SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Nonlinear logistic discrimination via
regularized Gaussian basis expansions

JIZF, F—
FUN KK BERER 2 A

g, =8I
PR NI el o

https://hdl. handle. net/2324/13216

HRI1EER : Communications in Statistics : Simulation and Computation. 38 (7), pp.1414-1425,
2009-08. Taylor & Francis
N—=2 3

HEFIBAMR



MI Preprint Series

Kyushu University
The Grobal COE Program
Math-for-Industry Education & Research Hub

Nonlinear logistic discrimination
via regularized GGaussian basis
expansions

S. Kawano & S. Konishi

MI 2009-4

( Received January 23, 2009 )

Faculty of Mathematics

Kyushu University
Fukuoka, JAPAN



Nonlinear logistic discrimination via
regularized Gaussian basis expansions

Shuichi Kawano! and Sadanori Konishi?

L Graduate School of Mathematics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

2 Faculty of Mathematics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

s-kawano@math.kyushu-u.ac.jp konishi@math.kyushu-u.ac.jp

Abstract: We consider the problem of constructing multi-class classification meth-
ods for analyzing data with complex structure. A nonlinear logistic discriminant
model is introduced based on Gaussian basis functions constructed by the self-
organizing map. In order to select adjusted parameters, we employ model selection
criteria derived from information-theoretic and Bayesian approaches. Numerical ex-
amples are conducted to investigate the performances of the proposed multi-class
discriminant procedure. Our modeling procedure is also applied to protein structure
recognition in life science. The results indicate the effectiveness of our strategy in
terms of prediction accuracy.
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1 Introduction

Multi-class classification problems have received an enormous amount of attention in the
fields of statistics, artificial intelligence and bioinformatics (see, e.g., McLachlan, 1992;
Hastie et al., 2001; Bishop, 2006). One of well-known statistical tools of multi-class
classification is based on linear logistic regression models (e.g., Day and Kerridge, 1967;
Anderson, 1975; Seber, 1984; Hosmer and Lemeshow, 1989; Zhu and Hastie, 2004). In
order to process data generated from complex structures, many researchers have studied
nonlinear logistic discriminant models that are obtained by replacing a linear predictor
in logistic models with a linear combination of basis functions (see, e.g., Hastie and
Thibshirani, 1990; Simonoff, 1996; Loader, 1999). The natural cubic spline and B-spline
have been widely used as basis functions in nonlinear logistic models. However, these

modeling procedures for high dimensions may suffer from the curse of dimensionality.



To overcome this problem, Ando and Konishi (2008) proposed using nonlinear logistic
models with Gaussian basis functions for classifying high-dimensional data.

There still remains, however, a problem in constructing Gaussian basis functions. Al-
though Gaussian bases are usually constructed by using the k-means clustering algorithm,
this algorithm depends on initial values and consequently yields different nonlinear logistic
models corresponding to each set of initial values. To overcome this problem, Kawano and
Konishi (2007) proposed spline-based Gaussian basis functions, which have advantages as-
sociated with B-spline bases, and demonstrated the efficiency of this nonlinear modeling
method in the context of regression problems. However, this construction method is re-
stricted to low-dimensional data (at most two dimensions). This is a major problem since
data treated in classification problems generally exist in high-dimensional spaces.

In this article, we employ the self-organizing map (SOM) presented by Kohonen (1997)
to construct Gaussian basis functions and propose a multi-class logistic discriminant model
with these basis functions along with the technique of regularization. Our proposed models
are easily applied to analyze complex or high-dimensional data, and also yield more stable
prediction error rates than models based on the k-means clustering algorithm. Crucial
issues in the model constructing process are the choices of adjusted parameters, which
include the number of basis functions, a regularization parameter and a hyper-parameter
involved in Gaussian bases. In order to select these parameters, we use information-
theoretic and Bayesian type criteria. Numerical examples are conducted to examine
the effectiveness of the proposed multi-class discriminant procedure. We also apply our
modeling strategy to analyze protein structure data.

This article is organized as follows. Section 2 describes a nonlinear logistic model
with basis expansions for multi-class classification. This section also gives estimation
and evaluation procedures for models based on a penalized log-likelihood method. In
Section 3, we consider the problem of constructing Gaussian basis functions, and present
a nonlinear logistic discriminant model with Gaussian basis functions via the SOM. In
Section 4, we demonstrate the performance of our proposed models using some numerical

studies and a real data example. Some concluding remarks are given in Section 5.



2 Preliminaries

2.1 Nonlinear logistic modeling using basis expansions

Suppose we have n independent observations {(x,,g.); o = 1,---,n}, where x, are p -
dimensional explanatory variables and g, € {1,2,---, L} indicate the class label to which
x, belong. We assume that the conditional probabilities given by x,, which are called

posterior probabilities, can be expressed as

Pr(ga = k?|il3) m
log{lmzusv) = v L uwisty(a) = wlol@, k=1 Lol ()
where wy, = (Wko, Wr1, -, Wem)? is an unknown parameter vector for class k and ¢(x) =
(1,¢1(x), -+, dm(x))T is a vector of basis functions. For basis functions ¢(x), we shall

use Gaussian basis functions with a hyper-parameter given by

T — p|? ,
ostas ) = o (VD) )
J

where p; is a p-dimensional vector that determines the position of the basis function, h?
is the dispersion parameter and v (> 0) is the hyper-parameter. The hyper-parameter
v plays a key role in adjusting the smoothness of the decision boundary. Ando et al.
(2008) and Ando and Konishi (2008) have used various numerical examples to demonstrate
the effectiveness of nonlinear models using the basis functions that contain the hyper-
parameter. The parameters p;, h? are estimated using the procedures described in Section
3, while the hyper-parameter v is determined by the model evaluation criteria given in
Section 2.2.

From Equation (1) the posterior probability can be rewritten as

T
Pr(g, = klz,) = e}quf’wk d)(CBTa)} . k=1,---,L—1, (3)
1 + Zj:l eXp{wj d)(ma)}
Lz’l 1
Pr(g, = Llzs) =1~ Pr(g, = klzo) = - . (4)
k=1 14+ 275 exp{w] d(za)}
Since these posterior probabilities depend on the parameter w = (w?,--- wl )T, we

use the notation Pr(g, = k|x) := m(x; w).



For simplicity, we introduce an (L—1)-dimensional response variable y = (y1,---,yr_1)7,
the components of which are either 0 or 1. The k-th element of y, is set to 1 if the cor-

responding x, belongs to the k-th class, i.e.,

(k)
(a) (a) (07"'7071707"'70)T if ga:k? (k:L?L_l))
Yo = (1 ) =
0,---,0)T if g, =1L.
The response y,, is assumed to be distributed according to a multinomial distribution with
the posterior probabilities 7 (x,; w) expressed by the following probability function:

L—-1 (a)

F (ol w) = T] m(@a; )" {rp (s ) PS8 (5)
k=1

From the multinomial distribution we obtain the following log-likelihood function

n

Z f(Wala; w)

n

- S Y logmy(@a; w (1 - Z " )logﬂL wa,w)] (6)

k=1

The maximum likelihood estimator, which is a widely used estimator, of an unknown pa-
rameter w can easily be obtained by maximizing the log-likelihood function (6). However,
the maximum likelihood method often yields an unstable parameter estimate, i.e., a pa-
rameter estimate tends to infinity. To overcome this problem, we estimate the parameter

vector w by maximizing the regularized or penalized log-likelihood function

n)\L 1
U\(w) = l(w) — - > wi Kwy, (7)
k=1

where A (> 0) is a regularization parameter that reduces the variance of the parameter
estimate and K is an (m + 1) x (m + 1) positive semi-definite matrix (see, e.g., Imoto
and Konishi, 2003; Konishi and Kitagawa, 2008). The maximum penalized likelihood
estimator w is the solution of 9¢)(w)/0w = 0. This equation is generally nonlinear with
respect to the parameter vector w. We use the Fisher’s scoring method to obtain the
solution w (see Green and Silverman, 1994 for details).

Given the estimate w, a future observation x is assigned to class k that has the

maximum posterior probability 7 (x; w) among L classes, where

- exp{w! (o)}
7Tk<33a,w) 1+ ZL exp{’u]T(p(ma)}’

k=1, L1, 8)
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1+ Z L exp{w! p(za)}

We then obtain a statistical model in the form

(T W) =

f (Yoo Hm (o @) {mp ()} 2 U (10)

This statistical model depends on the number of basis functions m and the values of
the regularization parameter A and hyper-parameter v. We use model selection criteria
from information-theoretic and Bayesian approaches given in Ando and Konishi (2008)

to select the values of these adjusted parameters.

2.2 Model selection criteria

The generalized information criterion proposed by Konishi and Kitagawa (1996) enables
us to evaluate statistical models with various types of estimators, including the robust
and penalized likelihood estimator. Using the result given in Konishi and Kitagawa (1996,
p.876), we obtain a model selection criterion for evaluating the nonlinear logistic model
as follows:
GIC = -2 zn: 0gf (Yo|Ta; w) + 2tr(QR™), (11)
a=1

where ) and R are (L — 1)(m + 1) x (L — 1)(m + 1) matrices given by

Q:;{(F—G)QE}T{(F—G)QE}—2]1&15{(F—G)®E}, (12)

R= —:L(G@E)T(G@E)—Fiﬂ-i-)\f (13)

with E' = (®,---,®), I = (y(1)1§+17 T >y(L—1)1£+1): G = (mq )1£+1v T a7"(L—1)1%+1)7
H = diag{®"diag{my)}®, -, ®Tdiag{m(r_1) }®}, I = diag{K, -, K}, gy = (4", -,
y,gn)) , @ = (p(x1), -+, @d(x,))" and 7wy = (mp(x1; W), - -+, mp(x,; w))T. Here the oper-
ator ® denotes the Hadamard product.

Konishi et al. (2004) proposed the generalized Bayesian information criteria by ex-
tending the Bayesian information criteria (Schwarz, 1978) to evaluate statistical models

estimated by the maximum penalized likelihood method. Using the result given in Konishi



et al. (2004, p.30), we obtain a model evaluation criterion given by

n L-1
GBIC = =2 logf(ya|Ta; W) + nA > wi Ky — (L — 1)log| K|+
a=1 k=1
2
+log|R| — (L —1)(m + 1 —d)logh — (L — 1)d log <7T) : (14)
n

where | K|, is the product of the positive eigenvalues of K with rank d and R is given in
Equation (13).

We select the number of basis functions and the values of the regularization parameter
and the hyper-parameter by minimizing either the generalized information criterion (GIC)

or the generalized Bayesian information criterion (GBIC).

3 Construction of Gaussian basis functions

3.1 Gaussian basis functions and its problem

In this section, we consider the problem of constructing Gaussian basis functions. The
centers p; and width parameters h? included in Gaussian basis functions given in Equation
(2) are generally determined by using the k-means clustering algorithm (Moody and
Darken, 1989). This algorithm divides a set of observations {xy,---,x,} into m clusters
{Cy,---,Cy} corresponding to the number of basis functions. The centers p; and the
width parameters h? are then respectively determined by f1; = Y oec, Za /n; and ﬁ? =
>acc; |1Ta — f;]1?/n;, where n; is the number of observations that belongs to the j-th
cluster C;. Replacing p; with fi; and h? with iLJQ, we obtain a set of m basis functions
given by
o112
053 g, 12, ) = exp (—"‘”2‘:") Cj=1m. (15)
It should, however, be noted that models based on the basis functions constructed
using the k-means clustering algorithm have some drawbacks. These drawbacks are due
to the different initial values in the k-means clustering algorithm, which imply that clusters
determined using this clustering algorithm are strongly dependent on the initial values.

To illustrate this point, data {(Z14, 20, 9a); @ = 1,---,300} are generated from normal



Figure 1: 10 estimated decision boundaries for the same simulated data set. The left
panel shows boundaries estimated by models constructed using the k-means clustering
algorithm. The right panel shows the result obtained using our modeling method. Class
1 samples are indicated by circles and class 2 samples are denoted by crosses.

mixture distributions as follows:

Class 1 O.5N(( L ),( ! 0'2))—1-0.5]\[(( _2‘5),(0'75 0 )),
0.5 0.2 0.2 -1 0 0.75
(16)
Class 2 O.5N((_1),(0'5 O))+O.5N((2),(O'5 0))
~1 0 05 0 0 05

The left panel in Figure 1 shows 10 estimated decision boundaries for the same data
set. We observe that the models provide a different set of decision boundaries, which
demonstrates that the k-means clustering algorithm estimates different centers of basis
functions for different sets of initial values.

This is undesirable for practical applications since the same estimation model produces
different results; different decision boundaries were obtained in spite of using exactly the
same data set. To overcome this problem, Kawano and Konishi (2007) proposed new
Gaussian bases, which have the advantages associated with B-spline basis functions. They
investigated the efficiency of nonlinear regression models based on these new Gaussian
basis functions. However, spline-based construction methods cannot be directly applied

to high-dimensional data sets since the number of basis functions may exceed the sample
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size. In this study, therefore, we employ Gaussian basis functions based on the SOM.

3.2 Gaussian basis functions using the self-organizing map

The SOM is an unsupervised neural network, which visualizes complex high-dimensional
data by drawing a low-dimensional map (Kohonen, 1997). When the SOM is used as a
clustering method it constructs more stable clusters than the k-means algorithm: the SOM
is robust against variation in initial values, whereas the k-means algorithm is strongly de-
pendent on the initial values.

The SOM algorithm is given by the following procedure. First, a set of reference
vectors {p; € RP;j = 1,---,m} is prepared. Second, we select the node of the reference
vector p. that minimizes the distance between the reference vector and observations of

the explanatory variables x,, i.e.,

e = angmin { |z, — s} (1)
Third, if we have the t-th values of p{), the (¢ 4+ 1)-th updated values p**+1) are given by

Py = p + he(t) [-”’a - pﬂ , (J=1,---,m), (18)

where h.(t) is a monotone decreasing function of the number of iterations ¢. A Gaussian
neighborhood kernel is generally used as the monotone decreasing function in the following
equation:

®12
he(t) = a(t) exp {—”p‘p”} , (19)

202(1)

where «a(t) (> 0) is the learning rate and o%(t) determines the width of the function.
Both «(t) and ¢?(t) are monotone decreasing functions of the numbers of iterations, and
they could be selected to be linear. Fourth, we alternate between the second step and
the third step for all observations {x,;a = 1,---,n}. Finally, we continually repeat the
second step to the forth step until the convergence condition is satisfied. The resulting
clusters C; (j = 1,---,m) are given by {x,;j = argmin,{||z, — pi||}}, where p; are
the convergence values of the above procedure. For more details, we refer the reader to

Kohonen (1997).



We obtain m Gaussian basis functions given by

(som) /. ~(som) iL(som)2 o ||Q3 B AE'SOm) | |2 1 9
qu (m’ l-‘l’j ) 1g 7V) =exXp|\|— B(Som)Q y J =1L, ( O)
2vh;

(som

where fi; ) and ;L§som)2 are respectively the estimated centers and width parameters

som) ( .

obtained from the clusters C]( j =1,---,m) using the SOM. We then introduce a

following nonlinear logistic model using these basis functions,

Pl"(ga = k‘wa) m (som) o) & (som2
lOg{Pr(ga:Llwa) :wk0+zwkj¢j (Ta; ;7 by ), k=1,---L—1.

j=1
Our proposed models are more stable than models whose basis functions are constructed
using the k-means algorithm, since the basis functions included in our models are con-
structed using the SOM. To demonstrate this, we fitted our model to the same data set
given in (16). The right panel of Figure 1 shows 10 estimated decision boundaries con-
structed by our models. The decision boundaries depicted in the right panel of Figure
1 are more stable than those in the left panel, demonstrating that our proposed models
are superior to models using the k-means algorithm in the sense that they give a smaller
variance in the estimated decision boundaries. In the next section, we use some numerical
examples to compare our models with several other models in terms of prediction accuracy

and stability.

4 Numerical examples

4.1 Synthetic data

We investigate the performance of our modeling methodology by analyzing synthetic
data (Ripley, 1996). This synthetic data consists of two classes with two-dimensional
explanatory variables; 250 values of training data and 1000 values of test data were
prepared.

Nonlinear logistic models with basis functions constructed using the SOM or the k-
means clustering method are fitted to the data set. The number of basis functions was

fixed to 25, and the values of the regularization parameter and hyper-parameter in the



Figure 2: 10 estimated decision boundaries for the same data set. The left panel shows
boundaries estimated by models constructed using the k-means clustering algorithm. The
right panel shows the results obtained using our modeling method. Class 1 samples are
indicated by circles and Class 2 samples are denoted by crosses.

Gaussian basis function were selected using the GIC. We then repeated the above pro-
cedure 10 times using exactly the same data set. Figure 2 shows that the models esti-
mated by the SOM are more stable than those constructed using the k-means clustering
algorithm. This result is similar to that given in Section 3. We also compared the per-
formances of nonlinear logistic modeling procedures based on Gaussian bases using the
SOM (NLMsom) and k-means clustering (NLMk) with that of other procedures. The
regularization parameter and the hyper-parameter in the NLMsom and NLMk models
were selected by using the GIC or GBIC, while the number of basis functions was fixed
as 25 since this numerical study required a considerable amount of computation. Table
1 shows a summary of the prediction errors. To obtain results for generalized additive
model (GAM), we used the mgev function from the mgev package in R (Wood, 2004). For
the NLMsom or NLMk models, the prediction errors listed in Table 1 are the averages
of 50 results obtained using the same data set, and the figures in parentheses indicate
the standard errors. Table 1 shows that the proposed methods perform well; they yield a

relatively small prediction error with a small variance.
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Table 1: Prediction errors (%) for synthetic data. Figures in parentheses indicate the
standard errors for 50 repetitions. The results for methods 9 to 12 are from Ripley
(1994).

Method Prediction error

1. NLMsom with GIC 9.40 (0)

2. NLMsom with GBIC 9.50 (0)

3. NLMk with GIC 9.47 (0.38)

4. NLMk with GBIC 9.51 (0.16)

5. Linear discriminant analysis 10.8

6. Quadratic discriminant analysis 10.2

7. Linear logistic discriminant model 11.4

8. GAM 9.50

9. CART 10.1
10. 1 nearest neighbor 15.0
11. 2 nearest neighbor 13.4
12. 3 nearest neighbor 13.0

4.2 Wave form data

In the second experiment, we consider the problem of multi-class classification by analyz-
ing waveform data (Hastie et al., 2001). The waveform data consist of three classes with
21-dimensional predictors, and were generated from the following functions:

uHy(k) 4+ (1 —u)Hy(k) +e, if g=1
v =1 uHy(k)+ (1 —w)Ha(k) +ep ifg=2 k=121 (21)
uHs (k) + (1 —u)Hs(k) + ¢, if g=3

where u is uniform on [0,1], £ are the standard normal variates and H; are the shifted
triangular waveforms, Hy (k) = max{6—|k—11|,0}, Ha(k) = H1(k—4), H3(k) = Hi(k+4).
We generated 300 sets of training data with equal prior probability for each class and 500
sets of test data.

We compared the performances of several different modeling procedures. Using the
GIC or GBIC as the model selection criterion, we selected the regularization parameter
and the hyper-parameter in the NLMsom or NLMk models. As in Section 4.1, we fixed
the number of basis functions as 15, since the computational demanding was quite high.

A summary of the prediction errors is given in Table 2. We obtained the results for the

11



Table 2: Prediction errors (%) for waveform data. Figures in parentheses indicate the
standard errors for 50 repetitions. The results for methods 9 to 11 are from Hastie et al.
(2001).

Method Prediction error

1. NLMsom with GIC 15.6 (0.10)

2. NLMsom with GBIC 15.7 (0.10)

3. NLMk with GIC 16.0 (0.70)

4. NLMk with GBIC 16.1 (0.74)

5. Linear discriminant analysis 21.2

6. Quadratic discriminant analysis 21.6

7. Linear logistic discriminant model 21.2

8. GAM 22.0

9. Classification tree 28.9
10. FDA (MARS (degree 1)) 19.1
11. FDA (MARS (degree 2)) 21.5

generalized additive model (GAM) using the mgcv function from the mgev package in R.
The prediction errors for the NLMsom and NLMk models were obtained by averaging
the results obtained by 50 iterations from the same data set, and the standard errors are
given in parentheses. For this data set, our proposed models using the GIC or GBIC give
lower prediction errors than other models and provide more stable prediction error rates

than the models based on the k-means clustering algorithm.

4.3 Recognition of protein structure data

We applied the proposed multi-class discriminant procedure to a protein structure data set
that was analyzed in Ding and Dubchak (2001). This data set consists of four structural
classes: all-a, all-3, o/, a+ (. For each class, the percentage compositions of the 20
amino acids form a part of the predictors. The remainder of the predictors is defined by
the structural or physicochemical properties extracted from the primary protein sequence,
allowing us to generate 125-dimensional predictors. See Dubchak et al. (1995, 1999) for
details regarding this method of generating the predictors. The data set can be obtained

from the website (http://ranger.uta.edu/~ chqding/protein).
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Table 3: The number of training data sets and test data sets for each class.

Class Training data Test data

all-a 55 61
all-(8 109 117
a/f 115 145
a+ 34 62
Total 313 385

Table 4: Prediction errors (%) for protein data. The results for SVM and KNN are from
Shi and Suganthan (2003).

Method Prediction error
1. NLMsom with GIC 23.3
2. NLMsom with GBIC 22.8
3. LDA NA
4. QDA NA
5. LLDA 23.9
6. SVM 23.1
7. KNN 28.9

The number of training sets and test sets for each class in this study are listed in Ta-
ble 3. Our modeling method was applied to the data set with the help of regularization.
The number of basis functions and the values of the regularization parameter and hyper-
parameter were selected using the GIC or GBIC. The values of the adjusted parameters
for the data set are m = 28, A = 1073 and v = 11.5 for the GIC, while they are m = 30,
A =10"** and v = 5.0 for the GBIC. We compared the performance of our procedure with
that of linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), lin-
ear logistic discriminant analysis (LLDA), support vector machine (SVM) and K-nearest
neighbor classifier (KNN). Table 4 summarizes the prediction errors obtained using these
methods. Discriminant functions could not be constructed from LDA and QDA because
of their singular variance-covariance matrices. Table 4 shows that the nonlinear logistic
discriminant models based on the SOM provide relatively lower prediction errors than

other methods.
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5 Concluding remarks

In this article, we introduced a nonlinear logistic model based on Gaussian basis functions
constructed by using the SOM in the framework of multi-class classification problem. In
order to choose the values of adjusted parameters, we employ model selection criteria from
the information-theoretic and Bayesian viewpoints. Some numerical examples and a real
data analysis demonstrated that our modeling strategies yield smaller prediction error
rates than several previously developed models. Due to the stability and the predictive
performance of the estimated models, our multi-class logistic discrimination procedure

has the potential to be useful in a variety of practical applications.
References

Anderson, J.A. (1975). Quadratic logistic discrimination. Biometrika, 62, 149-154.

Ando, T. and Konishi, S. (2008). Nonlinear logistic discrimination via regularized ra-
dial basis functions for classifying high-dimensional data. Annals of the Institute of
Statistical Mathematics (to appear).

Ando, T., Konishi, S. and Imoto, S. (2008). Nonlinear regression modeling via regularized
Gaussian basis function networks. Journal of Statistical Planning and Inference, 138,
3616-3633.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. Springer, New York.

Day, N.E. and Kerridge, D.F. (1967). A general maximum likelihood discriminant. Bio-
metrics, 23, 313-324.

Ding, C.H. and Dubchak, I. (2001). Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics, 17, 349-358.

Dubchak, 1., Muchnik, I., Holbrook, S.R. and Kim, S.H. (1995). Prediction of protein
folding class using global description of amino acid sequence. Proceedings of the
National Academy of Sciences, 92, 8700-8704.

Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I. and Kim, S.H. (1999). Recognition

of a protein fold in the context of the structural classification of proteins (SCOP)

14



classification. Proteins, 35, 401-407.

Green, P.J. and Silverman, B.W. (1994). Nonparametric Regression and Generalized
Linear Models. Chapman & Hall, London.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall,
London.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning.
Springer, New York.

Hosmer, D.W. and Lemeshow, S. (1989). Applied Logistic Regression. Wiley, New York.

Imoto, S. and Konishi, S. (2003). Selection of smoothing parameters in B-spline non-
parametric regression models using information criteria. Annals of the Institute of
Statistical Mathematics, 55, 671-687.

Kawano, S. and Konishi, S. (2007). Nonlinear regression modeling via regularized Gaus-
sian basis functions. Bulletin of Informatics and Cybernetics, 39, 83-96.

Kohonen, T. (1997). Self-Organizing Maps. Springer, New York.

Konishi, S., Ando, T. and Imoto, S. (2004). Bayesian information criteria and smoothing
parameter selection in radial basis function networks. Biometrika, 91, 27-43.

Konishi, S. and Kitagawa, G. (1996). Generalised information criteria in model selection.
Biometrika, 83, 875-890.

Konishi, S. and Kitagawa, G. (2008). Information Criteria and Statistical Modeling.
Springer, New York.

Loader, C. (1999). Local Regression and Likelihood. Springer, New York.

McLachlan, G.J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wi-
ley, New York.

Moody, J. and Darken, C.J. (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation, 1, 281-294.

Ripley, B.D. (1994). Neural networks and related methods for classification. Journal of
the Royal Statistical Society Series B, 56, 409-456.

Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University
Press, UK.

15



Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461—
464.

Seber, G.A.F. (1984). Multivariate Observations. Wiley, New York.

Shi, S.Y.M. and Suganthan, P.N. (2003). Feature analysis and classification of protein
secondary structure data. Lecture Notes in Computer Science, 2714, 1151-1158.

Simonoff, J.S. (1996). Smoothing Methods in Statistics. Springer, New York.

Wood, S.N. (2004). Stable and efficient multiple smoothing parameter estimation for
generalized additive models. Journal of the American Statistical Association, 99,
673-686.

Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized logistic

regression. Biostatistics, 5, 427-443.

16



List of MI Preprint Series, Kyushu University

MI

MI2008-1

MI2008-2

MI2008-3

MI2008-4

MI2008-5

MI2008-6

MI2008-7

MI2008-8

MI2008-9

The Grobal COE Program
Math-for-Industry Education & Research Hub

Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve nite element scheme

Yoshiyasu OZEKI
Torsion points of abelian varieties with values in n nite extensions over a p-

adic eld

Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number elds

Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical al-
gebraic decomposition

Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials



MI2008-10

MI2008-11

MI2008-12

MI2008-13

MI2008-14

MI2008-15

MI2009-1

MI2009-2

MI2009-3

MI2009-4

Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Ob-
served Univariate SDE

Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L? a priori error estimates to the nite element solution of elliptic
problems with singular adjoint operator

Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek
polynomials

Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev in-
equality

Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

Yasuhide FUKUMOTO

Global time evolution of viscous vortex rings

Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predic-
tors

Hidetoshi MATSUI & Sadanori KONISHI

Variable selection for functional regression model via the L, regularization

Shuichi KAWANO & Sadanori KONISHI

Nonlinear logistic discrimination via regularized Gaussian basis expansions



