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Abstract

In this paper we propose an improvement of the Kolmogorov-Smirnov test for normality. In
the current implementation of the Kolmogorov-Smirnov test, a sample is compared with a
normal distribution where the sample mean and the sample variance are used as parameters of
the distribution. We propose to select the mean and variance of the normal distribution that
provide the closest fit to the data. This is like shifting and stretching the reference normal
distribution so that it fits the data in the best possible way. If this shifting and stretching
does not lead to an acceptable fit, the data is probably not normal. We also introduce a fast
easily implementable algorithm for the proposed test. A study of the power of the proposed test
indicates that the test is able to discriminate between the normal distribution and distributions
such as uniform, bi-modal, beta, exponential and log-normal that are different in shape, but
has a relatively lower power against the student t-distribution that is similar in shape to the
normal distribution. In model settings, the former distinction is typically more important to
make than the latter distinction. We demonstrate the practical significance of the proposed test
with several simulated examples.

Keywords: Closest fit; Kolmogorov-Smirnov; Normal distribution.

1 Introduction

Many data analysis methods depend on the assumption that data were sampled from a normal

distribution or at least from a distribution which is sufficiently close to a normal distribution. For

example, one often tests normality of residuals after fitting a linear model to the data in order

to ensure the normality assumption of the model is satisfied. Such an assumption is of great

importance because, in many cases, it determines the method that ought to be used to estimate

the unknown parameters in the model and also dictates the test procedures which the analyst may

∗Corresponding author: Mihaylo College of Business and Economics, California State University, Fullerton, CA,
92834-6848, (714) 278-3635, dzerom@fullerton.edu.
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apply. There are several tests available to determine if a sample comes from a normally distributed

population. Those theory-driven tests include the Kolmogorov-Smirnov test, Anderson-Darling

test, Cramer-von Mises test, Shapiro-Wilk test and Shapiro-Francia test. The first three tests are

based on the empirical cumulative distribution. Shapiro-Francia test (Shapiro and Francia, 1972

and Royston, 1983) is specifically designed for testing normality and is a modification of the more

general Shapiro-Wilk test (Shapiro and Wilk 1965). There are also tests that exploit the shape of

the distribution of the data. For example, the widely available Jarque-Bera test (Jarque and Bera,

1980) is based on skewness and kurtosis of the data. To complement the results of formal tests,

graphical methods (such as box-plots and Q-Q plots) have also been used and increasingly so in

recent years.

In this paper we focus on the Kolmogorov-Smirnov (KS) test. The KS test is arguably the most

well-known test for normality. It is also available in most widely used statistical software packages.

In its original form, the KS test is used to decide if a sample comes from a population with a

completely specified continuous distribution. In practice, however, we often need to estimate one

or more of the parameters of the hypothesized distribution (say, the normal distribution) from the

sample, in which case the critical values of the KS test may no longer be valid. For the case of

normality testing, Massey (1951) suggests using sample mean and sample variance, and this is the

norm in the current use of KS test. Lilliefors (1967) and Dallal and Wilkinson (1986) provide a

table of approximate critical values for use with the KS statistics when using sample mean and

sample variance.

While the use of sample mean and sample variance seems a natural choice, using these fixed values

is not necessarily the best available option. When one concludes (after using the KS test) that a

sample is not normal, this only means that the data is not normal at the specified sample mean
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and sample variance. But it could well be that the data is normal or sufficiently close to normal at

other values of the mean and variance of the normal distribution. Although the scope of this paper

is limited to the KS test, this drawback is also shared by other tests such as Anderson-Darling and

Cramer-von Mises tests. Interestingly, Stephens (1974) writes after comparing several tests (such

as KS, Anderson-Darling and so on) “It appears that since one is trying, in effect, to fit a density

of a certain shape to the data, the precise location and scale is relatively unimportant, and being

tied down to fixed values, even correct ones, is more of a hinderance than a help.” In this paper, we

suggest an approach that circumvents the need to use pre-determined values of mean and variance.

Instead, we look for mean and variance values such that the resulting normal distribution fits the

given sample data. When such values do not exist, we conclude that the sample data is probably

not normally distributed. Avoiding the use of fixed parameters, we propose a modified KS test in

which we choose data-driven mean and variance values of the normal distribution by minimizing

the KS statistics. In the traditional KS test, the data is compared against a normal distribution

with fixed parameter values. On the other hand, our approach looks for a normal distribution that

fits the data in the best possible way, and hence favors the sample data when passing judgment

about its closeness to a normal distribution.

Suppose that the sample consists of n independent observations. These observations are sorted

x1 ≤ x2 ≤ . . . ≤ xn. The cumulative distribution of the data is a step function (see Figures 1 and

2). At each xk the step is between k−1
n and k

n . For a given mean µ and variance σ2, the cumulative

normal distribution at xk is Φ
(

xk−µ
σ

)

. The KS statistics is given by

KS(µ, σ) = max
1≤k≤n

{

k

n
− Φ

(

xk − µ

σ

)

, Φ

(

xk − µ

σ

)

−
k − 1

n

}

. (1)

The traditional KS statistics is simply KS(x̄, s) where µ = x̄ and σ = s. We propose a modified KS
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statistics denoted by KS(µ̃, σ̃) where the vector (µ̃, σ̃) is a solution to the following minimization

problem

min
µ,σ

{KS(µ, σ)} (2)

where KS(µ, σ) is as defined in (1). In section 2, we analyze this optimization problem and provide

a tractable algorithm for its solution. In section 3, we provide critical values for the modified KS

test using 100 million replications. The proposed algorithm is quite efficient and we are able to

complete the critical values table (Table 1) in less than 4 days (6000 calculations per second). To

facilitate implementation of our test, we also provide approximation formulas (that work for any

n ≥ 20) for finding critical values at typical significant levels.

To best of our knowledge, there has not been any study that extends the KS test by allowing

the use of optimized distribution parameters. Closely related to our work is that of Weber et al

(2006) where they consider the problem of parameter estimation of continuous distributions (not

just normal distribution) via minimizing the KS statistics. They use the heuristic optimization

algorithm of Sobieszczanski-Sobieski et al (1998) to estimate the parameters of a number of widely

used distributions and also provide a user-friendly software tool. The practical advantage of this

software is that it suggests a best fitted distribution to given data by looking at the minimized KS

statistics values among a set of continuous distributions. In this sense, our algorithm of minimizing

the KS statistics may also serve the same purpose as that of Weber et al (2006) although our paper

is wider in scope.

To motivate our modified KS test, we give two Monte Carlo based examples that can highlight the

weaknesses of the existing KS and offer interesting practical implications for proper use of the KS
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test.

Example 1: We generate 999 standard normal random samples of size n = 30. The choice of 999

samples (instead of say, 1000) is only to facilitate the calculation of the median sample as we will see

below. For each sample, we calculate the two KS statistics values, KS(x̄, s) and KS(µ̃, σ̃), where

the algorithm in section 2 is used to compute µ̃ and σ̃. We also compute ∆ = KS(x̄, s)−KS(µ̃, σ̃)

which is simply the difference between the two KS statistics values. It should be noted that

KS(µ̃, σ̃) ≤ KS(x̄, s) and hence ∆ ≥ 0. We do the above steps for all 999 samples. Let ∆j denote

a value obtained for sample j where j = 1 . . . , 999. We select a “typical” sample, say the k-th

sample, to be the one where ∆k = Median{∆j}
999
j=1. Similarly, an “extreme” sample, say the ℓ-th

sample, to be the one where ∆ℓ = Max{∆j}
999
j=1

Based on the typical sample (sample k), Figure 1 gives the empirical cumulative distribution (the

step-function), the cumulative normal distribution (the dotted line) based on the sample mean

(x̄k = 0.1078) and sample variance (sk = 1.022) and the cumulative normal distribution (the

solid line) based on µ̃k = 0.1712 and σ̃k = 1.089. The subscript k is attached to estimates to

indicate that they correspond to the typical sample k. For this typical sample, KS(x̄k, sk) =

0.0954 and KS(µ̃k, σ̃k) = 0.0704 which indicate a 26% improvement by the latter. Note from the

empirical cumulative distribution plots that the solid line is closer overall to the sample cumulative

distribution. Using critical values Table 1 (for n = 30) , both KS statistics values lead to the

non-rejection of the null of normality with p-value p > 0.2. This conclusion is correct as we know

the sample is generated from a normal distribution.

Based on the extreme sample (sample ℓ), Figure 2 gives the empirical cumulative distribution

(the step-function), the cumulative normal distribution (the dotted line) based on the sample

mean (x̄ℓ = −0.1628) and sample variance (sℓ = 0.9303) and the cumulative normal distribution
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(the solid line) based on µ̃ℓ = −0.3238 and σ̃ℓ = 0.7436. For this sample, KS(x̄ℓ, sℓ) = 0.1896

and KS(µ̃ℓ, σ̃ℓ) = 0.0951 which indicate a 50% improvement by the latter. From the empirical

cumulative distribution plots, the solid line is much closer to the sample cumulative distribution

for data values roughly below -0.5 and these values constitute approximately 80% of the data

observations. Using the critical values table for n = 30 (Table 1), the traditional KS test implies

that the sample data deviates from normality (at p-value p < 0.01). On the other hand, the

modified KS test concludes that we can not reject the null of normality at a convincing p-value

p > 0.2. The conclusion from our test proposal is correct as the sample is generated from a normal

distribution.

This example illustrates that the sample mean and sample variance do not necessarily provide the

closest fit to the empirical distribution of the sample. Our approach shifts and stretches the normal

distribution (by looking for data-driven mean and variance values) so that it fits the sample data

in the best possible way.

Example 2: We consider n = 20, 40, . . . , 400 (in an interval of 20). For each n, we generate 10,000

standard normal random samples of n − 1 and one outlier. We define an outlier as outlier = C

where the constant C takes values 4, 5, . . . , 10. We will only report results for C = 4, 6, 8, 10 as the

implications from the other outliers are qualitatively similar.

The purpose of this example is to evaluate the two tests: the traditional KS test (which is based on

KS(x̄, s)) and the modified KS test (which is based on KS(µ̃, σ̃)), in terms of their size using the

level of significance α = 0.05. When implementing both tests, we use the approximation formula in

Table 2 for locating the critical values. Using 10,000 replications, we plot the size of the two tests

for each n in Figure 3. Size is defined as the percentage of times (out of the total 10,000 samples)

a test rejects the null hypothesis of normality. If a test is correctly sized, this percentage should be
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close to 0.05. The dotted line in the figure corresponds to the size of the modified KS test while the

solid lines correspond to the traditional KS test. Interestingly, the modified KS test is always close

to 0.05 regardless of the magnitude of the outlier for all n (the average size from all n is 0.0508 with

standard deviation of 0.0005). However the traditional KS test is very sensitive to outliers leading

to clearly wrong conclusions about the distribution of the data. While increasing the sample size n

seems to help minimize the effect of an outlier on the test, we still need unrealistically large sample

sizes to get rid off the effect.

This example is only meant to illustrate the danger of using fixed parameter values that do not

respond to the structure of sample data. The modified KS test adapts to the data by attempting

(via choice of µ̃ and σ̃) to fit the normal distribution to the majority of the data by weighting

down the outlier. In practice, researchers often deal with small data sets with potentially a few

outliers. Even if much of the data may be well approximated by a normal distribution, a blind

use of traditional KS test will lead to rejection of normality - suggesting use of transformations or

complex models. In contrast, the modified KS test is robust to these few outliers and can lead to

more nuanced judgments regarding the normality of the data.

2 Algorithm

In this section, we analyze the optimization problem given in equation (2) and provide a tractable

algorithm for its solution. By (1)

KS(µ, σ) ≥
k

n
− Φ

(

xk − µ

σ

)

KS(µ, σ) ≥ Φ

(

xk − µ

σ

)

−
k − 1

n
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Let L be the minimum possible value of KS(µ, σ). The solution to the following optimization

problem is the minimum possible KS(µ, σ) and thus is equivalent to (2).

min{ L } (3)

subject to:

k

n
− Φ

(

xk − µ

σ

)

≤ L for k > nL (4)

Φ

(

xk − µ

σ

)

−
k − 1

n
≤ L for k < n(1 − L) + 1. (5)

Note that if k
n − L ≤ 0, constraint (4) is always true and if L + k−1

n ≥ 1, constraint (5) is always

true. We can solve (3-5) by designing an algorithm that finds whether there is a feasible solution

to (4-5) for a given L.

For a given L, the constraints are equivalent to:

µ ≤ xk − Φ−1
(

k

n
− L

)

σ for k > nL (6)

µ ≥ xk − Φ−1
(

L +
k − 1

n

)

σ for k < n(1 − L) + 1. (7)

Constraints (6) and (7) can be combined into one constraint each.

µ ≤ min
k>nL

{

xk − Φ−1
(

k

n
− L

)

σ

}

(8)

µ ≥ max
k<n(1−L)+1

{

xk − Φ−1
(

L +
k − 1

n

)

σ

}

(9)

For a given σ there is a solution for µ satisfying the system of equations (8-9) if and only if

min
k>nL

{

xk − Φ−1
(

k

n
− L

)

σ

}

≥ max
k<n(1−L)+1

{

xk − Φ−1
(

L +
k − 1

n

)

σ

}

(10)
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or

F (σ, L) = min
k>nL

{

xk − Φ−1
(

k

n
− L

)

σ

}

− max
k<n(1−L)+1

{

xk − Φ−1
(

L +
k − 1

n

)

σ

}

≥ 0. (11)

For a given L, the function F (σ, L) is a piece-wise linear concave function in σ (see Figure 4). We

prove that F (σ, L) is a concave function in σ for a given L.

Theorem 1: The function F (σ,L) for a given L is concave in σ.

Proof: All the functions in the braces of (11) are linear in σ and all the other values are constants

for a given L. Furthermore, the minimum of linear functions is concave and the maximum of linear

functions is convex. Therefore, the difference F (σ, L) is a concave function in σ. ✷

By Theorem 1, for a given L, F (σ, L) has only one local maximum which is the global one. The

maximum value of F (σ, L) for a given L can be easily found by a search on σ. For any value of σ

F (σ,L) can be calculated and if the slope is positive we know that the optimal σ is to the right,

and if it is negative we know that it is to the left. The solution is always at the intersection point

between two lines, one with a positive slope and one with a negative slope (see figure 4). Megiddo

(1983) suggested a very efficient method for solving such a problem.

Note that if F (σ, L) ≥ 0, any µ in the range

[

max
k<n(1−L)+1

{

xk − Φ−1
(

L +
k − 1

n

)

σ

}

, min
k>nL

{

xk − Φ−1
(

k

n
− L

)

σ

}

]

(or specifically the midpoint of the range) with the σ used in calculating F (σ, L) yields a KS statistic

which does not exceed L.

Let G(L) = max
σ

{F (σ, L)} found by either the method in Megiddo (1983) or any other search
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method. If G(L) ≥ 0, there is a solution (µ, σ) for this value of L and if G(L) < 0 no such solution

exists. To find the minimum value of L we propose a binary search. The details of the binary

search are now described. The optimal L must satisfy L ≤ KS(x̄, s). Also, any KS statistic must

be at least 1
2n . Therefore, 1

2n ≤ L ≤ KS(x̄, s). A binary search on any segment [a, b] is performed

as follows. G(L) for L = a+b
2 is evaluated. If G(L) ≥ 0, there is a solution (µ, σ) for this value

of L and the search segment is reduced to [a, a+b
2 ]. If G(L) < 0 no such solution exists and the

search segment is reduced to [a+b
2 , b]. In either case the search segment is cut in half. Following a

relatively small number of iterations, the search segment is reduced to a small enough range (such

as 10−5) and the upper limit of the range yields a solution (µ, σ) and its value of L is within a

given tolerance (the size of the final segment) of the optimal value of L.

3 Monte Carlo estimation of test statistics distribution

In this section we provide critical values for the modified KS statistics using Monte Carlo simulation.

To derive the distribution of this statistics, we draw a random sample of size n from a standard

normal distribution. We estimate µ̃ and σ̃ and compute KS(µ̃, σ̃), and for every sample size n,

we repeat this procedure 100 million times. The critical values are given in Table 1. We also

recalculate the critical values for the traditional KS test in the same way and are available in Table

1. Because we use 100 million samples, the critical values we report for the traditional KS test are

more accurate than Lilliefors (1967) and Dallal and Washington (1986).

The critical values for both KS tests can be approximated for n ≥ 20 by the formula a+ b√
n

(

1 − c
n

)

where a, b and c are functions of α. These three parameters are given in Table 2. The approximation

is very accurate with an error (when compared to Table 1) of not more than 0.0002. So, the

approximation formula can replace the tables for n ≥ 20. We obtain the approximation formula
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via multiple regression, where for each α, the critical values in Table 1 are used as the dependent

variable, and 1√
n

and 1
n
√

n
are the independent variables. We select these two independent variables

through experimentation. We begin with a single variable regression involving only 1√
n
. We then

add variables, one at a time, which are functions of n. A regression involving 1√
n

and 1
n
√

n
provides

an excellent fit.

4 Power comparisons

In this section we compare the approximate powers of the modified KS test with the traditional

KS test for a set of selected distributions. These distributions convey a wide array of shapes where

some resemble the normal distribution while others are substantially different. Some of these

distributions are also used in Lilliefors (1967) and Stephens (1974), among others. We consider a

uniform (0,1) distribution; a bi-modal distribution which is a composite of two normal distributions,

one centered at +2 and one at -2 with variance of 1; a beta(1,2) distribution whose density function

is a straight line connecting (0, 0) and (1, 1); an exponential distribution with mean and variance

of 1; a log-normal distribution with mean e1/2 and variance e(e− 1) and three t-distributions with

degrees of freedom 1, 2 and 6. We also include the normal distribution where we expect power to

be close to α. To save space, we only report results for α = 0.05 (the behavior is very similar for

other values of α).

For a given alternative hypothesis (say, a uniform distribution), computation of the power of the

modified KS test is done as follows. We draw a random sample of size n from the distribution

specified in the alternative hypothesis. Based on this sample, we estimate the parameters µ̃ and σ̃

using the algorithm outlined in section 2 and compute KS(µ̃, σ̃). Then, apply the critical values

in Table 2 to test if such sample comes from a normal distribution. Repeating this procedure
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10,000 times, and counting the number of correct decisions gives the approximate power. The same

approach is followed to compute power for traditional KS test. The complete power results are

given in Table 3.

From Table 3 we can see that the power of the modified KS test is consistently better than the

traditional KS test for uniform, beta and bi-modal distributions. The improvement is quite large

especially for uniform and beta distributions. These power results indicate that the proposed KS

test is able to better discriminate between the normal distribution and those distributions that

are very different in shape from normal, i.e. those that substantially deviate from normality. For

exponential and log-normal distributions, the powers of the two KS tests are quite similar where

both achieve reasonably good powers for n ≥ 40. For the t-distributions, the modified KS test has a

much lower power than the traditional KS test. What is common to the t-distributions is that they

resemble the normal distribution except for their heavier tails. In theory, with increasing degrees of

freedom, the tails of the t-distribution get lighter eventually behaving like the normal distribution.

The modified KS test has difficulty detecting non-normality when the observed distribution is

similar to normal and increasingly so with larger degrees of freedom, i.e. as it gets closer to normal.

On the surface, the low power for the t-distribution may seem like a weakness of the modified

KS test. However, would one expect, with a small n, that data generated by a t6 distribution

be distinguishable from a normal distribution - thus be identified as non-normal? We argue that

the reason the traditional KS test has a higher power is that it rejects data which can be fitted

quite well to a normal distribution by a proper selection of µ and σ. It is indeed strange that

the power of the traditional KS test is higher for a t2 distribution than it is for the uniform and

beta distributions while the latter are substantially different from normality. By construction, the

modified KS test tries to look for those mean and variance values that lead to the closest fit to the
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data. In a way, we are trying to approximate the reference distribution (the t-distribution) with a

normal distribution. If such a normal approximation exists, the data may be considered sufficiently

normal. For example, for t6, the powers at n ≤ 100 are close to α = 0.05 implying the sample data

is hardly distinguishable from the normal distribution (see how close the powers of t6 are to those of

the normal distribution). When the degrees of freedom is made smaller, the power of the modified

KS test improves because the deviation from normality gets larger. When normal approximation

can not be achieved, the sample data is flagged as non-normal. For t2, the modified KS test is able

to detect difference from normality at n = 200 while t6 requires a very large n to be detected by

the modified KS. For t1, the power of the proposed KS test gets a lot better reaching decent power

at n = 100. The reason is that t1 has a much heavier tail than the normal distribution making

normal approximation via data driven mean and variance values very difficult.

To see why the modified KS test treats several small data from the t-distribution as normally

distributed, we use the t2-distribution as an example. To do so, we repeat the experiments described

in Example 1 (see section 1) but draw 999 samples (of n = 30) from a t2 distribution. The odd

number of simulation replications has the same purpose as in Example 1. We select a “typical”

sample in terms of the difference between the traditional KS statistic and our proposed KS statistic.

Similar to Figures 1 and 2, three cumulative distribution are depicted in Figure 5 (the range of x was

truncated for better exposition). For this typical sample, x̄ = −0.0117, s = 2.506, µ̃ = 0.0321 and

σ̃ = 1.571. The traditional KS is KS(x̄, s) = 0.1805 while the modified KS is KS(µ̃, σ̃) = 0.1003.

Using the critical value tables in section 3, the traditional KS test rejects the normality with a

p-value of p = 0.05. On the contrary, the modified KS test does not reject normality with p-value

p > 0.10.
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5 Conclusion

Many data analysis methods (t-test, ANOVA, regression) depend on the assumption that data

were sampled from a normal distribution. One of the most frequently used test to evaluate how far

data are from normality is the Kolmogorov-Smirnov (KS) test. In implementing the KS test, most

statistical software packages use the sample mean and sample variance as the parameters of the

normal distribution. However, the sample mean and sample variance do not necessarily provide the

closest fit to the empirical distribution of the data. Therefore, we propose a modified KS test in

which we optimally choose the mean and variance of the normal distribution by minimizing the KS

statistics. To facilitate easy implementation we also provide an algorithm to solve for the optimal

parameters.
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Table 1: Critical Values for the Traditional and Modified KS Test

Traditional KS statistics Modified KS statistics
n Upper Tail Probabilities Upper Tail Probabilities

0.20 0.15 0.10 0.05 0.01 0.001 0.20 0.15 0.10 0.05 0.01 0.001
4 0.3029 0.3215 0.3453 0.3753 0.4131 0.4327 0.2396 0.2436 0.2474 0.2499 0.2987 0.3518
5 0.2894 0.3027 0.3189 0.3430 0.3967 0.4388 0.2000 0.2108 0.2255 0.2458 0.2763 0.3063
6 0.2687 0.2809 0.2971 0.3234 0.3705 0.4232 0.1962 0.2046 0.2147 0.2286 0.2570 0.2945
7 0.2523 0.2643 0.2802 0.3042 0.3508 0.4011 0.1855 0.1922 0.2006 0.2139 0.2435 0.2708
8 0.2388 0.2503 0.2651 0.2880 0.3328 0.3827 0.1748 0.1810 0.1899 0.2038 0.2281 0.2502
9 0.2272 0.2381 0.2522 0.2741 0.3172 0.3657 0.1661 0.1727 0.1811 0.1932 0.2151 0.2418
10 0.2171 0.2274 0.2410 0.2621 0.3035 0.3509 0.1591 0.1650 0.1725 0.1836 0.2045 0.2324
11 0.2081 0.2181 0.2312 0.2514 0.2914 0.3375 0.1524 0.1578 0.1648 0.1753 0.1972 0.2240
12 0.2003 0.2099 0.2224 0.2420 0.2807 0.3255 0.1462 0.1514 0.1580 0.1681 0.1902 0.2158
13 0.1932 0.2025 0.2146 0.2335 0.2710 0.3146 0.1407 0.1457 0.1521 0.1627 0.1839 0.2081
14 0.1869 0.1958 0.2076 0.2259 0.2623 0.3048 0.1358 0.1406 0.1472 0.1576 0.1780 0.2012
15 0.1811 0.1898 0.2012 0.2189 0.2543 0.2958 0.1314 0.1363 0.1428 0.1528 0.1725 0.1949
16 0.1759 0.1843 0.1954 0.2126 0.2471 0.2875 0.1276 0.1325 0.1388 0.1485 0.1674 0.1893
17 0.1710 0.1793 0.1900 0.2068 0.2404 0.2800 0.1243 0.1290 0.1351 0.1445 0.1628 0.1845
18 0.1666 0.1746 0.1851 0.2015 0.2342 0.2729 0.1211 0.1257 0.1316 0.1407 0.1585 0.1799
19 0.1625 0.1703 0.1806 0.1965 0.2285 0.2663 0.1182 0.1226 0.1284 0.1372 0.1545 0.1756
20 0.1587 0.1663 0.1763 0.1919 0.2232 0.2603 0.1154 0.1198 0.1254 0.1339 0.1510 0.1716
25 0.1430 0.1499 0.1589 0.1730 0.2014 0.2351 0.1040 0.1079 0.1129 0.1207 0.1363 0.1547
30 0.1312 0.1376 0.1458 0.1588 0.1849 0.2161 0.0955 0.0990 0.1036 0.1108 0.1251 0.1422
40 0.1145 0.1200 0.1272 0.1385 0.1614 0.1889 0.0833 0.0864 0.0905 0.0967 0.1092 0.1242
50 0.1029 0.1078 0.1143 0.1245 0.1450 0.1699 0.0749 0.0777 0.0813 0.0869 0.0982 0.1116
60 0.0943 0.0988 0.1047 0.1140 0.1328 0.1556 0.0687 0.0712 0.0745 0.0797 0.0900 0.1023
70 0.0875 0.0917 0.0972 0.1058 0.1233 0.1445 0.0638 0.0661 0.0692 0.0740 0.0835 0.0950
80 0.0820 0.0859 0.0911 0.0992 0.1156 0.1355 0.0598 0.0620 0.0649 0.0694 0.0783 0.0891
90 0.0775 0.0812 0.0860 0.0937 0.1092 0.1279 0.0565 0.0586 0.0613 0.0655 0.0740 0.0841
100 0.0736 0.0771 0.0817 0.0890 0.1037 0.1216 0.0537 0.0557 0.0583 0.0623 0.0703 0.0799
400 0.0373 0.0390 0.0414 0.0450 0.0524 0.0615 0.0273 0.0283 0.0296 0.0316 0.0356 0.0405
900 0.0249 0.0261 0.0277 0.0301 0.0351 0.0411 0.0183 0.0190 0.0198 0.0212 0.0239 0.0271

Table 2: Coefficients for the approximate formulas

Traditional KS test Modified Ks test
α a b c a b c

0.20 0.00053 0.73574 0.78520 0.00060 0.53446 0.80443
0.15 0.00049 0.77149 0.78515 0.00068 0.55329 0.76285
0.10 0.00059 0.81689 0.77062 0.00062 0.57999 0.78034
0.05 0.00052 0.89105 0.79780 0.00061 0.62082 0.81183
0.01 0.00054 1.03964 0.84912 0.00055 0.70276 0.85751
0.001 0.00052 1.22182 0.99171 0.00056 0.79997 0.89234
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Table 3: Powers (%) of the Traditional and Modified KS tests (α = 0.05)

Uniform Bi-modal Beta
n † ‡ † ‡ † ‡

20 9.59 16.28 35.11 44.48 17.73 25.09
40 19.30 29.14 70.57 76.65 36.20 51.99
60 32.15 44.66 90.40 92.48 54.74 75.78
80 46.30 60.53 97.34 97.89 69.53 89.83
100 58.58 74.36 99.43 99.65 81.45 96.57
200 94.53 99.20 100.00 100.00 99.66 99.99
300 99.81 100.00 100.00 100.00 100.00 100.00
400 99.99 100.00 100.00 100.00 100.00 100.00

Exponential Log-normal t1
n † ‡ † ‡ † ‡

20 58.38 57.06 79.88 67.88 84.86 30.46
40 90.49 91.94 98.27 95.97 98.16 56.05
60 98.66 99.16 99.94 99.68 99.82 76.60
80 99.87 99.96 99.99 99.98 99.99 88.70
100 100.00 100.00 100.00 100.00 100.00 95.16
200 100.00 100.00 100.00 100.00 100.00 99.98
300 100.00 100.00 100.00 100.00 100.00 100.00
400 100.00 100.00 100.00 100.00 100.00 100.00

t2 t6 Normal
n † ‡ † ‡ † ‡

20 45.74 9.87 11.40 5.33 5.01 5.03
40 68.93 14.85 15.32 5.40 5.04 4.93
60 84.02 21.15 17.83 5.80 5.13 5.02
80 91.89 29.31 21.78 6.25 5.13 4.92
100 95.86 36.80 25.01 7.16 5.15 4.99
200 99.92 73.15 40.01 9.27 5.45 5.22
300 100.00 92.16 53.43 11.46 5.05 5.36
400 100.00 98.35 64.87 14.30 5.16 4.87

† Traditional KS test
‡ Modified KS test
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Figure 1: The Typical Sample
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Figure 2: The Extreme Sample
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Figure 3: Sizes of the Traditional (solid line) and Modified (dotted line) KS tests (α = 0.05)
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Figure 4: The Function F (σ, L)
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Figure 5: Typical t2 Samples
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