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Abstract 

 

This paper investigates the potential problem of ‘pseudo-exogenous’ instruments 

in regression models.  We show that the performance of Hausman test is deteriorated 

when the instruments are asymptotically exogenous but endogenous in finite samples, 

through Monte Carlo simulations. 
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I. Introduction 

When there exist endogenous explanatory variables in a regression model, the least 

squares estimator fails to achieve consistency.  To identify the endogeneity of the 

explanatory variables, Hausman test is widely employed.  Hausman test works pretty 

well, but it is not free of problems.  Meepagala (1992) shows that the power of Hausman 

test decreases as the sample size becomes smaller.  Staiger and Stock (1994) show that 

‘weak’ instruments weaken the power of Hausman test.  Wong (1996) proposes a 

bootstrap procedure to improve the finite sample properties of Hausman test when the 

instruments are weak. 

This paper identifies another potential problem of Hausman test.  When the 

instruments of IV estimation are correlated with the error term of the regression, although 

the correlation converges to zero eventually, the finite sample performance of Hausman 

test becomes seriously deteriorated.  Let us call such instruments, which are 

asymptotically exogenous but endogenous in the finite sample, ‘pseudo-exogenous’ 

instruments.  Pseudo-exogenous instruments, of course, do not affect the asymptotic 

distribution of Hausman test.  However, as we will show through a series of Monte Carlo 

experiments, the empirical sizes and powers of Hausman test could be considerably 

inaccurate in finite samples.  Especially, we will show the empirical power function of 

Hausman test actually ‘collapses’ in some cases. 

One of the most popularly used instruments is the fitted value of the endogenous 

variable from the reduced form regression.  This so-called 2SLS (two-stage least 

squares) is widely used as it gives a proper instrument.  Such a fitted value is by 

construction a pseudo-exogenous instrument.  The correlation between the fitted value 

and the error term is asymptotically zero, but may not be zero in finite samples. 
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II. Hausman Test with the Pseudo-exogenous Instrument 

Let us consider the following model. 

uxy +β=  

where  is an ( ×1) vector of explanatory variable,  is an ( ×1) vector of error 

terms, and  is an ( ×1) vector of dependent variable.  Suppose there exists an ( ×1) 

vector of the instrumental variable, z .  We are interested in testing : “x is 

exogenous” against : “x is endogenous.”  By a similar derivation as in Bound et al. 

(1995), it is straightforward that 
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which converges to zero under  and diverges from zero under .  It has been 

shown by Hausman (1978) that Hausman statistic has an asymptotic  distribution 
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III. Monte Carlo Simulation 

d.  Consider 

H

ymp

utio

 

perform

H  

udo-exogenous’

in

er

ng data generating process (DGP): 

χ

i

an test is well-defined in large samples, but could be problematic in small samples. 

Although 0)ˆˆ(mpliq olsiv =β−β≡ under 0H  and 0)ˆˆ(mpliq olsiv ≠β−β≡  under 1H , as 

0)u'z(E ≠  in finite samples, the Hausman statistic, H , may not be close enough to zero 

under 0H enoug rom z  finite sample 

 of Hausman statistic may not be 2χ  eith  The following section examines 
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increases, however, zus  converses to zero (i.e. the instrument becomes exogenous). 

Thus, z is a ‘pseudo-exogenous’ instrument.  The correlation coefficient between x and z, 

xzρ  is set to 0.7 so that we can avoid the so-called ‘weak instrument’ problems.  Four 

alternative sample sizes are considered: 20, 50, 100, and 500 for comparisons.  The 

ulation has been performed 1,000 times. 

Table 1 and Figure 1 present the empirical sizes of Hausman test.  First, we notice 

that the empirical size of Hausman test is n

 

ot accurate in small samples even when the 

u

sim

instr ment is perfectly exogenous ( 0zu=ρ ).  For instance, when N=20 and 0zu=ρ , the 

rejection rate is only 0.008 while the nominal size is 0.05.  Second, when the instrument 

is pseudo-exogenous (i.e. 0zu≠ρ ), mpirical sizes of Hausman test are seriously 

distorted.  For example, when N =20 and 7.0zu

the e

=ρ , Hausman test rejects the true null 

empirical size is far from accurate even whe : the empirical size is 13.6% while 

the nominal size is 5%.

hypothesis 925 times out of 1,000 simulations: the empirical size is 92.5% while the 

inal size is 5%. ch size distortion fades away as the sample size grows, but the 

n N=500

ble 1 Empirical sizes of Hausman test (

nom  Su

Ta

2
   

 

 

 

 

%5=α ) 

N  
zuρ  

0 0.1 0.3 0.5 0.7 

20 0.008 0.014 0.145 0.638 0.925 

50 6 0.781 0.035 0.052 0.162 0.43

                                            
2 We experimented how big the sample size (N) should be to achieve an accurate 

empirical size in the same setup of simulation.  We found the rejection rate converged to 

the nominal size only after N reached 20,000.  
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100 0.035 0.047 0.108 0.269 0.467 

500 0.058 0.047 0.066 0.095 0.136  
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 Table 2 shows the empirical powers of Hausman test.  First of all, it is obvious 

that Hausman test does not work well in small samples when the instrument is pseudo-

exogenous.  For example, even when xuρ =0.7, Hausman test does not easily reject the 

false null hypothesis H s, if 0 xu zu: 0=ρ  in N = 20 case 0≠ρ : the empirical powers are 

7.6% (for 3.0=ρzu zu), 1.4% (for 5.0=ρ ), and 12.3% (for 7.0zu =ρ ).  Generally, the 

empirical po 0 s showing higher 

a p owers become a 

case (

wers are ex
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ble 2.  Wh
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ent 

ely low when N = 2 , only a few exception

le size is 50, the em
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).  It should be noted that even when the pseudo-

1.0

en the sam

is quite weak (such as 

pirical p

bit higher, but still show powers lower than 10% in qu w cases.  Even when the 

sample size is 100, Hausman test rejects only 13.7% of the false null hypothesis in some 

xu zu

zu

ρ ρ

=ρ ), the empirical power of 

Hausm all samples. ple, in the case of an test could be pretty low in sm  For exam xuρ = 

ma0.5 and N = 20, the empirical power of Haus n test is 0.342 for zuρ =0.0 but the power 
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decreases to 0.120 for zuρ =0.1.  It implies that, in small samples, Hausman test could be 

distorte eak co between the instrument and the error term even though 

Table 2 Empirical power of Hausman test ( %5

d by a w ation 

they are asymptotically independent.  

 

rrel

=α ) 

xuρ  N  
zuρ  

0 0.1 0.3 0.5 0.7 

0.1 

20 0 0.008 0.079 0.468 0.890 0.01

50 70 0.038 0.058 0.157 0.465 0.0

100 9 0.088 0.039 0.042 0.137 0.14

500 0.607 0.527 0.473 0.331 0.272 

0.3 

008 0.008 0.140 0.712 20 0.054 0.

50 3 0.316 0.100 0.035 0.068 0.49

100 9 0.787 0.547 0.329 0.151 0.85

500 .000 0.999  1.000 1.000 1.000 1

0.5 

20 2 0.120 0.01 1 0.383 0.34 1 0.03

50 6 0.953 0.697 0.296 0.070  0.98

100  1  0  0  0  1.000 .000 .999 .990 .934

500 1.000 1.000 1.000 1.000 1.000 

0.7 

20 0.900 0.746 0.076 0.014 0.123 

50 1.000 1.000 1.000 0.981 0.774 

100 1.000 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 
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empir

con

The empirical power functions depicted in Figures 2-5 confirm  

Figure 2 presents the empirical power function of Hausman test when N = 20 for various 

0 1

ical powers are inconsistent is explained in section II.  Although )ˆˆ( olsiv β−β  

verges to zero under H0 and to a positive number under H1 in large samples, it could 

well be non-zero under H0 and zero under H1 in small samples.  As a result, Hausman 

statistic is not defined well.  

values of ρ .  Unlike a typical power function, they do not either approach to the 

nominal size under H , nor approach to 1 under extreme H .  When the magnitude of 

pseudo-exogeneity is high (for example, 7.0zu

 such irregularities. 

zu

=ρ ), the power function goes even the 

opposite way.  As sample size grows, such an odd behavior weakens a little.  However, 

even when N = 50 and N = 100, the power function ‘collapses’ at around 35.0zu =ρ  and 

15.0zu =ρ , respectively. 
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Figure 2. Power function of Hausman test ( =20, N %5=α ) 

Power Function of Hausman Test at N=20
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Figure 3. Power function of Hausman test ( =50, N xzρ =0.7, ) %5=α

Power Function of Hausman Test at N=50
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Figure 4. Power function of Hausman test ( =100, N %5=α ) 

Power Function of Hausman Test at N=100
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Figure 5. Power function of Hausman test ( =500, N %5=α ) 

Power Function of Hausman Test at N=500
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IV. Conclusion  

While the problems of ‘weak’ instruments in IV estimation have been thoroughly 

studied
 3

, the problems that ‘endogenous’ instruments may create have not been studied to 

a great extent.  This paper examines the effects of ‘pseudo-exogenous’ instruments on 

Hausman test in finite samples.  We show that the size and power of Hausman test could 

be very inaccurate in finite samples when the instruments are pseudo-exogenous. 

Researchers need to be cautious about the exogeneity of the instruments when they use IV 

estimation in practice.  
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