fairly wide range of practical

applications.

4 Conclusion

We study new tests for panel cointegration, labeled P tests. As in Maddala and Wu

[1999] and Choi [2001], we use a meta analytic p-value combination approach to develop

tests for nonstationary panel data. The new tests are flexible, intuitively appealing and

easy to implement. The tests employ highly accurate p-values obtained from response

surface regressions [MacKinnon, 1996; MacKinnon et al., 1999]. A finite sample study

reveals that the Engle and Granger [1987]-based variant of the controls size even for

rather short panels. The empirical size of the tests is very close to the nominal one for
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panel dimensions often encountered in applied macroeconometric work. The λtrace-based

P tests exhibit an upward size distortion for small T , which however vanishes quickly. In

that regard, we find the P tests to compare favorably with existing tests. In terms of

power, their performance is often as good as and, in certain cases, better than the more

powerful among other widely used panel cointegration tests.

As most tests in this literature, the ones suggested here rely on the assumption of cross-

sectional uncorrelatedness (see Assumption 2). This assumption is likely to be overly

strong for many macroeconomic panels and may lead, if violated, to erroneous conclusions

[cf. O’Connell, 1998]. We therefore suggest to extend the tests developed here to allow for

cross-sectional correlation by, e.g., the bootstrap method. Maddala and Wu [1999] report

encouraging results along these lines for their panel unit root test. There is a growing

literature on bootstrapping cointegrating regressions [see Li and Maddala, 1997] that can

be fruitfully applied to the present problem. Recent useful contributions include Chang

and Park [2003] and Chang et al. [2006]. Investigation of this extension is currently under

way by the author.
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