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1. Introduction 

 Control charts are widely used for monitoring critical quality characteristics of products 

and processes. One of the most popular control charts in industry is the Cumulative Sum 

(CUSUM) chart.  

 CUSUM charts, which were introduced by Page (1954, 1961), can be used both when the 

quality characteristic is a continuous random variable (for monitoring the mean and the 

variance) and when it is a discrete attribute. This paper focuses on CUSUM charts used for 

monitoring the mean value µ of a continuous quality characteristic X. There are two ways to 

implement a CUSUM chart for monitoring the mean; the V-mask and the tabular (algorithmic) 

approach. The V-mask was originally proposed by Barnard (1959) and is applied to successive 

values of the CUSUM statistic: 

 Ct = ∑∑
==

=
− t

i

i

t

i

i z
n

x

11

0

/σ

µ
 

where ix  is the mean of sample i, µ0 the target mean, σ the standard deviation of X, n the 

sample size and Ct the chart’s statistic. Statistical properties of CUSUM charts using the V-

mask approach have been studied by Johnson (1961) and Goldsmith and Whitfield (1961).  

 Over the years, the tabular approach has prevailed, mainly because of its simplicity as well 

as because of the rapid development of computers that facilitated the use of this approach 

compared to the V-mask. When using the tabular approach to identify upward shifts in the 

mean, at each sample t after the initial setup the CUSUM statistic is evaluated by:  

 { }1max 0,  t t tC C z k−= + − ,  0C ≥ 0 (1) 

where zt is the standardized observation and k is the reference value. The formulation for 

downward shifts is analogous while in case of two-sided charts both CUSUM statistics are 

used. The CUSUM chart issues an alarm if and when Ct exceeds the control limit H. When the 
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 2 

process setup may be imperfect, the CUSUM scheme is often used with Fast Initial Response 

(FIR); the CUSUM statistic is given a head-start by setting C0 > 0 rather than C0 = 0, so as to 

identify the possible initial deviation from µ0 more effectively. For the same reason, if the setup 

of the process after a correct signal may be imperfect, after each attempt to restore the process 

to the in-control condition, Ct is reset to the nonzero value C0. However, if the alarm at sample 

t is proved to be false, Ct is set equal to zero.  

 The run length until the chart triggers a signal is the key measure of the performance of a 

CUSUM procedure. The mean value of the run length, ARL (Average Run Length), is often 

used in practice to select the most appropriate CUSUM scheme. There are several papers that 

deal with the effectiveness of the CUSUM chart. Vance (1986) provides a computer program 

for evaluating ARL, and Hawkins (1992) gives a relatively simple yet very accurate 

approximating equation for the evaluation of the ARL. Several Markov chain approaches have 

been used for the computation of the ARL, like the ones by Ewan and Kemp (1960), Brook and 

Evans (1972) and Fu et al. (2002). Statistical comparisons between CUSUM and Shewhart 

charts have been presented by Hawkins and Olwell (1998), Reynolds and Stoumbos (2004) and 

others. 

 It has been commonly argued that when the magnitude of the process disturbance due to 

the occurrence of assignable causes is small, CUSUM charts are more effective than Shewhart 

charts in monitoring the process (both from an economic and from a statistical point of view), 

because they can detect small disturbances more rapidly on average. However, in a very recent 

paper, Nenes and Tagaras (2008) show that the differences between the two charts are 

negligible in infinite runs, as far as their economic performance is concerned: namely, they 

produce very similar economic results, even when the shift is very small.   

 The analysis of CUSUM charts is typically based on the assumption that the process which 

is monitored will be operating continuously and indefinitely. In practice though, most 
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production processes are periodically set up to produce a specific quantity over a specified time 

period, e.g., an 8-hour shift. In such cases, the limited duration of the production run has to be 

taken into account in the design of the control chart in order for this chart to be maximally 

effective.  

There is an increasing number of publications that acknowledge the need to design process 

control schemes specifically for short runs; see, for example, Del Castillo and Montgomery 

(1996), Kuo (2006) and Makis (2008). However, the research community has not directed its 

efforts into designing CUSUM schemes specifically for short runs yet, not only because of the 

additional complexity but also because it is not at all obvious that CUSUM charts will be 

effective in short runs, as the limited number of samples does not fit well with the 

accumulative nature of the scheme. The work of Nenes and Tagaras (2005, 2006) is the only 

one, at least to our knowledge, that deals with CUSUM schemes designed for short runs. 

Specifically, Nenes and Tagaras (2005) propose statistical measures of performance for control 

charts that are appropriate for short runs while Nenes and Tagaras (2006) develop a model for 

the economic optimization of CUSUM schemes in finite-horizon processes. The current paper 

starts with these models as a basis but extends these earlier works in two directions with 

respective objectives as follows:  

� it revisits the problem of short runs by deriving properties of the statistical measures of 

performance for CUSUM charts and by developing a model for the statistical evaluation 

of a CUSUM scheme in short runs; 

� it compares the behavior of CUSUM and Shewhart charts designed for short runs, using 

both economic and statistical criteria. 

The next section describes the problem setting and assumptions. The stochastic model that 

expresses the operation of the CUSUM scheme is presented in section 3. The measures of 
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performance are developed and presented in section 4. Section 5 presents the comparison 

between CUSUM and Shewhart charts in short runs through numerical examples. The final 

section summarizes the main points and findings of the paper.  

2. Problem setting and assumptions 

 A production process is set up for processing a specific batch of items over a limited time 

interval (short run). The key measure of the process quality is a continuous random variable X, 

which is normally distributed with target value µ0 and constant variance σ
2
. The setup operation 

may not always be perfect in the sense that although in the beginning of the process the mean 

of X is supposed to be set equal to µ0, there is a probability that the process starts its operation 

with a mean different from µ0. 

 The process may be affected by the unobservable occurrence of an assignable cause at 

some random time. The effect of the assignable cause is a shift in the mean of X from µ0 to µ1 = 

µ0 + δσ. The process remains in that undesirable out-of-control state, until the occurrence of the 

assignable cause is detected and its effect removed or until the end of the run if the problem is 

not detected. 

   The process is monitored by means of an one-sided CUSUM chart for detecting a possible 

upward shift in the mean using the CUSUM statistic (1). The total number of samples that will 

be taken till the end of the production run is N. If the control chart indicates a possible out-of-

control condition, that is, if Ct > H, the process is stopped for investigation; if the investigation 

reveals that the assignable cause has indeed occurred, then there is an intervention to restore 

the process to its in-control condition and operation resumes. This intervention may be 

imperfect and despite the detection of the cause and the attempt to remove it, the process may 

continue operating out of control. 
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 5 

 There are five parameters that affect the operation and effectiveness of the CUSUM chart 

during the run: 

� the total number of samples N, (equivalently the sampling interval h = T / (N + 1)). 

� the sample size n,  

� the reference value k,  

� the control limit H and  

� the initial value of the CUSUM statistic C0 at the beginning of the process (t = 0) and after 

each true alarm.  

 The values of N, n, k, H, C0 obviously affect both the statistical and economic performance 

of the monitoring scheme. Therefore, it is necessary to develop a model for evaluating the 

appropriate measures of performance for any combination of these five parameters, so as to be 

able to select, at a second stage, the set of parameter values that satisfy any given requirements.  

3. Stochastic model of the process and the control chart 

 In this section a discrete-time stochastic model for the process and its monitoring scheme 

is developed, based on the value of the CUSUM statistic Ct for t = 0, 1, …, N. Although Ct is 

theoretically a continuous random variable, for practical computational reasons it is discretized 

into m+1 values following the approach of Brook and Evans (1972). Specifically, the interval 

from 0 to H is partitioned into m sub-intervals. Let w be the width of sub-intervals 1 to m-1:  

 
2

1

12

2
+=⇔

−
=

w

H
m

m

H
w . (2) 

Then, the real-valued Ct is transformed to an integer between 0 and m in the following manner:  

 for Ct →<
2

w
 Ct = 0 
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 for ≤






 − wi
2

1
 Ct →







 +< wi
2

1
 Ct = i 1,...,2,1 −= mi  

 for ≤=






 − Hwm
2

1
 Ct →  Ct = m. (3) 

 If the process is actually in statistical control at sampling instance t ( )0µµ = , then the 

standardized variable 0

/

t
t

x
z

n

µ
σ

−
=  follows the standard normal distribution ( )1,0~ Nz t  while if 

the process operates in the out-of-control condition ( )δσµµµ +== 01  then zt follows a normal 

distribution with mean nδ  and variance equal to 1: ( )1,~ nNz t δ .  

 Similar to Nenes and Tagaras (2005), the probabilities pij of moving from Ct-1 = i to Ct = j 

may be computed from:  
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δ
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δ

ϕ

ϕ

ϕ

  (4) 

where φ(z) is the density function of the standard normal distribution, δ = 0 if the process is 

under statistical control and δ = (µ1 – µ0)/σ if the process operates under the effect of the 

assignable cause. In the latter case the transition probabilities pij are denoted by ijp~ . To 

 

i = 0,1,…,m-1  j = 0 

 

 

 
 

i = 0,1,…,m-1  j = 1,2,…,m-1 

 

  
 

 

i = 0,1,…,m-1  j = m 

 

 

i = m   j = 0,1,…,m-1 

 
 

i = m   j = m 
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 7 

simplify notation, when the indices i, j of the transition probabilities are equal to 0 or m, they 

will be denoted 0 or m, e.g., ijm pp ≡0  for i = 0 and j = m. 

 The CUSUM statistic Ct evolves as a Markov chain with m+1 states and transition 

probabilities pij if the process is in statistical control. The transition probability matrix P may 

be written as: 

 P

























=

−−−−−

−

−

10...00

..

..

...

.........................................

.........................................

........

........

1

1

0

111110

111110

100100

mm

m

m

mmmm

m

m

p

p

p

ppp

ppp

ppp









=

××

××

)11()1(

)1()(

10 m

mmm BA
. (5)

 If the process operates in the out-of-control state, then we obtain in a similar way the matrix P
~

, 

which is the exact analogue of P with transition probabilities ijp~ .  

 As Fu et al. (2002) have shown multiplication of P by itself yields the following form of P
t
 

(the form for P
~ t

 is analogous): 

    
tP












=

××

××

)11()1(

)1()(

10 m

mtmm
t BWA

 Nt ,...,2,1=  (6)

 where  

 12 ... −++++= t

t AAAIW ∑
−

=

=
1

0

t

x

x
A . (7) 

4. Statistical measures of performance 

4.1  Truncated ARL, Truncated ATS and Average Number of False Alarms 

 The most common statistical measure of a control chart’s performance is the Average Run 

Length (ARL), i.e., the expected number of samples until the chart triggers a signal, given that 

the process remains in the same condition, either in-control (ARL0), or out-of-control (ARLδ). In 
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the case of a short run, where the total number of samples is limited and fixed (N), the run may 

end without the chart having issued any out-of-control signal. Therefore, let the Truncated 

ARL, denoted by TARL0 or TARLδ, be the mean number of samples until a signal or until the 

completion of the process, whichever occurs first. If the run ends without any signal in the N 

samples, then the number of samples is assigned the value N+1. By using TARL0 and TARLδ, 

the Truncated ATS (Average Time to Signal), denoted by TATS0 and TATSδ, can be 

equivalently defined as the mean time until a signal or until the completion of the run, 

whichever occurs first. If the run ends without any signal in the N samples, then the time to 

signal is assigned the value T, which is the full duration of the run. 

 If the process is monitored with a Shewhart X -chart, these performance measures are 

computed as follows: 

 TARL0 = 
1

1

1

1 (1 )
(1 ) ( 1)(1- )

NN
t N

t

t N
α

α α α
α

+
−

=

− −
− + + =∑   (8) 

 TARLδ = 
1

1

1

1
(1 ) ( 1)

1

NN
t N

t

t N
β

β β β
β

+
−

=

−
− + + =

−∑  (9) 

 TATS0 = TARL0·h  (10) 

 TATSδ = TARLδ·h (11) 

where α = Φ(-ks) is the probability of a type I error, β = Φ(ks- nδ ) the probability of a type II 

error at each sample and ks is the control limit coefficient of the Shewhart chart. Φ(·) is the 

cumulative density function of the standard normal distribution and as already mentioned, h is 

the sampling interval which, in case of N total samples till the end of the run, takes the value h 

= T / (N + 1); for N = 0, h = T.  

  If the short run is monitored with the CUSUM chart described in the previous sections, 

then TARL0 is the expected value of the following random variable U: 
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{ }m in :  ,    1, 2, ...,

1

tt C H t N

U

N

 ≥ =


= 
 +

 (12) 

 The following equation is obtained by using an approach similar to Fu et al. (2002), for 

0 0C = : 

 ΤARL0 [ ] ⋅⋅= +  0...01 1NW 1  ∑∑
=

−

=

+=
N

t

m

j

t

jp
1

1

0

)(

01 . (13) 

where 1 [ ]T
1...11=  is the 1×m  column, every element of which is assigned the value 1, 

[ ]0...01  is the m×1  row, every element of which equals 0, except for the first one 

which equals 1 and ( )t
ijp  is the probability of the chart’s statistic to move from i to j in exactly t 

steps (sampling instances).  

 In a similar way, TARL0 for a CUSUM chart with Fast Initial Response (FIR), i.e., starting 

with 0 0C > , can be easily evaluated. Note that the value of TARL0 in (13) is essentially the 

first element of the 1×m  vector WN+1
.
1 ; in the case of a FIR-CUSUM with 0 0C > , TARL0 is 

the element located in the C0-th row of this column vector. When operating under the effect of 

the assignable cause, TARLδ is computed in the same way but using the elements of matrix P
~

. 

 The measures TATS0 and TATSδ of CUSUM charts are computed from (10) and (11) using 

the Truncated ARL’s of the CUSUM chart. 

 In addition to the Truncated ARL and ATS a potentially useful characteristic of a control 

chart in short runs, which has already been used in practice by Nikolaidis et al. (2007), is the 

average number of false alarms during the production run, F. For the Shewhart chart, this 

measure is simply 

 F Nα= . (14) 

if HCt ≥  for some { }Nt ,...,2,1∈  

  
if HCt <  for all { }Nt ,...,2,1∈  
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 In order to compute F for the CUSUM chart, the formulation of the transition probabilities 

in (4) must be slightly modified. In particular, since each false alarm (state m) is followed by 

the restoration of the chart statistic’s value to zero (state 0), the values of mjp  must be set equal 

to the respective values of 0 jp , j = 0,1,…,m so that state m stops being absorbing. 

Equivalently, we may say that the bottom row of matrix P in (5) must be modified and made 

identical to the top row. Then, for C0 = i, F is computed by:  

 F = ( )

1

N
t

im

t

p
=
∑  (15) 

using the modified P. Note that for CUSUM charts the expected percentage of false alarms in 

N samples, F/N, may be viewed as the analogue of the type I error (false alarm probability) of 

the Shewhart chart. 

4.2  Properties of Truncated ARL and Truncated ATS 

 The following propositions provide useful insights about the effect of the CUSUM design 

parameters on TARL0 and TARLδ (Proposition 1) and on TATS0 and TATSδ (Proposition 2). 

Their proofs are given in the Appendix for discretized values of C0, k and H and integer n and 

N. To facilitate the exposition of the proofs, three lemmas concerning the relationships between 

the elements of the transition probability matrix P of (5) and tP  are also given and proved in 

the Appendix. 

Proposition 1: TARL0 and TARLδ are decreasing in C0 and increasing in k, H and N. Also, 

TARL0 is independent of n while TARLδ is decreasing in n. 

 The relationships between TARL0, TARLδ and the CUSUM chart parameters are clearly 

intuitive except probably for the effect of N, which is worth commenting separately. When the 

total number of samples (N) increases, then the random variable U in (12) can take larger 
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values, especially when a signal from the chart is not very probable, while if N is small U is 

bounded from above by a smaller maximum value.  

Proposition 2: TATS0 and TATSδ are decreasing in C0 and N and increasing in k and H. TATSδ 

is decreasing in n while TATS0 is independent of n.  

4.3  An Application 

 To illustrate the model and the measures of performance developed in the previous 

sections, consider the application presented in Nikolaidis et al. (2007), which refers to the 

monitoring of the tile formation process at a major tile manufacturer in Greece. A critical stage 

of tile formation is the press operation, which is controlled indirectly through the homogeneity 

of tile penetrability after stamping. The measurements are done with an instrument that records 

the penetrability of a pin in which a certain force is exercised.  

 The penetrability is measured at three points on each of the four sides of a square tile and 

then the sums of the three measurements of each side are calculated. The monitored quality 

characteristic X is the difference between the largest and the smallest of these four sums. 

According to the analysis of Nikolaidis et al. (2007), X is normally distributed with µ0 = 0.0308 

mm and σ = 0.0092 mm. An assignable cause may shift the process mean to µ1 =  µ0 + δσ = 

0.0446 mm (δ = 1.5). The occurrence rate of the cause is λ = 0.0007 per hour, the sampling cost 

per item is c = €0.56, the cost of operating in the out-of-control state is M = €52.80 per hour, 

the false alarm cost is L0 = €2.87 and the restoration cost is L1 = €16.84. The optimum expected 

cost of a Shewhart chart for net operating time T = 72 hours (nine shifts) is €25.86 for a 

sampling interval h = 6.55 (N = 10), sample size n = 1 and control limit ks = 0.82. The 

respective optimum expected cost of a CUSUM chart is €25.80 for a sampling interval h = 6.00 

(N = 11) sample size n = 1, reference value k = 0.28, initial value C0 = 0, and control limit H = 

0.8. The statistical measures of performance for the optimum Shewhart chart are computed 
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from equations (8) to (11) and (14): TARL0 = 4.24, TARLδ = 1.33,  TATS0 = 27.78, TATSδ = 

8.71 and F = 2.06. The respective values for the optimum CUSUM chart are obtained from 

equations (10), (11), (13) and (15): TARL0 = 5.16, TARLδ = 1.42, TATS0 = 30.94, TATSδ = 8.51 

and F = 1.91. Note that since the sampling interval is different, TATS0 and TATSδ are more 

meaningful here than TARL0 and TARLδ. Hence, although the economic performance of the 

optimal Shewhart and CUSUM charts is very similar in this case, the statistical performance of 

the CUSUM chart is clearly superior.    

5. Numerical investigation – Comparisons with Shewhart charts 

The purpose of this numerical investigation is to evaluate systematically the economic and 

statistical performance of the CUSUM scheme in short runs by comparing them against those 

of the Shewhart scheme. The comparisons are presented in two subsections. First, in 5.1 we 

present and discuss the economic comparison of the two charts and we also compare the 

statistical measures of performance of the two charts using the optimal parameters of the 

economically optimized schemes. Then, in 5.2, we compare the two charts from a purely 

statistical point of view. Specifically, we compare the behavior of TARLδ and TATSδ for 

CUSUM and Shewhart charts that have exactly the same TARL0 and TATS0. 

5.1  Comparisons based on the economically optimized schemes 

The comparisons here are made through 96 numerical examples. Specifically, the duration 

of the run T, the magnitude of the shift δ, the occurrence rate of the assignable cause λ, the 

fixed sampling cost b and the cost per time unit of operating in the out-of-control state M are 

examined at two levels (2
5 

= 32 combinations) and each of those 32 combinations is examined 

for three different sets of cost of false alarm L0 and restoration cost L1; low values for both L0 

and L1, low L0 and high L1, and high values for L0 and L1 costs. The sampling cost per item is 

kept constant: c = 1. These parameter choices serve two purposes; on the one hand they cover a 
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broad range of values, while on the other hand they keep the size of the experiment at a 

manageable level. The specific values of the parameters that generate the 96 cases are 

presented in Table 1. 

[Insert Table 1 about here] 

 Each of the 96 examples is optimized for both Shewhart and CUSUM charts using a cost-

minimization criterion. Specifically, optimization of the CUSUM chart is based on the model 

of Nenes and Tagaras (2006), while optimization of the Shewhart chart is performed using the 

cost model of Tagaras (1996). Note that no statistical optimization of any kind, for any of the 

two charts is being attempted at this point. The two charts are first optimized and compared in 

economic terms. Then, the various statistical measures of performance are calculated by 

applying the analysis of the present paper on the economically optimized schemes. After that, 

these statistical measures are compared against each other for the two charts. The exact same 

comparisons are performed for the case where the sample size is restricted to be equal to one. 

The special case n = 1 is worth examining separately because it is quite common in many 

industrial applications, especially in the process industries. Table 2 summarizes the cost 

improvement of the CUSUM over the Shewhart chart and the effect of each parameter on the 

improvement for both unrestricted n and n = 1. Note that for the pair L0, L1 there are three 

average percentages since this combination is examined at three levels. 

[Insert Table 2 about here] 

The most important conclusion of this numerical investigation is that the economic 

performance of the two charts is almost identical when there are no sample size restrictions 

(the CUSUM chart reduces the cost only by 0.14% on average and by 0.72% at most). On the 

other hand, when the sample size is by necessity equal to one, the average cost reduction in the 

96 cases that have been examined is 6.73% while it has been recorded as high as 45.84% in one 

of those cases. These findings coincide with the results of Nenes and Tagaras (2008), who also 
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observe negligible differences between the two charts as far as their economic performance is 

concerned for unrestricted sample size, in the infinite-run version of the problem.  

The examination of the effect of the parameters shows that the cost reduction is higher for 

high values of T, M and L0 and L1 and low values of b, λ and δ. These findings are even more 

pronounced for n = 1 since, as pointed out, it is exactly in these cases that large cost 

improvements are observed.  

Tables 3 and 4 present the average improvements of TATS0 and TATSδ respectively 

(average increase of TATS0 and average reduction of TATSδ) when using a CUSUM instead of 

a Shewhart chart to monitor the process, again for both cases: unrestricted n and n = 1. The 

effects of each parameter on the improvement are presented in these two tables exactly as in 

Table 2. Note that the comparisons refer to the values of TATS0 and TATSδ (rather than TARL0 

and TARLδ) since the sampling interval may be different in the optimum design of the two 

charts and consequently the actual time till the detection of the cause (or the false alarm) is 

more interesting and also allows a fair comparison.  

[Insert Tables 3 and 4 about here] 

The differences between the two charts are again negligible when n is unrestricted. In 

particular, the CUSUM chart seems to be slightly faster in detecting the assignable cause 

(0.97% improvement of TATSδ) but it issues type I errors more frequently (0.15% deterioration 

of TATS0). The differences, though, are not large enough to draw solid conclusions.  

When the sample size is restricted to n = 1, the differences in the statistical performance of 

the two charts are very evident, similarly to the economic comparisons. In particular, both the 

average time to the detection of the assignable cause (TATSδ) and the average time to false 

alarms (TATS0) improve when using the CUSUM instead of the Shewhart chart; the average 

TATS0 increase is 21.81% while the average TATSδ decrease is 11.94%.  
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As for the effect of the parameters when n = 1, TATS0 improves more at high values of T, 

M and λ, low values of b and δ while the values of L0 and L1 seem to have little effect on TATS0 

improvement. On the other hand, TATSδ improves for high values of T and L0 and L1, low 

values of b, δ, λ while M seems to have little effect on TATSδ reduction.  

Table 5 presents the average reduction in F when moving from the Shewhart to the 

CUSUM chart, exactly as in Tables 2, 3 and 4. The differences between the two charts are 

again very small for unrestricted n; the average reduction in F is only 0.76%. However, when 

the sample size is necessarily n = 1, CUSUM charts issue 30.02% fewer type I errors during 

the production run. In particular CUSUM charts tend to issue fewer type I errors for high 

values of T, M, L0 and L1 and for low values of b. 

[Insert Table 5 about here] 

Overall, substantial differences between the two charts are observed only when the 

samples are unitary by necessity. In such cases, CUSUM charts are far better than their 

Shewhart counterparts, both in economic and in statistical terms. Specifically, the differences 

are more pronounced for high values of T, M, L0 and L1. This means that if a process is set to 

operate for a production run that is not too short, then it is worth monitoring it with a more 

sophisticated chart of cumulative nature like the CUSUM. Also, if out-of-control operation is 

very costly and it is also expensive to interrupt the process and remove the assignable cause, 

then again the CUSUM chart seems to lead to higher percentage cost reductions and to better 

statistical results. This is worth underscoring because it shows that CUSUM charts are most 

effective in monitoring expensive production processes; since the percentage cost reductions 

are higher, the total savings are also very high in those cases. On the other hand, as the fixed 

cost per sample b increases CUSUM charts tend to have similar behavior to Shewhart charts. 

This is explained by the fact that CUSUM charts typically exploit their accumulative feature 

through more frequent sampling but when the fixed sampling cost increases, frequent sampling 
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is discouraged and consequently their effectiveness is reduced. Finally, the superiority of the 

CUSUM charts is far more evident when the magnitude of the shift is small because for small 

values of δ Shewhart charts cannot easily detect the assignable causes. 

5.2  Comparative statistical effectiveness of assignable cause detection 

In the preceding subsection the various statistical measures of performance were 

calculated using the economically optimized schemes. In this paragraph we present a purely 

statistical comparison between the CUSUM and Shewhart charts assuming that a production 

process is set up to operate for an 8-hour shift (T = 8) and samples are scheduled to be taken 

every 10 minutes (h = 1/6 hrs), i.e., N = 47 samples within 8 hours. The scope of this 

comparison is to show how the two charts can be compared from a pure statistical point of 

view, when no economic optimization has been undertaken. 

One possibility is to use a Shewhart chart with ks = 3. Using (8) we obtain TARL0 = 46.51 

(equivalently TATS0 = 7.75 hrs).  

The alternative is to use a CUSUM chart. For T = 8 and N = 47, there are numerous 

combinations of k and H that lead to the same TARL0 and TATS0. The combinations that are 

used in this investigation, which all lead to TARL0 = 46.51 and TATS0 = 7.75 hrs, are shown in 

Table 6 along with the values of TARLδ for sample sizes n = {1, 5, 10, 20} and magnitudes of 

the shift δ = {0.5, 1.0, 1.5, 2.0, 3.0}. Table 6 also contains the TARLδ values for the Shewhart 

chart with ks = 3 for the same n and δ. The shadowed cells in the table highlight the lowest 

TARLδ values given δ and n. Figure 1 presents the values of TARLδ for the Shewhart chart and 

the minimum (shadowed) TARLδ of the CUSUM charts.  

[Insert Table 6 and Figure 1 about here] 

 It is obvious from Table 6 and Figure 1 that the differences between the two charts are 

substantial for n = 1 but become progressively negligible as the sample size increases. It is 
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worth noting that the advantage of the CUSUM is largest for moderate values of shift 

magnitudes δ. If δ is large (e.g., δ = 3) then TARLδ is not very different because Shewhart 

charts are almost equally effective in detecting large shifts. If δ is too small (δ = 0.5) then the 

difference in TARLδ between Shewhart and CUSUM is not very large because in that case even 

the CUSUM scheme has difficulty in detecting the small shift.  

6. Summary and conclusions 

 A methodology has been presented for the statistical evaluation of a CUSUM scheme 

designed for finite runs. The economic and statistical characteristics of CUSUM schemes have 

been compared numerically against those of Shewhart charts. The general conclusion of this 

paper is that the economic and statistical performance of the CUSUM chart is superior to that 

of the Shewhart scheme in short runs only if the sample size is restricted to be unitary or very 

small. In these cases, using economic criteria the CUSUM chart is far superior to the Shewhart 

one when production processes are longer, out-of-control operation cost and costs of 

investigating the process and removing the assignable cause are high, fixed sampling cost is 

low and the magnitude of the shift is small. From a purely statistical point of view, the 

performance of the CUSUM chart is also similar to that of the Shewhart chart, unless the 

sample size is unitary and the magnitude of the shift is not large; it is only in those cases that 

the CUSUM scheme clearly outperforms the simple Shewhart chart.  

Appendix 

 All lemmas and propositions are proved for discretized values of C0, k and H. The three 

lemmas are proved by induction.  
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Let imp  be the elements of P for a CUSUM with some parameter k and let imp&  be the elements 

of P ( P
~

) for a CUSUM differing only in the value, k& , of that parameter. Then: ( ) ( )t t
im imp p<&  for 

all t, i and k k>& . 

Proof of Lemma 2 

From the form of imp  in (4) it is clear that im imp p<&  (t = 1). Assume that for some t ( ) ( )t t
im imp p<&  

for all i < m. It is then sufficient to show that ( 1) ( 1)t t
im imp p

+ +<& , or ( 1) ( 1) 0t t
im imp p

+ +− <& . 

Let k k w k= + >&  and let i = 0. Then:  

( 1) ( 1)
0 0
t t
m mp p
+ +− =& ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( )

00 0 0 0 00 0 0 0

1 1

m m
t t t t t t
m x xm m mm m x xm m mm

x x

p p p p p p p p p p p p
− −

= =

⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅∑ ∑& & & & & & .  

( ) ( ) 1t t
mm mmp p= =& , while from (4) it follows that 00 00 01p p p= +& , 0 1m mp p= &  and 0 0( 1)x xp p +=&  for 

k k w= +&  and 1 ≤ x ≤ m – 2. Therefore: ( 1) ( 1)
0 0
t t
m mp p
+ +− =&  

Page 20 of 30

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 20 

( ) ( ) ( )
2 1

( ) ( ) ( ) ( ) ( )
00 01 0 0( 1) 0( 1) ( 1) 0 00 0 0 0

1 1

m m
t t t t t
m x xm m m m m m x xm m

x x

p p p p p p p p p p p p p
− −

+ − −
= =

+ ⋅ + ⋅ + ⋅ + − ⋅ − ⋅ −∑ ∑& & & & & = 

( ) ( )
1

( ) ( ) ( ) ( ) ( )
00 0 0 0 ( 1) 0( 1) ( 1) 0 1

1

m
t t t t t
m m x x m xm m m m m m

x

p p p p p p p p p p
−

− − −
=

 ⋅ − + ⋅ − + ⋅ + − < ∑& & & & & &  

( ) ( )
1

( ) ( ) ( ) ( )
00 0 0 0 ( 1) 0( 1) 0 1

1

m
t t t t
m m x x m xm m m m

x

p p p p p p p p p
−

− −
=

 ⋅ − + ⋅ − + + − ∑& & & & & . 

Noting that (4) implies 0( 1) 0 1m m mp p p− + =& & & , for k k w= +&  we get:  

( 1) ( 1)
0 0
t t
m mp p
+ +− <& ( ) ( )

1
( ) ( ) ( ) ( )

00 0 0 0 ( 1)

1

m
t t t t
m m x x m xm

x

p p p p p p
−

−
=

 ⋅ − + ⋅ − ∑& & . 

The right-hand-side of the above inequality is negative because ( ) ( )
0 0
t t
m mp p<&  by assumption, 

( ) ( )
( 1)
t t
x m xmp p− <& &  by Lemma 1 and ( ) ( )t t

xm xmp p<&  by assumption. Therefore, the left-hand-side of the 

above inequality is also negative and consequently the lemma has been proved for i = 0.  

By similar reasoning we prove that ( ) ( )t t
im imp p<&  for any i < m and k k>& . Additionally, since: 

∑
−

=

−=
1

0

)()( 1
m

j

t

ij

t

im pp , it follows that 
1 1

( ) ( )

0 0

m m
t t

ij ij

j j

p p
− −

= =

>∑ ∑&  for any i and k k>& . ■ 

Lemma 3 

Let ijp  be the elements of P for a CUSUM with some parameter H and let ijp&  be the elements 

of P ( P
~

) for a CUSUM differing only in the value, H& , of that parameter. Then: ( ) ( )t t
ij ijp p≥&  for 

any t, i < m, j < m and ( )1/ 2H m w= −& &  > ( )wmH 2/1−= . 

Proof of Lemma 3 

For t = 1: ij ijp p= &  for i < m, j < m. 
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Assume that ( ) ( )t t
ij ijp p>& . Then, it suffices to show that: ( 1) ( 1) 0t t

ij ijp p
+ +− ≥&  for i < m, j < m. 

( 1) ( 1)t t
ij ijp p

+ +−&  =
1 1

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

m m m m
t t t t t t

ix xj ix xj ix xj im mj ix xj im mj

x x x x

p p p p p p p p p p p p
− −

= = = =

− = + − −∑ ∑ ∑ ∑
& &

& &
& & & & & &  

1 1 1
( ) ( ) ( )

0 0

m m m
t t t

ix xj ix xj ix xj

x x m x

p p p p p p
− − −

= = =

= + −∑ ∑ ∑
&

& & & & = ( )
1 1

( ) ( ) ( )

0

m m
t t t

ix ix xj ix xj

x x m

p p p p p
− −

= =

 − + ∑ ∑
&

& & &  

Since ( ) ( )t t
ix ixp p≥&  by assumption for all x < m, it follows that ( ) ( )t t

ij ijp p≥&  for i < m, j < m.  ■ 

Proof of Proposition 1  

� Let TARL
.

 ( 0TARL
.

 and TARLδ

.

) be the Truncated ARL for C0 = a and let TARL  ( 0TARL  

and δTARL ) be the Truncated ARL for C0 = b where a > b. 

Since 
1

( )

1 0

1
N m

t

j

t j

TARL p
−

= =

= +∑∑ b  and 
1

( )

1 0

1
N m

t
j

t j

TARL p
−

= =

= +∑∑
.

a , it follows immediately from Lemma 1 

that 0TARL  > 0TARL
.

 and δTARL  > TARLδ

.

, i.e., TARL0 and TARLδ are decreasing in C0. 

� Let TARL
.

 ( 0TARL
.

 and TARLδ

.

) be the Truncated ARL for some reference value k&  and let 

TARL  ( 0TARL  and δTARL ) be the Truncated ARL for k where k k< & . Then, for C0 = i: 

1
( )

1 0

1
N m

t

ij

t j

TARL p
−

= =

= +∑∑  and 
1

( )

1 0

1
N m

t
ij

t j

TARL p
−

= =

= +∑∑
.

& . By Lemma 2 it follows that 0TARL  > 0TARL
.

 

and δTARL  > TARLδ

.

, i.e., TARL0 and TARLδ are increasing in k. 

� Let TARL
.

 ( 0TARL
.

 and TARLδ

.

) be the Truncated ARL for some control limit H&  and let 

TARL  ( 0TARL  and δTARL ) be the Truncated ARL for H where ( )wmH 2/1−=  < 

( )1/ 2H m w= −& & . By Lemma 3 for C0 = i it follows that: 
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1
( )

1 0

1
N m

t
ij

t j

TARL p
−

= =

= +∑∑
. &

&  = 
1 1

( ) ( )

1 0

1
N m m

t t
ij ij

t j j m

p p
− −

= = =

 
+ +  

 
∑ ∑ ∑

&

& &  = 
1 1

( ) ( )

1 0 1

1
N m N m

t t
ij ij

t j t j m

p p
− −

= = = =

+ + >∑∑ ∑∑
&

& &   

1 1
( ) ( )

1 0 1

1
N m N m

t t
ij ij

t j t j m

p p
− −

= = = =

+ +∑∑ ∑∑
&

&  
1

( )

1

N m
t

ij

t j m

TARL p TARL
−

= =

= + >∑∑
&

& .  

Thus, 0TARL  > 0TARL
.

 and δTARL  > TARLδ

.

, i.e., TARL0 and TARLδ are increasing in H.   

� Let TARL
.

 ( 0TARL
.

 and TARLδ

.

) be the Truncated ARL for some N&  (total number of 

samples) and let TARL  ( 0TARL  and δTARL ) be the Truncated ARL for N where N N< & . Then, 

for C0 = i: 
1

( )

1 0

1
N m

t

ij

t j

TARL p
−

= =

= +∑∑  and 
1

( )

1 0

1
N m

t
ij

t j

TARL p
−

= =

= +∑∑
. & 1 1

( ) ( )

1 0 1 0

1
N m N m

t t
ij ij

t j t N j

p p
− −

= = = + =

= + +∑∑ ∑ ∑
&

 

1
( )

1 0

N m
t

ij

t N j

TARL p
−

= + =

= + ∑ ∑
&

TARL> . Thus, TARL0 and TARLδ are increasing in N. 

� From (4) it follows that the transition probabilities pij are independent of n for in-control 

operation (δ = 0) and thus, TARL0 is also independent of n. On the other hand, for out-of 

control operation, we see from (4) that an increase in n is equivalent to a decrease in k. We 

have already shown that TARLδ is increasing in k, and thus TARLδ is decreasing in n. ■ 

Proof of Proposition 2  

The proof regarding the relationship of TATS0 and TATSδ with C0, k, H and n is omitted since it 

comes as a direct result of Proposition 1 and equations (10) and (11). Regarding N, its effect on 

TATS is not immediately obvious because although TARL is increasing in N, TATS is 

decreasing since the sampling interval h decreases as N increases. The proof is as follows. 

 Let TATS
.

 ( 0TATS
.

 and TATSδ

.

) be the Truncated ATS for some N&  and let TATS  ( 0TATS  

and TATSδ ) be the Truncated ATS for N where N N< & . In the same way we denote two 
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alternative sampling intervals: 
1 1

T T
h h

N N
= < =

+ +
&

&
. Then, for C0 = i, it suffices to prove that 

TATS TATS<
.

 or equivalently that 0TATS TATS− >
.

: 

TATS TATS− =
.

h TARL h TARL
⋅

⋅ − ⋅& ( ) ( )( ) ( )

1 1

1 1 1 1
N N

t t

im im

t t

h p h p
= =

  
= ⋅ + − − ⋅ + −  

   
∑ ∑

&

&  = 

( ) ( )( ) ( )

1 1

1 1
N N

t t

im im

t t

h h h p h p
= =

− + ⋅ − − ⋅ −∑ ∑
&

& & = ( ) ( ) ( )( ) ( ) ( )

1 1 1

1 1 1
N N N

t t t

im im im

t t t N

h h h p h p p
= = = +

 
− + ⋅ − − ⋅ − + − 

 
∑ ∑ ∑

&

& & = 

( ) ( ) ( )( ) ( ) ( )

1 1 1

1 1 1 1 1
1 1 1

1 1 1 1 1

N N N
t t t

im im im

t t t N

T p p p
N N N N N= = = +

 
⋅ − + ⋅ − − ⋅ − − ⋅ − + + + + + 

∑ ∑ ∑
&

& & &
= 

( ) ( )

1 1

1 1

1 1

N N
t t

im im

t t

T p p
N N= =

 
⋅ ⋅ − ⋅ + + 

∑ ∑
&

&
=

( ) ( )
( ) ( )( ) ( )

1 1

1 1
1 1

N N
t t

im im

t t

T
N p N p

N N = =

 
⋅ + ⋅ − + ⋅ 

+ ⋅ +  
∑ ∑
&

&

&
. 

Consequently, it suffices to show that:  

( ) ( )( ) ( )

1 1

1 1 0
N N

t t

im im

t t

N p N p
= =

+ ⋅ − + ⋅ >∑ ∑
&

& .  

The left-hand-side of the above inequality can be written as: 

( ) ( )( ) ( ) ( )

1 1 1

1 1
N N N

t t t

im im im

t t N t

N p p N N N p
= = + =

 
+ ⋅ + − + + − ⋅ 

 
∑ ∑ ∑

&

& = 

( ) ( ) ( ) ( )

1 1 1 1

N N N N
t t t t

im im im im

t N t N t t

N p p N p N p
= + = + = =

⋅ + − ⋅ + ⋅∑ ∑ ∑ ∑
& &

& = ( ) ( ) ( )

1 1 1

N N N
t t t

im im im

t t N t

N p p N p
= = + =

⋅ + − ⋅∑ ∑ ∑
& &

& . 

We will prove that the right-hand-side of the above is nonnegative for 1N N= +& . Then, by 

similar reasoning it can be proved for any N N>& . For 1N N= +&  that expression becomes: 

( )
1 1

( ) ( ) ( )

1 1 1

1
N N N

t t t

im im im

t t N t

N p p N p
+ +

= = + =

⋅ + − + ⋅∑ ∑ ∑ = ( ) ( 1) ( 1) ( ) ( )

1 1 1

N N N
t N N t t

im im im im im

t t t

N p N p p N p p
+ +

= = =

⋅ + ⋅ + − ⋅ −∑ ∑ ∑ = 
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( ) ( 1) ( )

1

1
N

N t

im im

t

N p p
+

=

+ ⋅ −∑ . 

Since ( ) ( )    t t

im im
p p t t> ∀ >&

&  (state m is absorbing), ( ) ( 1) ( )

1

1
N

N t

im im

t

N p p
+

=

+ ⋅ −∑  is always nonnegative 

because ( ) ( 1) ( ) ( )

1
1

NN N t

im im imt
N p N p p

+

=
+ ⋅ > ⋅ >∑ . Thus, TATS0 and TATSδ are decreasing in N. ■ 
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Tables and Figures 

Table 1: Parameter values used in the numerical investigation 

Parameter Values 

T 8 or 40 

δ 1 or 2 

λ 0.01 or 0.1 

b 0 or 5 

M 100 or 1000 

L0, L1 50, 50 or 50, 500 or 500, 500 

 

Table 2: Average cost improvement of CUSUM against Shewhart chart for small (-) and 

large (+) values of the experiment parameters  

 cost improvement 

 unrestricted n n = 1 

 - + - + 

T 0.10% 0.19% 4.91% 8.55% 

b 0.25% 0.04% 10.97% 2.49% 

Μ 0.05% 0.23% 3.18% 10.28% 

λ 0.15% 0.14% 7.77% 5.69% 

δ 0.16% 0.12% 8.23% 5.23% 

L0, L1 0.20% 0.08% 0.16% 5.47% 2.73% 11.99% 

overall 0.14% 6.73% 

Page 27 of 30

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 27 

Table 3: Average TATS0 improvement of CUSUM against Shewhart chart for small (-) and 

large (+) values of the experiment parameters  

 TATS0 improvement 

 unrestricted n n = 1 

 - + - + 

T 0.13% -0.43% 7.88% 35.73% 

b -0.21% -0.10% 35.05% 8.57% 

Μ -0.02% -0.29% 12.29% 31.33% 

λ 0.02% -0.32% 16.61% 27.00% 

δ 0.73% -1.03% 29.80% 13.82% 

L0, L1 -0.58% -0.18% 0.30% 23.76% 22.12% 19.54% 

overall -0.15% 21.81% 

 

Table 4: Average TATSδ improvement of CUSUM against Shewhart chart for small (-) and 

large (+) values of the experiment parameters  

 TATSδ improvement 

 unrestricted n n = 1 

 - + - + 

T 0.23% 1.71% 8.37% 15.50% 

b 1.98% -0.03% 17.92% 5.95% 

Μ 0.34% 1.60% 12.29% 11.58% 

λ 0.71% 1.23% 13.49% 10.38% 

δ 0.52% 1.43% 14.47% 9.41% 

L0, L1 0.94% 1.92% 0.06% 6.20% 6.46% 23.15% 

overall 0.97% 11.94% 
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Table 5: Average F improvement of CUSUM against Shewhart chart for small (-) and large 

(+) values of the experiment parameters  

 F improvement 

 unrestricted n n = 1 

 - + - + 

T 2.98% -1.46% 20.17% 39.88% 

b -2.25% 3.77% 45.50% 14.55% 

Μ 0.67% 0.85% 21.33% 38.71% 

λ 1.10% 0.42% 30.36% 29.68% 

δ 2.43% -0.91% 28.68% 31.36% 

L0, L1 0.66% -1.25% 2.87% 25.43% 21.62% 43.01% 

overall 0.76% 30.02% 

 

 Table 6: TARLδ comparisons between CUSUM and Shewhart charts  

    
 CUSUM  Shewhart 

 H 1.0 1.5 2.0 2.5 3.0  
δ n 

 k 2.062 1.63 1.265 1.016 0.839  
ks=3 

0.5 1    41.24 40.40 37.90 35.34 32.97  41.62 

 5    23.19 18.76 13.22 10.35 8.99  25.65 

 10    10.08 7.44 5.57 4.90 4.70  12.56 

 20    3.63 3.05 2.75 2.72 2.81  4.50 

1 1    27.36 23.31 17.16 13.39 11.36  29.39 

 5    3.63 3.05 2.75 2.72 2.81  4.50 

 10    1.64 1.60 1.62 1.72 1.86  1.77 

 20    1.07 1.08 1.11 1.16 1.25  1.08 

1.5 1    11.76 8.65 6.31 5.44 5.14  14.43 

 5    1.48 1.47 1.50 1.60 1.74  1.57 

 10    1.04 1.05 1.06 1.10 1.17  1.04 

 20    1.00 1.00 1.00 1.00 1.00  1.00 

2 1    4.98 3.97 3.37 3.24 3.27  6.30 

 5    1.08 1.08 1.11 1.16 1.25  1.08 

 10    1.00 1.00 1.00 1.00 1.01  1.00 

 20    1.00 1.00 1.00 1.00 1.00  1.00 

3 1    1.81 1.74 1.74 1.84 1.97  2.00 

 5    1.00 1.00 1.00 1.00 1.00  1.00 

 10    1.00 1.00 1.00 1.00 1.00  1.00 

 20    1.00 1.00 1.00 1.00 1.00  1.00 
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Figure 1: TARLδ comparisons between CUSUM and Shewhart charts  
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