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Abstract

We propose a new mixture model for Bayesian nonparametric inference. Rather than con-

sidering extensions from current approaches, such as the mixture of Dirichlet process model,

we end up shrinking it, by making the weights less complex. We demonstrate the model and

discuss its performance.

Kewords: Bayesian model; Geometric weight; Gibbs sampler; Mixture model.

1. Introduction. There are two approaches to Bayesian nonparametric density estimation; the

first is based on mixture models where the random density function f(y) is constructed via

f(y) =
∫
K(y; θ) dP (θ),

where K(y; θ) is a density function for each θ, P is a random distribution function, which is typically

taken to be discrete, e.g. of the type

P (dθ) =
∞∑
l=1

w̃l δθl
(dθ) (1)

with a prior distribution assigned to (w̃l, θl)∞l=1 and where δθ denotes the measure with mass 1 at

the location θ. For example, the well known and widely used Dirichlet process results when {θl}

are independent and identically distributed (iid) from some distribution G, the prior guess at the

shape of P , w̃1 = v1, and for l > 1, w̃l = vl
∏
k<l(1− vk) with the {vl} being iid from Beta(1, c), for

some c > 0. See Sethuraman (1994) for the latter representation and Lo (1984) for definition and

properties of mixture of Dirichlet process models. Some sampling techniques to infer from Bayesian

nonparametric mixture models can be found in Escobar (1988, 1994), Escobar and West (1995),

MacEachern (1994), MacEachern and Müller(1998), Neal (2000), Papaspiliopoulos and Roberts

(2008), and Walker (2007).
1E-mail for correspondence: S.G.Walker@kent.ac.uk
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The other approach to Bayesian density estimation is based on a finite mixture model with the

number of mixtures being N and a prior distribution assigned to N . So

f(y|N) =
N∑
l=1

wl,N K(y; θl,N ).

See, for example, Richardson and Green (1997). Algorithms for estimating this latter model are

based on reversible jump Markov chain Monte Carlo (Green, 1995) or using birth and death Markov

chain Monte Carlo; see Stephens (2000).

The algorithm of Walker (2007) for estimating the mixture of Dirichlet process (MDP) model,

which is also applicable to more general stick–breaking processes, e.g. when the vl ∼ Beta(al, bl),

starts by considering the density

f(y|u) = |Au|−1
∞∑
l=1

1(u < w̃l)K(y; θl)

where Au denotes a random set defined as Au := {j : w̃j > u} with u a uniform random vari-

able. Given u, this random set is clearly finite and we denote its cardinality by |Au|. It is worth

emphasizing that Au is a random finite subset of the set of positive integers.

We could consider a more general idea by constructing the following random density

f(y | A) = |A|−1
∑
l∈A

K(y; θl) (2)

where A denotes a different, perhaps more general, random set.

This is similar to the Richardson and Green (1997) model but with differences. First, notice

that if we assume model (2) for each observation yi, then there will be a random set Ai for each of

them whereas in the Richardson and Green (1997) model the N suffices for all observations. This

is one of the reasons for having complex weights and parameters specifications, (wl,N , θl,N )’s, in

their approach, i.e. to make a richer model. On the other hand for the MDP model it is sufficient

to have uniform weights given A and a single sequence {θl}. Second, the A used in the mixture

of Dirichlet process model is not a consecutive sequence of integers from 1 to N , as it is with the

Richardson and Green (1997) model. It seems clear to us that the use of consecutive sequences is

likely to be more efficient when estimating the model using Markov chain Monte Carlo algorithms.

In fact, there is no point in having the A to have gaps; the real question is why would one wish A

to have gaps?

The idea of this paper is to suggest the model whereby Ai := {1, . . . , Ni}, so

f(y|N) = N−1
N∑
l=1

K(y; θl)

2
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where N is random, but with the same distribution for each observation; say P(N) = qN and a

prior distribution is assigned to {qN}.

Our observation is on the choice of the {qN}, which as we will see determines the structure

of the weights {wl} corresponding to a random distribution characterized by (1). In principle,

any distribution supported on the set of positive integers could be used. Particularly, we look for a

choice of {qN} that lead us to a manageable structure for the weights and also to simple conditionals

in the corresponding Gibbs sampler algorithm. A suitable choice for these purposes turns out to

be a Neg-Bin(2, λ) that, together with a beta prior distribution for λ, results in a well defined

random distribution of the type (1). Our results based on this choice are remarkable considering

the simplicity of the model and algorithm. In Section 2 we describe the model, resulting from our

choice of random set A, in more detail and describe some properties. Section 3 details the Gibbs

sampler for estimating the model and Section 4 is devoted to illustrations that aid to understand

the potential and contribution of our approach. A discussion on our findings is presented in Section

5.

2. Properties of the model. If we write out the model by marginalizing over N then we have

f(y) =
∞∑
N=1

1
N

N∑
l=1

K(y; θl) qN (3)

which can be written as

f(y) =
∞∑
l=1

wlK(y; θl) =
∫
K(y; θ) dP (θ),

where

P (dθ) =
∞∑
l=1

wl δθl
(dθ)

and the weights {wl} are given by

wl =
∞∑
N=l

qN/N. (4)

These weights clearly add up to one and, in contrast to the weights corresponding to the

Dirichlet process, are always decreasing. Although, this model can be seen as a nonparametric

mixture model with the above random distribution, we can write it in the hierarchical form (2)

with the random set A chosen as {1, . . . , N} rather than being of the non–consecutive type as it is

with the Dirichlet process model, as seen in Walker (2007).

Indeed, as we mentioned in the introduction, the {qN} can be given any arbitrary distribution

supported on the set of positive integers; immediate choices could fall in the Poisson, negative

3
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binomial or geometric families. However, note that an arbitrary choice for qN does not necessarily

leads to a simple analytic structure for the weights. For example, if

qN =
(
N + r − 2
r − 1

)
λr(1− λ)N−1, N = 1, 2, . . .

namely a negative binomial distribution (Neg-Bin(r, λ)) supported on the set of positive integers,

then the corresponding weights take the form

wl =
1
l

(
l + r − 2
r − 1

)
λr(1− λ)l−1

2F1(1, l + r − 1; l + 1;λ), (5)

where 2F1(a, b; c;λ) denotes the Gauss hypergeometric function.

In Section 3 we will detail the Markov chain Monte Carlo algorithm for estimating the model

based on geometric weights. First, let us look at the conditional distribution for each Ni that

motivates this choice for qN . If we assume model (3) for a set of observations, {yi}ni=1, and introduce

a latent variable di that, given Ni, indicates from which component yi comes from, then

P(di = l|Ni) = N−1
i 1 (l ∈ {1, . . . , Ni}).

Now, since we have P(Ni = l) = ql, then

P(Ni = N |di) ∝
qN
N

1(N ≥ di).

Hence, it is convenient that the sequence of probabilities {qN/N} take a form from which is rel-

atively easy to sample truncated versions. As we will see, a special case of the negative binomial

distribution, specifically a Neg-Bin(2, λ), leads to a truncated geometric distribution for P (Ni | di),

which is clearly simple to simulate from. Furthermore, a beta prior distribution could be taken

as a conjugate choice easing even more the implementation of the MCMC algorithm. It is worth

mentioning that at the outset our plan was to start with this latter choice for qN and then move

to other, perhaps more general, choices but as we will see this appears unnecessary at least for

mixture modelling aiming at density estimation.

3. Simulation algorithm. In order to see how to construct a Gibbs sampler for this model and

our choice of random sets A, we write it in hierarchical form for a general choice of qN

f(yi|di, Ni) = K(yi; θdi
)

P(di = l|Ni) = N−1
i 1(l ∈ {1, . . . , Ni})

P(Ni = N) = qN ,

4
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where the {θl} are assumed to be i.i.d. from a distribution with density g and a prior is assigned

to the parameters of qn, namely π(q).

The full conditional for θj is then given by

f(θj | · · · ) ∝ g(θj)
∏
di=j

K(yi; θj)

which in particular is easy to sample when K(y; θ) and g(θ) form a conjugate pair. The full

conditional for di is given by

P(di = l| · · · ) ∝ K(yi; θl) 1(l ∈ {1, . . . , Ni})

which being a discrete distribution with finite support it is easy to sample. The full conditional for

Ni has already been considered in Section 2, repeated here, as

P(Ni = N | · · · ) ∝ qN
N

1(N ≥ di).

Finally, the full conditional for q is given by

π(q| · · · ) ∝

{
n∏
i=1

qNi

}
π(q).

As we mentioned in Section 2, in order to simplify the sampling of the full conditional for Ni an

easy form for qN/N is required. In particular, this is attained by setting qN to take Neg-Bin(2, λ)

distribution, i.e. with density

qN = N λ2(1− λ)N−1

which, following (4), results in weights given as

wl = λ(1− λ)l−1.

That is, the decreasing weights take a geometric distribution. We then assign a beta hyper–prior

distribution for λ.

As we will corroborate in the following section this model, although at first sight simplistic and

not flexible enough, will prove to perform well for density estimation purposes. Before going into

the numerical illustrations let us adjust and complete the details of the Gibbs sampler for sampling

the full conditional distributions of Ni and λ. Notice that assuming a Neg-Bin(2, λ) for qN results

in

P(Ni = N | · · · ) ∝ (1− λ)N−1 1(N ≥ di)

5
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which is a truncated geometric distribution and is easy to sample. The full conditional for λ,

assuming a Beta(a, b) prior, is given by

π(λ| · · · ) ∝

{
n∏
i=1

λ2(1− λ)Ni−1

}
λa−1(1− λ)b−1

which is also a beta distribution with parameters a+ 2n and b− n+
∑n

i=1Ni.

Note that with this choice of qN we could see our approach as a Bayesian nonparametric mixture

model with a mixing discrete random distribution, of the type (1), with geometric weights.

In fact, weights defined as above can be thought of as the expected value of the weights corre-

sponding to Dirichlet process. That is, if we use the stick breaking representation of the Dirichlet

process, i.e. with weights w̃l = vl
∏
k<l(1 − vk) with the {vl} being iid from Beta(1, c) and c > 0,

then

E[w̃l] =
1

c+ 1

(
c

c+ 1

)l−1

,

which is a simple re-parametrization of λ (1 − λ)l−1 when λ = (c + 1)−1. When implementing

models based on the Dirichlet process, typically the assignation of a prior distribution on the total

mass parameter, c, is needed to achieve good results. Therefore, our approach could be seen as the

removal of a hierarchical level from the Dirichlet process model by replacing the random {vl} with

their expected values.

4. Numerical Illustrations. In this section we consider 3 examples; 2 simulated data sets and

one real data set; the well known galaxy data set.

4.1 Location modeling for simulated data. Here we generate 200 iid data points, {yi}200
i=1, coming

from a minitial values for the {di}200
i=1, chosen uniformly from the set {1, . . . , 10}, the full conditional

distributions are given by ixture of two normal distributions; N(0, 1) and N(6, 1), with corresponding

weights 0.3 and 0.7. For the implementation of the method described in Section 3, let us assume

that K(y; θ) = N(y; θ, 1), g(θ) = N(θ; m, 1/v), qN (N ;λ) = N(1−λ)N−1λ2 and λ ∼ Be(a, b). Hence,

for a given set of hyper–parameters (m, v, a, b), starting configurations for the {Ni}200
i=1 and the

π(θj | · · · ) = N
(
θj |

mv + sj
v + nj

,
1

v + nj

)
,

where nj :=
∑

di=j
1 and sj :=

∑
di=j

yi,

P(di = l | · · · ) =
N(yi | θl, 1)∑Ni
k=1 N(yi | θk, 1)

1(l ∈ {1, . . . , Ni}),

P(Ni = j | · · · ) = λ (1− λ)j−1 1(j ≥ di)

6
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and

π(λ | · · · ) = Be

(
λ; a + 2n, b +

n∑
i=1

Ni − n

)
.

Figure 1 shows the Monte Carlo density estimate,

f̂(y) =
1
M

M∑
k=1

1
n

n∑
i=1

1
Nk
i

Nk
i∑

l=1

N(y | θkl , 1),

resulting from M = 10, 000 iterations after a 2, 000 burn–in period. The choice of hyper–parameters

is given by (m, v, a, b) = (3, 1, 1, 1) and was obtained by inspecting the data, i.e. by preserving the

original mean and variance of the model that generated the data. As in any other nonparametric

mixture model, changing this values radically would lead to different estimations. However, this

could be extended to a more complex model, possibly with further hierarchies as done in the

following subsection. In this subsection we keep it simple in order to better understand the role of

having an unlimited number of θ’s.

Figure 2 shows an estimator of the number of θ’s below and above a cutoff point, set at y = 3

where visually we could locate a separation between the 2 cluster locations. The plot could be seen

as representing the number of θ’s used to capture each mode in the mixture. Hence, the following

interpretation follows: for the mode with higher probability (located around y = 6) we observe a

tendency to represent it with a small number of θ’s, namely the bar plot shows a mode in two θ’s.

Whereas for the mode with the smaller probability (located around y = 0) the tendency points

towards a higher number, the bar plot shows a mode in four θ’s. This effect can be explained by

the fact that the weights, wl’s, are decreasing. That is, if a small weight needs to be increased, this

is achieved by increasing the number of θ’s used to represent the corresponding mode.

We believe that this assignation of θ’s to represent a particular cluster location is reinforced in

a more ordered fashion than the assignation founded when using non-consecutive sets, as in the

Dirichlet process case. This argument is better illustrated in the following subsection.

4.2 Location and scale modeling for simulated data. Here we consider a more complicated data set

that allows us to highlight the flexibility of our approach. We generate 240 data points coming from

a mean-variance mixture of six normal distributions with weights (0.17, 0.08, 0.125, 0.2, 0.125, 0.21)

and mean-variance parameters given by (−18, 2), (−5, 1), (0, 1), (6, 1), (14, 1) and (23, 125). Similar

to the previous section, for our modeling approach, we assume K(y; θ) = N(m, 1/v), so θ := (m, v),

and a conjugate prior distribution given by

g(θ) = N(m;µ, τv−1) Ga(v;α, β).

7
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The only substantial difference for this example is that the posterior density is given by

π(mj , vj | . . .) = N
(
mj |

τ nj ȳj + µ

τ nj + 1
;

τ

v (τ nj + 1)

)
× Ga

(
vj |

nj
2

+ α;
nj(ȳj − µ)2

2(τ nj + 1)
+
Dj

2
+ β

)
where ȳj = sj/nj , sj and nj are as before and Dj =

∑
di=j

(yi − ȳj)2.

Figures 3 and 4 show the dynamics of the density estimator for the first 100 iterations based

on our approach, here termed geometric, and on the MDP model respectively. From Figure 3 we

note that the availability of an unlimited number of θj ’s to represent a particular cluster location

always results in a improvement in subsequent iterations. Whereas in the MDP case, Figure 4,

the algorithm might require several iterations to obtain a good candidate for the θj representing a

particular location. This feature is better appreciated in the mode welling around −18, which can

be thought as being far from the overall mean of the data. This can be also observed at the tails of

the density estimators in Figure 3, where for the initial iterations a bigger mass, than that shown

for the MDP, is allocated.

In fact this drawback of the MDP and other mixtures based on more general random distri-

butions, has received considerable attention in the Bayesian nonparametric literature resulting in

algorithms that aim to accelerate the identification of good candidates for the θj ’s identifying par-

ticular cluster locations. See for instance MacEachern (1998). It is worth emphasizing that, despite

these efforts, this issue is not fully resolved.

Figure 5 shows the estimates for both, the Dirichlet process and our geometric approach, at

a convergent stage. This figure also compares the true model that generated the observations, as

we can see both approaches can be thought as being relatively satisfactory, however our approach

appears to be closer to the true model.

It is then clear that the decreasing order of the weights results in a more ordered and faster

convergence of the density estimation.

4.3 Galaxy data set. In this section we consider the galaxy data set; see e.g. Roeder (1990).

This data set has been widely used as an example in mixture modeling and in particular as a

benchmark when proposing or comparing new Bayesian nonparametric mixture models. See for

instance Escobar and West (1995) and Lijoi et. al. (2005). Some discussion on the advantages and

drawbacks of using mixtures of Dirichlet processes for density estimation can be found in Green

and Richardson (2001).

The galaxy data are typically captured by relatively complex Bayesian nonparametric mixture

8
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models, e.g. with Gaussian kernels and where the mixing parameters are both, mean and variance.

These parameters are then modelled non-parametrically through random distributions where the

corresponding mean measure needs further hierarchies in order to improve the density estimation.

For simple choices of random distributions, as in the Dirichlet process case, the total mass parameter

also requires a further randomization through the assignation of a prior distribution, as done

in Escobar and West (1995). Further discussions on the galaxy data and its modelling through

Bayesian nonparametric mixtures can be found in Lijoi et. al. (2005,2006).

Our intention here is not to claim a superiority of our approach neither to give an exhaustive

comparison of existing models, since this would basically consist of restating arguments already

well established in the literature. We rather aim at illustrating the simplicity of our approach and

how this performs in the particular case of this widely discussed data set. Having said that, we do

compare it with the Dirichlet process.

Hence, with this purpose in mind, we have used the same framework, i.e same model with same

parameter and hyper-parameter specifications, used in Section 4.2. We have based the estimations

using our approach on 1,000 iterations, and we have used 10,000 iterations plus a 2000 for burning

in the sample in the case of the Dirichlet process. For this latter, we have additionally randomized

the total mass parameter with a gamma distribution as done in Escobar and West (1995) and make

use of the acceleration step suggested by MacEachern (1998). The additional sampling used in this

latter approach is needed since otherwise compromised the convergence and therefore the quality

of the corresponding density estimation. As we can see in Figure 6, both fits are comparable and

satisfactory. Though we emphasize the estimate we have used is obtained with less parameters, less

iterations, in less than a tenth of the computational time and with a much simpler implementation.

5. Discussion. The current trend in Bayesian nonparametric mixture modelling focuses on

generalizations of the Dirichlet process model. However, in most cases these generalizations result

in complex models hard to implement and to apply in real situations, see Lijoi et. al (2005b) for an

example of how complex these generalizations can be. In this context, our results are appealing, in

that we have proposed a simple approach and yet competent for Bayesian nonparametric density

estimation. To some extent we could say that we have gone in the opposite direction of such a trend

by proposing a simpler approach when using a random distribution with geometric weights. As

stated in Section 3, these weights can be seen as the expected values of those corresponding to the

Dirichlet process, hence removing a hierarchy from this latter one, which is apparently unnecessary,

at least for density estimation purposes. As a byproduct of this simplification, a relatively easy
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Gibbs sampler algorithm is available, which results in a simpler alternative to those typically used

for Bayesian nonparametric mixtures. It is worth noting that most of these MCMC algorithms are

based on the Pólya-urn construction of the Dirichlet process, or its extensions when dealing with

other random distributions. In contrast to our algorithm, these algorithms are based on almost

sure approximations to the random distribution through exchangeable sequences. See Blackwell

and MacQueen (1973) for the Pólya urn scheme.

One might wonder why an approach based on such a simple construction works, at least as well,

as other methods based on more complex models, as those based on Dirichlet or Poisson-Dirichlet

processes models where an infinite number of beta variables is needed for the corresponding stick-

breaking construction. Our explanation is quite straightforward. While the weights would be

practically useless if we could only have one of the θj ’s identifying a particular cluster location,

the fact that there are an infinite number of possible θj ’s implies that we can have an unlimited

number of them supporting this location. Hence the weights for a particular cluster location are

obtained via a combination of the geometric weights and the number of θj ’s supporting that cluster

location.

For a more mathematical explanation consider the following: Let

P =
∞∑
j=1

ρjδφj

be a Dirichlet process where the weights have been ordered to be decreasing, so ρ1 > ρ2 > · · · .

The φj are iid from some density defined on the real line. Now consider our random distribution

function

PG =
∞∑
j=1

wl(λ)δθj

where the θj are also iid from the same density as the {φj} and the {wj(λ)} are the geometric

weights, with λ being assigned a distribution.

We can use our model to arbitrarily approximate the Dirichlet model when for some sequence

n1, n2, . . . we have

|w1(λ) + · · ·+ wn1(λ)− ρ1|, |wn1+1(λ) + · · ·+ wn2(λ)− ρ2|, . . .

are all suitably small and correspondingly

max{|θ1 − φ1|, . . . , |θn1 − φ1|}, max{|θn1+1 − φ2|, . . . , |θn2 − φ2|}, . . .

are all suitably small. Since there is positive probability on these events we can see that we do not

need the weights to be that exotic; such as those obtained via stick–breaking construction.
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Hence, our conclusion is that the

PG = λ
∞∑
j=1

(1− λ)j−1δθj

is sufficient for mixture modeling and that the current trend of further elaborating on Dirichlet

process mixture models must be compromised with an application that potentially would require

more complicated weights specifications.

Acknowledgements. The authors are grateful to the Associate Editor and two referees for their

valuable comments and suggestions. The second author thanks CONACYT for providing the Grant

No. J50160-F. The work was completed during a visit by the first two authors to the University of

Kent.

References

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn scheme. Annals
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Figure 1: Fitted density (solid line) to simulated data set (histogram) with n = 200. The estimate

is based on 10, 000 iterations after a burn in of 2, 000 iterations and hyperparameters (m, v, a, b) =

(3, 1, 1, 1), Ni = 10 and di ∈ 1, . . . , 10 for all i = 1, . . . , 200.
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Figure 2: Proportion of the number of θ’s needed to capture a particular cluster location, corre-

sponding to the two modal simulated dataset. The histogram on the left hand side corresponds to

the θ’s needed to capture the cluster located around y = 0 and the histogram on the right hand

side those needed to capture the cluster located around y = 6.
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Figure 3: Dynamics of the density estimator, based on the geometric model, through the first

100 iterations of the Gibbs sampler algorithm for the mean-scale mixtures data set. The hyper–

parameters are given by (µ, τ, α, β, a, b) = (0, 100, 0.5, 0.5, 0.5, 0.5) and Ni = 10 and di ∈ 1, . . . , 10

for all i = 1, . . . , 240.
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Figure 4: Dynamics of the density estimator, based on the MDP model, through the first 100 itera-

tions of the Gibbs sampler algorithm for the mean-scale mixtures data set. The hyper–parameters

are given by (µ, τ, α, β, a, b) = (0, 100, 0.5, 0.5, 0.5, 0.5) and Ni = 10 and di ∈ 1, . . . , 10 for all

i = 1, . . . , 240.
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Figure 5: Density estimates for the 6 modes simulated data set based on both the geometric model

and the MDP model. The estimates are based on 10,000 after a burn in period of 2000 iterations.

The hyper–parameters are given by (µ, τ, α, β, a, b) = (0, 100, 0.5, 0.5, 0.5, 0.5) and Ni = 10 and

di ∈ 1, . . . , 10 for all i = 1, . . . , 240.
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Figure 6: Density estimators for the galaxy data.
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