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Abstract

This paper investigates the potential problem of ‘pseudo-exogenous’ instruments
in regression models. We show that the performance of Hausman test is deteriorated
when the instruments are asymptotically exogenous but endogenous in finite samples,
through Monte Carlo simulations.
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I. Introduction

When there exist endogenous explanatory variables in a regression model, the least
squares estimator fails to achieve consistency. To identify the endogeneity of the
explanatory variables, Hausman test is widely employed. Hausman test works pretty
well, but it is not free of problems. Meepagala (1992) shows that the power of Hausman
test decreases as the sample size becomes smaller. Staiger and Stock (1994) show that
‘weak’ instruments weaken the power of Hausman test. Wong (1996) proposes a
bootstrap procedure to improve the finite sample properties of Hausman test when the
instruments are weak.

This paper identifies another potential problem of Hausman test. When the
instruments of IV estimation are correlated with the error term of the regression, although
the correlation converges to zero eventually, the finite sample performance of Hausman
test becomes seriously deteriorated. Let us call such instruments, which are
asymptotically exogenous but endogenous in the finite sample, ‘pseudo-exogenous’
instruments. Pseudo-exogenous instruments, of course, do not affect the asymptotic
distribution of Hausman test. However, as we will show through a series of Monte Carlo
experiments, the empirical sizes and powers of Hausman test could be considerably
inaccurate in finite samples. Especially, we will show the empirical power function of
Hausman test actually ‘collapses’ in some cases.

One of the most popularly used instruments is the fitted value of the endogenous
variable from the reduced form regression. This so-called 2SLS (two-stage least
squares) is widely used as it gives a proper instrument. Such a fitted value is by
construction a pseudo-exogenous instrument. The correlation between the fitted value

and the error term is asymptotically zero, but may not be zero in finite samples.



II. Hausman Test with the Pseudo-exogenous Instrument
Let us consider the following model.
y=xB+u
where x is an (N x1) vector of explanatory variable, u is an (N x1) vector of error
terms, and y is an (N x1) vector of dependent variable. Suppose there exists an (N x1)
vector of the instrumental variable, z. We are interested in testing H,: “x is
exogenous” against H,: “x is endogenous.” By a similar derivation as in Bound et al.

(1995), it is straightforward that

plimBolS =plim(x'x)"'x'y =B +G_Xl;
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First, suppose that z 1is exogenous so that — =0 . Let us define
GXZ
qsplim(f%iv—ﬁols). If x is exogenous (i.e. H, 1is true) as well as z, then
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X XZ

Xu

>. Now Hausman statistic H 1is

true), then O =0 and q=-

XZ Gx
A A , A A 1 A A
H= @, -, Var@,) - Var@, [ B, ~Bu)
which converges to zero under H,, and diverges from zero under H,. It has been

shown by Hausman (1978) that Hausman statistic has an asymptotic > distribution

under H,.

Second, suppose z is not exogenous at all. In this case, Hausman test is not

. . c .
defined well. 1If z is not exogenous, then —* =0 . Thus, even when X is
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exogenous (i.e. H, is true), q 1is not zero any longer but —*. When x 1is
c
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endogenous (i.e. H, is true), q is now — = Thus, Hausman statistic H no
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longer converges to zero under H,,, and is no longer guaranteed to diverge from zero

under H,. Accordingly, the null distribution of H is no longer an asymptotic 7.
Third, let us consider the case of ‘pseudo-exogenous’ instrumental variables, which

are asymptotically exogenous but endogenous in the finite sample. In this case,

Hausman test is well-defined in large samples, but could be problematic in small samples.
Although q= plirn([giv - f&ols) =QOunder H, and q= plirn([f%iv - [3015) #0 under H,, as
E(z'u) # 0 in finite samples, the Hausman statistic, H, may not be close enough to zero
under H, and/or distinguished enough from zero under H,. The finite sample

distribution of Hausman statistic may not be y’ either. The following section examines

the effect of the pseudo-exogenous instrument on Hausman test through simulations.

II1. Monte Carlo Simulation
To substantiate the effect of the pseudo-exogenous instrument, a Monte Carlo study

is performed. Consider the following data generating process (DGP):

y=xB+u
where
Xl O Si SXZ SXU 0 1 pXZ pxu
z, |[~N[|0],[s, s s,||=N[[0],]|p,, 1 20p,, /N
ui O sxu Szu Si O pxu 2’Opzu /N 1
wherei =1, 2, ..., N. For simplicity, s>, s., s> and B are all set to one. To make
20p,,

the instrument ‘pseudo-exogenous,” s, is defined as s, = Note that p,, , the

zu

correlation coefficient between z and u in a sample size of 20 (N=20), is not set to always

zero so that z may not be ‘fully exogenous’ in finite samples. As the sample size



increases, however, s, converses to zero (i.e. the instrument becomes exogenous).

Thus, z is a ‘pseudo-exogenous’ instrument. The correlation coefficient between x and z,
p,, 1s set to 0.7 so that we can avoid the so-called ‘weak instrument” problems. Four
alternative sample sizes are considered: 20, 50, 100, and 500 for comparisons. The
simulation has been performed 1,000 times.

Table 1 and Figure 1 present the empirical sizes of Hausman test. First, we notice
that the empirical size of Hausman test is not accurate in small samples even when the
instrument is perfectly exogenous (p,,=0). For instance, when N=20 and p, =0, the
rejection rate is only 0.008 while the nominal size is 0.05. Second, when the instrument
is pseudo-exogenous (i.e. p, #0), the empirical sizes of Hausman test are seriously
distorted. For example, when N =20 and p, =0.7, Hausman test rejects the true null
hypothesis 925 times out of 1,000 simulations: the empirical size is 92.5% while the
nominal size is 5%. Such size distortion fades away as the sample size grows, but the
empirical size is far from accurate even when N=500: the empirical size is 13.6% while

the nominal size is 5%.>

Table 1 Empirical sizes of Hausman test (oo =5% )

pzu
N
0 0.1 0.3 0.5 0.7
20 0.008 0.014 0.145 0.638 0.925
50 0.035 0.052 0.162 0.436 0.781

2 We experimented how big the sample size (N) should be to achieve an accurate
empirical size in the same setup of simulation. We found the rejection rate converged to
the nominal size only after N reached 20,000.
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100 0.035 0.047 0.108 0.269 0.467
500 0.058 0.047 0.066 0.095 0.136

Figure 1 Empirical sizes of Hausman test (o =5%)
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Table 2 shows the empirical powers of Hausman test. First of all, it is obvious
that Hausman test does not work well in small samples when the instrument is pseudo-
exogenous. For example, even when p  =0.7, Hausman test does not easily reject the
false null hypothesis Hp: p,, =0 in N = 20 cases, if p,, #0: the empirical powers are
7.6% (for p, =0.3), 1.4% (for p,, =0.5), and 12.3% (for p, =0.7). Generally, the
empirical powers are extremely low when N = 20, only a few exceptions showing higher
powers than 10% in Table 2.  When the sample size is 50, the empirical powers become a
bit higher, but still show powers lower than 10% in quite a few cases. Even when the

sample size 1s 100, Hausman test rejects only 13.7% of the false null hypothesis in some

case (p, =0.1 and p, =0.7). It should be noted that even when the pseudo-
exogeneity of the instrument is quite weak (such as p, =0.1), the empirical power of
Hausman test could be pretty low in small samples. For example, in the case of p =

0.5 and N = 20, the empirical power of Hausman test is 0.342 for p, =0.0 but the power
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decreases to 0.120 for p, =0.1. It implies that, in small samples, Hausman test could be

distorted by a weak correlation between the instrument and the error term even though

they are asymptotically independent.

Table 2 Empirical power of Hausman test (oo = 5% )

o N P
0 0.1 0.3 0.5 0.7
20 0.010 0.008 0.079 0.468 0.890
50 0.070 0.038 0.058 0.157 0.465
O 100 0.149 0.088 0.039 0.042 0.137
500 0.607 0.527 0.473 0.331 0.272
20 0.054 0.008 0.008 0.140 0.712
50 0.493 0.316 0.100 0.035 0.068
03 100 0.859 0.787 0.547 0.329 0.151
500 1.000 1.000 1.000 1.000 0.999
20 0.342 0.120 0.011 0.031 0.383
50 0.986 0.953 0.697 0.296 0.070
03 100 1.000 1.000 0.999 0.990 0.934
500 1.000 1.000 1.000 1.000 1.000
20 0.900 0.746 0.076 0.014 0.123
50 1.000 1.000 1.000 0.981 0.774
07 100 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000

Second, the empirical powers of Hausman test show quite irregular variations as
p,, Increases. Intuitively, the power is expected to become lower as the magnitude of
the instrument’s endogeneity ( = p,, ) becomes higher. As shown in Table 2, however,
the empirical powers do not support such intuition. Sometimes the power becomes
higher as p,, becomes higher (for example, see the case of p,,=0.3 and N=20, among
others), while sometimes the power becomes lower as expected. It is apparent from

Table 2 that the power variations show no consistency at all. The reason why the



empirical powers are inconsistent is explained in section II. Although (ﬁiv —[3018)

converges to zero under Hy and to a positive number under H; in large samples, it could
well be non-zero under Hy and zero under H; in small samples. As a result, Hausman
statistic is not defined well.

The empirical power functions depicted in Figures 2-5 confirm such irregularities.
Figure 2 presents the empirical power function of Hausman test when N = 20 for various
values of p, . Unlike a typical power function, they do not either approach to the
nominal size under Hy, nor approach to 1 under extreme H;. When the magnitude of
pseudo-exogeneity is high (for example, p,, =0.7), the power function goes even the
opposite way. As sample size grows, such an odd behavior weakens a little. However,
even when N = 50 and N = 100, the power function ‘collapses’ at around p,, =0.35 and

p,. =0.15, respectively.



Figure 2. Power function of Hausman test (N =20, o =5%)
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Figure 3. Power function of Hausman test (N =50, p =0.7, o =5%)
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Figure 4. Power function of Hausman test (N=100, o =5%)
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Figure 5. Power function of Hausman test (N =500, o =5%)
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IV. Conclusion

While the problems of ‘weak’ instruments in IV estimation have been thoroughly
studied *, the problems that ‘endogenous’ instruments may create have not been studied to
a great extent. This paper examines the effects of ‘pseudo-exogenous’ instruments on
Hausman test in finite samples. We show that the size and power of Hausman test could
be very inaccurate in finite samples when the instruments are pseudo-exogenous.
Researchers need to be cautious about the exogeneity of the instruments when they use IV

estimation in practice.
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