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Abstract

We propose a method to estimate the transition density of a non-linear time-inhomogeneous diffusion.

Expressing the transition density as a functional of a Brownian bridge, allows us to estimate the density

through Monte Carlo simulations with any level of precision. We show how these transition density estimates

can be effectively used to estimate the parameters of the time-inhomogeneous diffusion and the conditional

moments of the process. In this paper we prove that our method is asymptotically equivalent to the maximum

likelihood estimator and more reliable than the closed-form approximation approach largely used in the

literature.
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1 Introduction

Stochastic continuous-time processes, especially diffusion processes generated by stochastic differential equa-

tions (SDE) have been widely used in financial economics. However, all models involve unknown parameters

or functions, which need to be estimated from observations of the process. The estimation of diffusion

processes is, thus, a crucial step in all applications and, in particular, in applied finance.

The maximum likelihood (ML) estimator for diffusion processes based on discrete observations has the

usual good properties (see Yoshida, 1992, Kessler, 1997, Prakasa Rao, 1999). Unfortunately, the transition

(or conditional) densities of X, required to construct the likelihood function, are usually unknown. In time-

homogeneous diffusion processes several alternatives to the ML have been proposed. For a survey see, for

example, Iacus (2008), Aït-Sahalia (2002) and Durham and Gallant (2002).

Estimation of time-inhomogeneous diffusions has received less attention in the literature than time-

homogeneous diffusions. However, time-inhomogeneous diffusions are extremely relevant for term structure

of interest rates (see a survey in Brigo and Mercurio, 2006) and, in general, to model stochastic processes

that depend explicitly on time due to seasonality, economic business cycles and monetary policy, among

other reasons. For example, monetary policies may not be the same during recessions and expansions or

may evolve over time to reflect different economic and financial conditions. Under the influence of these

“exogenous”conditions, the infinitesimal coeffi cients should depend explicitly on Xt and t:

dXt = a (t,Xt; θ) dt+ b (t,Xt; θ) dWt, X0 = ζ.

As usual θ denotes the vector of unknown parameter and W the standard Wiener process. The initial

condition ζ can be a constant or a random variable with the same state space of X and independent of

Wt, t ≥ 0. As in the case of time-homogeneous diffusions, the transition density of X, pX (s, x0, t, x) =

∂P [Xt 5 x|Xs = x0] /∂x (which we admit exists) is in general unknown.

Shoji and Ozaki (1998) propose a local linearization method which approximates a nonlinear stochastic

differential equation using a discretrized linear stochastic differential equation. The solution of this stochastic

differential equation has known distribution density, hence the maximum likelihood method may be used.
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This method produces consistent estimators but it requires that the sampling interval ∆ converges to zero

at an appropriate rate. Egorov et al. (2003) propose a procedure to recover the transition based on the

arguments of Aït-Sahalia (2002). Using ∆ fixed, they obtain a closed-form approximation of the transition

and, subsequently a closed-form of likelihood function for discretely sampled time-inhomogeneous diffusions

that converges, under some conditions, to the true likelihood function. Although the estimates based on

their method seemed to be extremely accurate, we demonstrate that this method can fail under certain

circumstances.

We propose a method to estimate the transition density of a non-linear time-inhomogeneous diffusion

assuming that the sampling interval ∆ is constant. Expressing the transition density as a functional of a

Brownian bridge, allows us to estimate the density through Monte Carlo simulations with any level of preci-

sion. The use of a Brownian bridge approximation is also presented in Beskos and Roberts (2005), for homo-

geneous diffusion. Our approach extends the work of Nicolau (2002) by now considering time-inhomogeneous

diffusions and conditional moments estimation. We show how these transition density estimates can be effec-

tively used to estimate the parameters of the time-inhomogeneous diffusion and the conditional moments of

the process. We prove that the proposed estimator is asymptotically equivalent to the maximum likelihood

estimator and can work in situations where the method of Egorov (2003) fails.

The rest of the paper is organized as follows. In section 2 we present the main results (density estimation,

conditional moments estimation and simulated maximum likelihood estimation). In section 3 we illustrate

the proposed methods and compare them with the method of Egorov et al. (2003). In section 4 we conclude

with a short discussion.

2 Main Results

2.1 Density Estimation

Consider a diffusion process solution to the time-inhomogeneous stochastic differential equation

dXt = a (t,Xt) dt+ b (t,Xt) dWt, X0 = ζ
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Under some regularity conditions, stated below, the transition density of the time-inhomogeneous process

X can be written as a functional of a Brownian bridge (see Gihman and Skorohod, 1972, §13) as follows:

pX (s, x0, t, x) =
1√

2π∆b (t, x)
exp

{
− (f (t, x)− f (s, x0))

2

2∆
+ Ā (t, f (t, x))− Ā (s, f (s, x0))

}
E [ψ] (1)

where

ψ = exp

{
∆

∫ 1

0

B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

)
dλ

}

f (t, x) =

∫ x

b−1 (t, ξ) dξ

η (t) = Wt − tW1, 0 ≤ t ≤ 1, is a Brownian Bridge

ā (t, y) = −
∫ g(t,y)

0

b′t (t, ξ)

b2 (t, ξ)
dξ +

a (t, g (t, y))

b (t, g (t, y))
− 1

2
b′y (t, g (t, y)) (2)

Ā (t, y) =

∫ y

0

ā (t, u) du, B̄ (t, y) = −1

2
ā2 (t, y)−

∫ y

s

ā′t (t, ξ) dξ − 1

2
ā′y (t, y)

and g : R2 → R is the inverse function of f, i.e. f (t, g (t, x)) = x (the derivative of h with respect to x is

denoted by h′x). In the appendix we provide an alternative proof of Gihman and Skorohod’s theorem based

on the ideas of Dacunha-Castelle and Florens-Zmirou (1986). The advantage of this method over other

Monte Carlo methods such as in Pedersen (1995) and Santa-Clara (1995), is that, in our case, the transition

density is partially known in closed form, apart from the parameters, given the infinitesimal coeffi cients

a (t, x) and b (t, x). Only the expression of E [ψ] is unknown in a closed form. We evaluate E [ψ] through

Monte Carlo simulations. Aït-Sahalia (1999, page 1368), had already suggested that E [ψ] could be obtained

through Monte Carlo simulation. As we will see, under some mild regularity conditions, it is straightforward

to compute E [ψ] with any level of precision. In this way, the transition density can be taken as if it was

known. This is confirmed by our simulations experiments.

Note that ψ = ψ (ω) depends on the Brownian bridge {η (λ) = η (λ, ω) , 0 ≤ λ ≤ 1}, and, thus, ψ is a

random variable. To estimate E [ψ] we propose the estimator

ψ̂ =
1

S

S∑
j=1

ψN (ωj) , {ωj ; j > 1} are i.i.d.

ψN (ω) = exp

{
∆

N

N−1∑
i=0

B̄

(
s+

i

N
∆,

(
1− i

N

)
f (s, x0) +

i

N
f (t, x) +

√
∆η

(
i

N

))}
. (3)

To obtain ψ̂ by simulation we proceed as follows:

4



1. Fix N and S (large enough).

2. Obtain ψN (ωj) for each j = 1, ..., S.

(a) For each j, simulate η independently at instants i/N , i = 0, 1, ..., N through the formula η (i/N) =

Wi/N − i
NW1 where Wi/N =

∑i
k=0

√
1/Nεk with ε0 = 0 and {εk, k = 1, ..., N} is a sequence of

i.i.d. random variables with N (0, 1) distribution.

(b) Calculate ψN (ω) using formula (3)

3. Calculate ψ̂ = 1
S

∑S
j=1 ψN (ωj).

From the estimate of E [ψ] , we are able to evaluate pX (s, x0, t, x) . Therefore, our estimator is the fol-

lowing:

p̂X (s, x0, t, x) =
1√

2π∆b (t, x)
exp

{
− (x− x0)

2

2∆

}
exp

{
Ā (t, x)− Ā (s, x0)

}
ψ̂. (4)

We illustrate the estimator p̂X in section 3.1. Our main results are based on the following assumptions:

A1: b (t, x) > 0, a′x (t, x) and b′x (t, x) exist and are bounded in any compact subset of the state space of X;

the derivatives b′′x2 (t, x), b′′t2 (t, x) and b′t (t, x) exist.

A2: B̄ (t, x) satisfies

lim
|x|→∞

1

1 + x2
sup

0≤t≤T
B̄ (t, x) ≤ 0.

A3: a (t, x) and b (t, x) have continuous derivatives up to 3rd order satisfying, for δ > 0

lim
|x|→∞

sup
0≤t≤T

{∣∣∣∣∂B̄∂t (t, x)

∣∣∣∣+

∣∣∣∣∂B̄∂x (t, x)

∣∣∣∣+

∣∣∣∣∂2B

∂x2
(t, x)

∣∣∣∣} e−δx2 = 0

where

B (t, x) = −1

2
a2 (t, y)− 1

2
a′y (t, y)−

∫ x

a′t (t, ξ) dξ. (5)

These conditions are very weak and are easily satisfied by most stochastic differential equations used

in economics and finance. For example, the infinitesimal coeffi cients a (t, x) = et
(
ex + x+ x2

)
, b (t, x) =

et (1 + x) satisfy the above assumptions.

5



We assume that the stochastic differential equation has a weak solution for all ζ ∈ R and θ ∈ Θ and

that the solutions are unique in law. Conditions that ensure these conditions can be found in Rogers and

Williams (1987). Suffi cient conditions are the local Lipschitz and growth conditions for each θ ∈ Θ.

Finally, for purposes of estimation we make the additional assumption:

A4: The infinitesimal coeffi cients are twice continuously differentiable in θ ∈ Θ. The true parameter vector

θ0 belongs to the interior of Θ. Let lk (θ) = log
(
pX
(
(k − 1) ∆, X(k−1)∆, k∆, Xk∆; θ

))
and in (θ) =

diag
(∑n

k=1 E
[
l′k (θ) l′k (θ)

T
])
(the superscripts ′ and T denote differentiation to θ, and transposition.

We assume: i−1
n (θ)

a.s.−→ 0 uniformly in θ ∈ Θ, and i
−1/2
n (θ0)

∑n
k=1 l

′
k′′ (θ) i

−1/2
n (θ0) is uniformly

bounded in probability for all θ ∈ Θ, such that
∥∥∥i1/2n (θ0) (θ − θ0)

∥∥∥ ≤ ε for some ε > 0.

This assumption guarantees the existence of the maximum likelihood estimator and its usual properties,

with fixed sampling interval ∆ (see Egorov et al., 2003):

Theorem 2.1 Assume A1-A2 and t > s. Then p̂X (s, x0, t, x)
p−→ pX (s, x0, t, x) as N → +∞ and S → +∞.

Let Ξ = {(s, x0, t, x) : (x0, x) ∈ I and pX (s, x0, t, x) is finite} ⊂ R4 where I is the state space of X.

Theorem 2.2 Under assumptions A1-A3 and t > s, p̂X (s, x0, t, x) converges uniformly in probability on Ξ

to pX (s, x0, t, x) when N → +∞ and S → +∞.

These theorems are essential in order to justify how the proposed estimator p̂X can be used to estimate

conditional moments and to derive a simulated maximum likelihood estimator.

2.2 Conditional Moments Estimation

Uniform convergence p̂X (s, x0, t, x), established in theorem 2.2, allows us to consider conditional moments

estimation according to the following result.

Theorem 2.3 Suppose that f (t, ξ) is continuous in ξ and
∫ b
a
f (t, ξ) pX (s, x0, t, ξ) dξ exists, where a and b

are constants. Consider ξi = a + i (b− a) /M and ∆ξi = (b− a) /M. Under the conditions of theorem 2.2

we have
M∑
i=1

f (t, ξi) p̂X (s, x0, t, ξi) ∆ξi
p−→
∫ ξ1

ξ0

f (t, ξ) pX (s, x0, t, ξ) dξ
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uniformly on Ξ as M →∞, N →∞, S →∞.

Uniform convergence is the right criterion to use, since
∑M
i=1 f (t, ξi) p̂X (s, x0, t, ξi) ∆ξi requires conver-

gence at each ξ of an uncountable set of points in the interval [ξ0, ξ1] . Theorem 2.3 deals with finite lim-

its of integration. To estimate the improper integral E [f (t,Xt)|Xs = x0] =
∫∞
−∞ f (t, ξ) pX (s, x0, t, ξ) dξ,

assuming E [ |f (t,Xt)||Xs] < ∞, we simply truncate the lower and upper limit values by suitable finite

constants ξ0 and ξ1 such that
∫ ξ1
ξ0
f (t, ξ) pX (s, x0, t, ξ) dξ ≈

∫∞
−∞ f (t, ξ) pX (s, x0, t, ξ) dξ. If the constants

ξ0 and ξ1 are suitably defined, this procedure should not involve errors since f (t, ξ) pX (s, x0, t, ξ) con-

verges rapidly to zero, as E [ |f (t,Xt)||Xs] is finite (in other words, if ξ0 and ξ1 are suitably defined then∫
{x:x/∈[ξ0,ξ1]} f (t, ξ) pX (s, x0, t, ξ) = 0). We illustrate this method of estimation in section 3.2.

2.3 The Simulated Maximum Likelihood Estimator

We now analyze the case where the infinitesimal coeffi cients a and b depend on some unknown parameter

vector θ. Assumption A4 guarantees the existence of the maximum likelihood estimator (MLE) and its usual

properties, with fixed sampling interval ∆ (hence, the asymptotics of the MLE is based on a large sample

scheme, i.e. n∆→∞).

The simulated maximum likelihood (SML) estimator is defined as θ̂n,S,N = arg max L̂n (θ) where

L̂n (θ) =
1

n

n∑
i=1

log p̂X
(
(i− 1) ∆, X(i−1)∆, i∆, Xi∆; θ, S,N

)
.

From theorem 2.2 we have, in probability,

lim
S,N→+∞

1

n

n∑
i=1

log p̂X
(
(i− 1) ∆, X(i−1)∆, i∆, Xi∆; θ, S,N

)
=

1

n

n∑
i=1

log lim
S,N→+∞

p̂X
(
(i− 1) ∆, X(i−1)∆, i∆, Xi∆; θ, S,N

)
=

1

n

n∑
i=1

log pX
(
(i− 1) ∆, X(i−1)∆, i∆, Xi∆; θ, S,N

)
.

Therefore, the optimization problem associated with the SML estimator is the same as that of the MLE.

With the additional condition
√
n/S → 0, the θ̂n,S,N estimator has the same asymptotic behavior as that of

the MLE (see, Gouriéroux and Monfort, 1991).

When θ changes it is necessary to keep the same drawing {εk, k = 1, ..., N} , defined in the 3 steps proce-

dure (section 2.1), in order that the difference
∣∣log p̂X (·, ·, ·, ·; θ)− log p̂X

(
·, ·, ·, ·; θ′

)∣∣ can only be attributed
7



to the difference
∣∣θ − θ′∣∣ . The SML estimator is illustrated in section 3.3.

3 Numerical Experiments

3.1 Density Estimation

In this section we compare our estimator p̂X (s, x0, t, x) (equation (4)) with the estimator proposed by Egorov

et al. (2003). This estimator is based on a Hermite approximation that leads to the following expression for

the transition density:

p
[m]
X (s, x0, t, x) =

1√
∆b (t, x)

p
[m]
Z

(
s, f (s, x0) , t,

f (t, x)− f (s, x0)√
∆

)
where

pZ (s, ys, t, z) = φ (z)

2m∑
k=0

β
[m]
k (s, t, ys)Hk (z) , φ (z) =

e−z
2/2

√
2π

, Hk (w) = φ (w)
−1 d

kφ (w)

dwk

and β[m]
k are the terms up to ∆m in the expression (k!)

−1∑2m
i=0

(
Aiθ,ỹ,∆ ◦Hk

)
(0, s,∆, ỹ) ∆i/ (i!) where

(
Aiθ,ỹ,∆ ◦ f

)
(z, t) =

∂
(
Ai−1 ◦ f

)
∂z

ā
(
t,
√

∆z + ỹ
)

√
∆

+
1

2∆

∂2
(
Ai−1 ◦ f

)
∂z2

+
∂2
(
Ai−1 ◦ f

)
∂t

.

To illustrate the methodology, Egorov et al. (2003) carried out extensive Monte Carlo experiments using

some data generating processes. They showed that for certain values of the parameters and for certain values

of ∆, the estimates p[m]
X for m = 1, 2 or 3 almost coincide with the true density pX . We carried out similar

experiments and confirmed their results. However, we also observed that a change in the data generating

process (using different values θ and ∆) may have an important impact on the properties of p[m]
X (s, x0, t, x) .

In some cases, the quality of p[m]
X (s, x0, t, x) is severely compromised (for m = 1, 2, 3). In theory this problem

can be overcome by taking m > 3. We discuss this issue using an example below.

Monte Carlo experiments shows that when the estimator p[m]
X (s, x0, t, x) performs exceptionally well, our

estimator p̂X (s, x0, t, x) can be as accurate as p[m]
X (s, x0, t, x) for adequate values N and S. However, the

real advantage of p̂X (s, x0, t, x) over p[m]
X (s, x0, t, x) is that the former can still perform very well even when

the latter shows poor quality (for m = 1, 2 or 3).

To analyze some of these issues we consider some time-inhomogeneous processes with known transition

densities. These densities provide a benchmark for analyzing the performance of methods in analysis. We
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first study the diffusion process solution to the time-inhomogeneous stochastic differential equation

dXt = βXtdt+ σ0e
σ1tdWt. (6)

To build p̂X (s, x0, t, x) we need the following functions (see equation (1)):

f (t, x) =
e−tσ1x

σ0
, g (t, x) = etσ1xσ0, ā (t, x) = βx− xσ1

Ā (t, x) =
x2

2
(β − σ1)

B̄ (t, x) =
1

2
(σ1 − β)

(
1 + x2 (β − σ1)

)
It can be easily proved that the true density is (with ∆ = t− s)

pX (s, x0, t, x) =
exp

{
− (x−mt)

2
/ (2vt)

}
√

2πvt
, mt = e−β∆x0, vt =

σ2
0

(
e2σ1t − e2(σ1s−β∆)

)
2 (β + α1)

.

The SDE (6) was studied in Egorov et al. (2003) for the following parameters:

(β, σ0, σ1) = (1, 1,−0.001) , ∆ = 1/52.

For this particular specification, the estimates of the transition densities based on the Hermite approximation

performs very well (p[1]
X almost coincides with the true transition density). Our method reaches the precision

of the Hermite approximation for N ' 5000. However, since the transition density based on the Euler

discretization is quite good for the chosen parameters (see Egorov et al., 2003, Fig. 1), the estimation

exercise does not seem particularly demanding to us. Changing the step of discretization to ∆ = 1 has an

important impact on the results of the Monte Carlo experiment (in this case, the transition density based

on the Euler discretization moves significantly away from the true density). Figure 1 presents the results.

Basically, it compares p[2]
X , p

[3]
X , p̂X (for N = 50 and S = 1000) and pX (true density) when x0 = 0 (we should

observe that in practical applications there is no need to fix a value as high as 1000 for S; the advantage of

considering S = 1000 in this exercise is that the variance of estimates p̂X (s, x0, t, ξi) are nearly zero, so all

estimates are suffi ciently representative). All else being equal, that change (i.e. ∆ changes to ∆ = 1) involves

a loss of accuracy in both estimators under analysis. However, whereas our estimator can compensate this

loss of accuracy with an increase in N, the method based on the Hermite approximation presents very

unsatisfactory results for any expansion between m = 1 and m = 3 (the highest order considered in Egorov
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et al., 2003). In particular, some of these estimates become negative in some intervals of state space of X.

This poor quality of p[m]
X for m = 1, 2, 3 can in theory be overcome by taking m > 3. However, we have not

tried m = 4 as this expansion involves too many terms to be of interest in practical applications. To get

an idea of how many terms the Hermite expansion p[m]
X involves in the case of equation (6), we used the

command Expand for p[m]
X in the Mathematica software, and then counted how many terms were involved in

the expansion, using the command Length: we got 19 terms for p[1]
X , 109 for p

[2]
X and 368 for p[3]

X . Obviously

the command Simplify can considerably reduce these expressions, but they are in general very long. In our

method, the only cost of having more accurate estimates relates to the processing time. Table 1 gives an

idea of the length of time required to obtain p̂X (s, x0, t, x) from equation 6 (we are using the GAUSS 9.0

software and an Intel Duo CPU, 2.66 GHz).

** Figure 1 HERE **

** Table 1 HERE **

Another example considered in Egorov at al. (2003) is the SDE

dXt = βXtdt+ σ0e
σ1tXtdWt. (7)

It can be checked that

f (t, x) =
e−tσ1 log(x)

σ0
, g (t, x) = ee

tσ1xσ0 , ā (t, x) =
e−tσ1β

σ0
− 1

2
etσ1σ0 − xσ1

Ā (t, x) = −σ1x
2

2
− 1

2
etσ1σ0x+

e−tσ1βx

σ0

B̄ (t, x) = −1

2

(
e−tσ1β

σ0
− 1

2
etσ1σ0 − xσ1

)2

+
σ1

2
− x

(
−1

2
etσ1σ0σ1 −

e−tσ1βσ1

σ0

)
.

Also it can be proved that

pX (s, x0, t, x) =
exp

{
− (log (x)−mt)

2
/ (2vt)

}
√

2πvtx
, vt =

(
e2tσ1 − e2sσ1

)
σ2

0

2σ1
, mt = log (x0)− β∆− 1

2
vt.

The SDE (7) was studied in Egorov et al. (2003) for the following parameters:

(β, σ0, σ1) = (0.2, 0.25,−0.001) , ∆ = 1/52.
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The estimates of the transition densities based on the Hermite approximation once again performs exceptional

well. However, changing∆ or (β, σ0, σ1)may result in a severe loss of accuracy of the Hermite approximation,

whereas our method continues to be highly accurate for appropriate values of N. This occurs, for example,

for β = 2 (all else being equal) as can be seen in figure 2, panels A1 and A2. The Hermite approximation

deteriorated further if, besides β = 2, the step of discretization increased to ∆ = 1/20. Figure 2, panels B1

and B2, shows that the estimates of the Hermite approximations behave erratically and assume negative

values, even for the expansion m = 3. For example, it can be verified that for (β, σ0, σ1) = (2, 0.25,−0.001)

and ∆ = 1/20 one obtains

s = 0, x0 = 1, t = 1/20, x = 1⇒ p
[1]
X (0, 1, 1/20, 1) = −3.9 < 0,

s = 0, x0 = 1, t = 1/20, x = 0.9⇒ p
[2]
X (0, 1, 1/20, 0.9) = −2.1 < 0,

s = 0, x0 = 1, t = 1/20, x = 0.96⇒ p
[3]
X (0, 1, 1/20, 0.96) = −0.9 < 0.

On the contrary, our method continues to be precise.

** Figure 2 HERE **

3.2 Conditional Moments Estimation

As mentioned before, p̂X (s, x0, t, x) can be used to estimate conditional moments. To illustrate this topic

we consider a diffusion process solution to the time-inhomogeneous stochastic differential equation

dXt = Xt

(
eτt − α log (Xt) +

σ2

2

)
dt+ σXtdWt. (8)

proposed by Black and Karasinski (1991) to model interest rates. The initial condition ξ It can be checked

that (see Brigo and Mercurio, 2006, page 75)

E [Xt|Xs = x0] =

∫ ∞
0

ξpX (s, x0, t, ξ) dξ

= exp

{
e−α(t−s) lnx0 +

∫ t

s

e−α(t−u)eτudu+
σ2

4α

(
1− e−2α(t−s)

)}
. (9)
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The estimator p̂X (s, x0, t, ξi) is based on the following functions (see equation (1)):

f (t, x) =
log(x)

σ
, g (t, x) = exσ ā (t, x) =

σ2/2− xασ + etτ

σ
− σ

2
(10)

Ā (t, x) =
etτx

σ
− x2α

2
, B̄ (t, x) = −1

2

(
σ2/2− xασ + etτ

σ
− σ

2

)2

+
α

2
− etτxτ

σ
. (11)

To estimate (9) for each x0 in the interval [0.5, 1.2] we consider, according to theorem 2.3, the estimator

M∑
i=1

ξi × p̂X (s, x0, t, ξi) ∆ξi, x0 ∈ [0.5, 1.2] (12)

where ξi = a+ i (b− a) /M and a = 0.5 and b = 1.7. The values a and b were selected so that

∫ b

a

ξpX (s, x0, t, ξ) dξ '
∫ ∞

0

ξpX (s, x0, t, ξ) dξ.

To discuss the effectiveness of the estimator defined in equation (12) we set (τ , α, σ) = (−0.13, 0.409, 0.344)

and ∆ = 1/12. These values are the maximum likelihood estimates from the monthly observations of the

U.S. Fed funds rate in the period July 1954-March 2008 (see section 3.3). The other parameters were fixed

as follow: s = 0, t = 1/12, N = 30, S = 1000 (as mentioned before, there is no need to fix a value as high

as 1000 for S). For this specification we take (12) as an estimator for the conditional mean (9) for different

values for M.

** Figure 3 HERE **

From figure 3 we conclude that the accuracy of the estimator (12) increases as M goes from 5 to 100. At

M = 100 the estimator (12) gives almost the true vales of the conditional mean.

3.3 SML Estimator

We now present the performance of the proposed method for parameter estimation from a set of Monte Carlo

experiments based on the SDE (8). We used the expressions (10) and (11) to build the estimator p̂X . The

transition density of X is given by

pX (s, x0, t, x) =
exp

{
− (log (x)−mt)

2
/ (2vt)

}
√

2πvtx
, (mt, vt are the conditional moments)
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Knowing the true density pX allows us to obtain the MLE, which can then be used to assess the accuracy of

the simulated maximum likelihood estimates. The data generated process used in the Monte Carlo simulation

was defined according to the following lines: the step of discretization was initially fixed as ∆ = 1/12 and the

vector (τ , α, σ) = (−0.013, 0.409, 0.344) was calibrated according to the maximum likelihood estimates from

the monthly observations of the U.S. Fed funds rate in the period July 1954-March 2008 (645 observations).

From the transition densities we simulated 2000 paths of 645 observations of Xt, first with a step size

∆ = 1/12 and then with ∆ = 1/4, using the ML estimates (τ , α, σ) = (−0.013, 0.409, 0.344). The initial

value of X was ξ = exp
{
σ2/ (4α)

}
= 1.075.We then estimated θ = (τ , α, σ) using three methods: ML, SML

(we analyze N = S = 30 and N = S = 60) and Hermite Expansion (m = 3). In all cases, the estimation was

based on the Constrained Maximum Likelihood Estimation procedure written for GAUSS with the option

of switching between the BFGS, DFP, NEWTON and BHHH algorithms depending on change in function

value, number of iterations, or change in line search step length - default settings.

The results of the Monte Carlo experiment are presented in tables 3 and 4. In table 2 we calculate the

mean and the standard deviation of the difference between the ML estimates and the other estimates, in

the cases ∆ = 1/12 and ∆ = 1/4. For example, the value -6.4E-05 in table 2, was obtained by using the

expression 2000−1
∑2000
i=1

(
τ̂MLi − τ̂SML∗i

)
, where τ̂MLi and τ̂SML∗i

are the ith ML and SML estimate of τ ,

respectively.

** Table 2 HERE **

In table 3 we calculate the root mean squared error of the various estimators (times 100). For example,

the value 0.454 in table 3 was obtained using the expression
√

2000−1
∑2000
i=1 (τMLi − (−0.013))

2 × 100.

** Table 3 HERE **

Some conclusions emerge from these tables:

• In the case ∆ = 1/12 the Hermite method is, for practical purposes, the ML estimator. However, when

∆ changes to ∆ = 1/4 the Hermite method (m = 3) is completely inadequate: in 10 out of 2000

13



simulated paths the method of estimation could not be implemented as the transition densities assume

negative values during the optimization procedure causing the algorithm of optimization to crash (for

this reason, some entries in table 2 and 4 are named “N/A”). Even considering only the 1990 cases

where the algorithm reaches an optimum solution, the RMSE of the estimators based on the Hermite

are much higher than that of the SML estimators (about 10 times higher). The results are even worse

if ∆ is higher. As we discussed previously, although the Hermite method works if the problem is

suffi ciently undemanding, it can also be highly unstable for a certain range of the parameters and/or

for high values of ∆. This can be seen again in the present Monte Carlo experiment. For example,

one can verify that for s = 0, x0 = 1, t = 1/4, x = 0.6 the transition density turns out to be

negative, p[3]
X (0, 1, 1/4, 0.6) = −0.017. Obviously, in this case, the method of estimation based on

Hermite expansion could not be implemented as the transition densities assume negative values during

the optimization procedure causing the optimization algorithm to crash. This poor quality of p[3]
X can

in theory be overcome by taking m > 3. However, as we observed, higher expansions (m > 3) involves

too many terms to be of interest in practical applications (after expanding the expression p[3]
X we count

410 terms using the Length command of the Mathematica software package).

• The SML estimator mimics the ML estimator. Notice that, in practical terms, the difference between

the ML and SML are negligible. For example, in the case of N = 30, S = 30, ∆ = 1/12 the ML and

SML estimates of α agree in average in the 3 decimal places which represents a difference of about

0.1% (see table 2); for example, if the ML of α is α̂ML = 0.4092, a typical SML estimate may be, for

example, α̂SML∗∗ = 0.4097. Moreover, table 3 shows that the RMSE of the SML estimator almost

coincides with that of the ML estimator.

• Table 3 shows that the results of the SML and ML estimators improved, in general, when ∆ changes

to ∆ = 1/4. A simple explanation for this is that with ∆ = 1/12 the period of observation is

[0, 645/12] = [0, 53.75] whereas with ∆ = 1/4 the period is [0, 645/4] = [0, 161.25]. This effect of

enlarging the period of observation increases the available information concerning the long-run behavior

of the process, and thus increases the precision of the estimators. Naturally, the properties of the SML

estimator could have been affected by the increase of ∆; this is not the case, however, as N is big

14



enough. Notice that the results would be quite different if the period [0, 645/12] was kept constant

with ∆ = 1/4.

4 Conclusion

Time-inhomogeneous diffusions are extremely relevant for term structure of interest rates and, in general, to

model stochastic processes that depend explicitly on time due to seasonality, economic business cycles and

monetary policy, among other reasons. When the time-inhomogeneous diffusions are non-linear the MLE

cannot be used in general. Probably, the best known method of estimation available in the literature to deal

with such diffusions is the one proposed by Egorov et al. (2003). As shown in Egorov et al. (2003) and

confirmed by us, this method, for specification of certain parameters and ∆, may provide the ML estimates.

However, as shown in this paper, the method of Egorov et al. (2003), for Hermite expansion between m = 1

and m = 3, may also be completely inadequate (for example, it may render negative values for the transition

densities). Although this problem may be overcome by using higher expansions (m > 3), the number of

terms associated with such expansions increases exponentially (as mentioned, the number of terms for the

transition density approximation based on the Hermite expansion for m = 3 is about 368 for a simple SDE

as dXt = βXtdt + σ0e
σ1tdWt). These higher Hermite expansions (say, for m > 3) not only involve too

many terms to be of interest in practical applications, but may also raise doubts about the precision of the

optimization algorithms. Our method is asymptotically equivalent to the maximum likelihood method (as

N,S →∞) and the cost of having more accurate estimates is related to the processing time.
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Appendix

Proof of equation (1) Consider dYt = a (t, Yt) dt + dWt and assume P
[∫ t
s
a2 (u, Yu) du < +∞

]
= 1.

By Girsanov’s theorem we have dP y0/dW y0 = Ly0∆ where t− s = ∆ and

Ly0∆ = exp

{∫ t

s

a (u, Yu) dYu −
1

2

∫ t

s

a2 (u, Yu) du

}
.

Ly0∆ is the density of the measure P y0 of the solution Y when Ys = y0 with respect to the Wiener measure

W y0 . Thus, for any bounded function φ

EPy0 [φ (Yt)] = EWy0 [φ (Yt)L] = EWy0 [EWy0 [φ (Yt)L
y0
∆ |Yt]] =

∫
φ (y)EWy0 [Ly0∆ |Yt = y] dW y0 (y) .

Thus, ∫
φ (y) pY (s, y0, t, y) dy =

∫
φ (y)EWy0 [Ly0∆ | y]

1√
2π∆

exp

{
− (y − y0)

2

2∆

}
dy

and so, we can conclude

pY (s, y0, t, y) = EWy0 [Ly0∆ | y]
1√

2π∆
exp

{
− (y − y0)

2

2∆

}
.

Let us analyze now EWy0 [Ly0∆ | y]. With A (t, y) =
∫ y

0
a (t, u) du we have, by Ito’s formula

A (t, Yt)−A (s, y0) =

∫ t

s

∫ Yu

s

a′t (u, ξ) dξdu+
1

2

∫ t

s

a′y (u, Yu) du+

∫ t

s

a (u, Yu) dYu

Thus,

Ly∆ = exp

{∫ t

s

a (u, Yu) dYu −
1

2

∫ t

s

a2 (u, Yu) du

}
= exp

{
A (t, Yt)−A (s, y0)−

∫ t

s

1

2
a2 (u, Yu) du−

∫ t

s

∫ Yu

s

a′t (u, ξ) dξdu− 1

2

∫ t

s

a′y (u, Yu) du

}

= exp

{
A (t, Yt)−A (s, y0) +

∫ t

s

B (u, Yu) du

}
= exp

{
A (t, Yt)−A (s, y0) + ∆

∫ 1

0

B (s+ λ∆, Ys+λ∆) dλ

}
where B (t, y) = − 1

2a
2 (t, y)−

∫ y
s
a′t (t, ξ) dξ − 1

2a
′
y (t, y) . We have

EWy0 [Ly∆|Yt = y] = exp {A (t, y)−A (s, y0)}EWy0

[
exp

{
∆

∫ 1

0

B (s+ λ∆, Ys+λ∆) dλ

}∣∣∣∣Yt = y

]
.

We can now check that Ys+λ∆ ≡ (1− λ) y0 + λy + Ys+λ∆ − y0 − λy + λy0 and, under the condition, Yt = y

and the measure W y0 one has

Ys+λ∆ = (1− λ) y0 + λy +
√

∆

(
Ys+λ∆ − y0√

∆
− λYt − y0√

∆

)
= zu (y, y) +

√
∆η (λ)
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({η (λ) , 0 5 λ 5 1} is the Brownian bridge). To verify that η (λ) is in fact a Brownian bridge one needs to con-

clude that (Ys+λ∆ − y0) /
√

∆ is a Wiener process under the measure W (where dW/dP =

exp
{
−
∫ t

0
a (u, Yu) dYu + 1/2

∫ t
0
a2 (u, Yu) du

}
). By Girsanov’s theorem, W̃t =

∫ t
0
a (u, Yu) du + Wt is a

Wiener process under the measure W so (Ys+λ∆ − y0) /
√

∆ =
(∫ s+λ∆

0
a (u, Yu) du

)
/
√

∆ = W̃s+λ∆/
√

∆

is also a Wiener process with variance 1 when λ = 1. To sum up,

EWy0 [Ly∆|Yt = y] = exp {A (t, y)−A (s, y0)}

×EWy0

[
exp

{
∆

∫ 1

0

B
(
s+ λ∆, (1− λ) y0 + λy +

√
∆η (λ)

)
dλ

}]

pY (s, y0, t, y) =
1√

2π∆
exp

{
− (y − y0)

2

2∆
+A (t, y)−A (s, y0)

}

×EWy0

[
exp

{
∆

∫ 1

0

B
(
s+ λ∆, (1− λ) y0 + λy +

√
∆η (λ)

)
dλ

}]
where

A (t, y) =

∫ y

0

a (t, u) du, B (t, y) = −1

2
a2 (t, y)−

∫ y

s

a′t (t, ξ) dξ − 1

2
a′y (t, y) .

Consider now the more general case dXt = a (t,Xt) dt + b (t,Xt) dWt. Let f (t, x) =
∫ x

b−1 (t, ξ) dξ and

g : R2 → R be the inverse function of f, i.e. f (t, g (t, x)) = x. By Ito’s formula Yt = f (t,Xt)

dYt = ā (t, Yt) dt+ dWt, ā (t, y) =

∫ g(t,y)

0

b′t (t, ξ)

b2 (t, ξ)
dξ +

a (t, g (t, y))

b (t, g (t, y))
− 1

2
b′x (t, g (t, y))

Thus

pY (s, y0, t, y) =
1√

2π∆
exp

{
− (y − y0)

2

2∆
+ Ā (t, y)− Ā (s, y0)

}

×EWy0

[
exp

{
∆

∫ 1

0

B̄
(
s+ λ∆, (1− λ) y0 + λy +

√
∆η (λ)

)
dλ

}]
where

Ā (t, y) =

∫ y

0

ā (t, u) du, B (t, y) = −1

2
ā2 (t, y)−

∫ y

s

ā′t (t, ξ) dξ − 1

2
ā′y (t, y)

and by Jacobian formula

pX (s, x0, t, x) = f ′x (t, x) pY (s, f (s, x0) , t, f (t, x))

=
1√

2π∆b (t, x)
exp

{
− (f (t, x)− f (s, x0))

2

2∆
+ Ā (t, f (t, x))− Ā (s, f (s, x0))

}

×EWy0

[
exp

{
∆

∫ 1

0

B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

)
dλ

}]
.
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Proof of theorem 2.1 By assumptions A1 and A2 the density pX (s, x0, t, x) as it is defined in equation

(1) exists and is well defined (see Gihman and Skorohod, 1972). Given the almost sure (a.s.) continuity of

B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

)
in λ, it follows that

∆

N

N−1∑
i=0

B̄

(
s+

i

N
∆,

(
1− i

N

)
f (s, x0) +

i

N
f (t, x) +

√
∆η

(
i

N

))
converges in probability to

∫ 1

0
B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

)
dλ as N → ∞ and so, by

Slutsky’s theorem, ψN (ω) converges in probability to ψ (ω) as N → +∞. Therefore, we have in probability

lim
S→+∞

(
lim

N→+∞
ψ̂

)
= lim

S→+∞

 lim
N→+∞

1

S

S∑
j=1

ψN (ωj)

 = lim
S→+∞

1

S

S∑
j=1

lim
N→+∞

ψN (ωj)

= lim
S→+∞

1

S

S∑
j=1

ψ (ωj) = E [ψ]

by the law of large numbers, since the ψ (ωj) are i.i.d. and E [|ψ|] = E [ψ] < +∞. Thus, for each (s, x0, t, x),

the estimator p̂X (s, x0, t, x) converges in probability to pX (s, x0, t, x) as N → +∞ and S → +∞.�

Proof of theorem 2.2 To guarantee that p̂X (s, x0, t, x) converges uniformly in probability on Ξ to

pX (s, x0, t, x) it is suffi cient to assure that (i) p̂X (s, x0, t, x) converges in probability for each (s, x0, t, x) ∈ Ξ

(pointwise convergence) and (ii) p̂X (s, x0, t, x) is stochastically equicontinuous (see Davidson, 1994, theorem

21.9). Theorem 2.1 guarantees (i), so it remains to prove (ii). By theorem 21.10 of Davidson (1994), a

suffi cient condition for p̂X (s, x0, t, x) to be stochastically equicontinuous is that β = Op (1) where

β = sup
(s∗,x∗0 ,t∗,x∗)∈Ξ∗

∥∥∥∥(∂p̂X (s∗, x∗0, t
∗, x∗)

∂s
,
∂p̂X (s∗, x∗0, t

∗, x∗)

∂t
,
∂p̂X (s∗, x∗0, t

∗, x∗)

∂x0
,
∂p̂X (s∗, x∗0, t

∗, x∗)

∂x

)∥∥∥∥
(13)

and ‖·‖ is a norm, Ξ∗ is an open convex set containing Ξ and (s∗, x∗0, t
∗, x∗) ∈ Ξ∗ is a point on the line seg-

ment joining two arbitrary points z and z′ in Ξ∗. Assumptions A1-A3 guarantee the existence of the deriva-

tives ∂pX (s, x0, t, x) /∂s, ∂pX (s, x0, t, x) /∂t, ∂pX (s, x0, t, x) /∂x0, ∂pX (s, x0, t, x) /∂x (see Gihman and Sko-

rohod, 1972), thus it remains to prove that β = Op (1) . If all elements within the norm in (13) are Op (1)

then β = Op (1) . Let p̂X (s, x0, t, x) = φψ̂ = φ (s, x0, t, x) ψ̂ (s, x0, t, x) where

φ = φ (s, x0, t, x) =
1√

2π∆b (t, x)
exp

{
− (f (t, x)− f (s, x0))

2

2∆
+ Ā (t, f (t, x))− Ā (s, f (s, x0))

}
.

We have

∂p̂X (s, x0, t, x)

∂x
=
∂φ

∂x
ψ̂ + φ

∂ψ̂

∂x
=
∂φ

∂x
ψ̂ + φ

1

S

s∑
j=1

∂ψN (ωj)

∂y
.
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The term

∂φ

∂x
= φ×

(
−b
′
x (t, x)

b (t, x)
− f (t, x)− f (s, x0)

∆
f ′ (s, x) + Ā′x (t, f (t, x)) f ′ (t, x)

)
is a continuous deterministic function. Therefore, it is bounded on all points on the line segment joining

the points (s, x0, t, x) and (s′, x′0, t
′, x′) in Ξ∗ such that pX (s, x0, t, x) and pX (s′, x′0, t

′, x′) are finite. Since

ψ̂
p−→ E [ψ] by theorem 2.1, it follows that the term (∂φ/∂x) ψ̂ is bounded in probability. On the other

hand, given the almost sure (a.s.) continuity of

B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

)
and

∂
(
B̄
(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

))
∂x

in λ, it follows that

∂ψN (ω)

∂x
= ψN (ω)

{
∆

N

N−1∑
i=0

B̄′x

(
s+

i

N
∆,

(
1− i

N

)
f (s, x0) +

i

N
f (t, x) +

√
∆η

(
i

N

))}

converges in probability to ψ (ω) ξ (ω) as N → +∞ where

ξ (ω) = ∆

∫ 1

0

(
B̄′2

(
s+ λ∆, (1− λ) f (s, x0) + λf (t, x) +

√
∆η (λ)

))
λf ′ (s, x) dλ.

(B̄′2 is the derivative with respect to the second argument of the function B̄). The random variable ξ (ω)

is bounded in probability since the limits of integration are finite, the integrand is continuous and ηt,

t ∈ [0, 1] is a bounded process (a.s.). Using the same arguments as in the proof of theorem 2.1, one can

conclude that the random quantity S−1
∑s
j=1 ∂ψN (ωj) /∂x converges in probability to E [∂ψN (ω) /∂x] .

Similar arguments can be used to show that ∂p̂X (s∗, x∗0, t
∗, x∗) /∂s = Op (1) , ∂p̂X (s∗, x∗0, t

∗, x∗) /∂t =

Op (1) , ∂p̂X (s∗, x∗0, t
∗, x∗) /∂x0 = Op (1) . �

Proof of theorem 2.3 By theorem 2.2 we can write p̂X (s, x0, t, ξi) = pX (s, x0, t, ξi) + op (1) where

lim op (1) = 0 uniformly in probability on Ξ as N → +∞ and S → +∞. Without loss of generality consider

ξ0 = 0 and ξ1 = 1 so ∆ξi = 1/M. We should prove that the expression (14) goes to zero in probability as
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M →∞, N →∞, S →∞. We have,∣∣∣∣∣
M∑
i=1

f (t, ξi) p̂X (s, x0, t, ξi) ∆ξi −
∫ ξ1

ξ0

f (t, ξ) pX (s, x0, t, ξ) dξ

∣∣∣∣∣ (14)

=

∣∣∣∣∣ 1

M

M∑
i=1

f

(
t,

1

M

)
p̂X

(
s, x0, t,

1

M

)
−
∫ 1

0

f (t, ξ) pX (s, x0, t, ξ) dξ

∣∣∣∣∣
≤

∣∣∣∣∣ 1

M

M∑
i=1

f

(
t,

1

M

)
pX

(
s, x0, t,

1

M

)
−
∫ 1

0

f (t, ξ) pX (s, x0, t, ξ) dξ +
1

M

M∑
i=1

op (1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

M

M∑
i=1

f

(
t,

1

M

)
pX

(
s, x0, t,

1

M

)
−
∫ 1

0

f (t, ξ) pX (s, x0, t, ξ) dξ

∣∣∣∣∣+

∣∣∣∣∣ 1

M

M∑
i=1

op (1)

∣∣∣∣∣ . (15)

Due to the continuity of f (t, ξ) pX (s, x0, t, ξ) ,
1
M

∑M
i=1 f

(
t, 1
M

)
pX
(
s, x0, t,

1
M

)
is a Riemann sum. Therefore,

the first term in modulus of (15) goes to zero as M → +∞. The second term goes to zero uniformly in

probability on Ξ as N → +∞ and S → +∞.�
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Tables

Table 1 Computational Times to obtain p̂X (s, x0, t, x)

N S Computation Time (secs.)

100 100 ' 0

500 500 0.06

1000 1000 0.27

2000 2000 1

3000 3000 2.4

5000 5000 7.2

Table 2 Estimation results from the Monte Carlo study I

τ̂ML − τ̂SML∗ τ̂ML − τ̂SML∗∗ τ̂ML − τ̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

Mean -6.4E-05 8.98E-05 -7.6E-05 -2.35E-05 4.6E-08 N/A

SDev. 4.0E-05 2.10E-05 2.9E-05 1.78E-05 2.8E-06 N/A

α̂ML − α̂SML∗ α̂ML − α̂SML∗∗ α̂ML − α̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

Mean -6.1E-04 1.64E-03 -5.1E-04 -1.36E-05 2.5E-07 N/A

SDev. 3.9E-04 5.80E-04 3.1E-04 4.30E-04 8.9E-06 N/A

σ̂ML − σ̂SML∗ σ̂ML − σ̂SML∗∗ σ̂ML − σ̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

Mean -2.4E-05 1.90E-04 -1.6E-05 6.36E-05 -1.2E-07 N/A

SDev. 4.7E-05 6.78E-05 2.3E-05 3.17E-05 3.9E-06 N/A

(∗)N = S = 30;(∗∗)N = S = 60; Her(3): Hermite Expan., m = 3
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Table 3 Estimation results from the Monte Carlo study II

τ̂ML τ̂SML∗ τ̂SML∗∗ τ̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

RMSE100 0.454 0.170 0.456 0.170 0.455 0.169 0.454 N/A

SEML100 0.449 0.169

α̂ML α̂SML∗ α̂SML∗ α̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

RMSE100 4.966 3.309 4.996 3.263 4.987 3.305 4.966 N/A

SEML100 4.790 3.250

σ̂ML σ̂SML∗ σ̂SML∗ σ̂Her(3)

∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4 ∆ = 1
12 ∆ = 1

4

RMSE100 0.970 0.975 0.969 0.975 0.969 0.975 0.970 N/A

SEML100 0.967 0.975

(∗)N = S = 30;(∗∗)N = S = 60; Her(3): Hermite Expan., m = 3

RMSE100 : Root mean squared error multiplied by 100

SEML100 : Std. Error of MLE multiplied by 100
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Figures

Figure 1: p̂X when X is governed by the SDE (6) for (β, σ0, σ1) = (1, 1,−0.001) , ∆ = 1. The estimator p̂X

was obtained for N = 50 and S = 1000. On the left panel we plot the densities; on the right panel we plot

the difference between the true density and the approximations
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Figure 2: Assessing the performance of p[2]
X , p

[3]
X , p̂X when X is governed by the SDE (7). Key: · — ·· pX ;

– p̂X ; ——p
[2]
X ; · · ·· p[3]

X . Painels A1 and A2: (β, σ0, σ1) = (2, 0.25,−0.001) , ∆ = 1/52; p̂X was obtained

for N = 60 and S = 1000. Painel B1 and B2: (β, σ0, σ1) = (2, 0.25,−0.001) , ∆ = 1/20; p̂X was obtained for

N = 100 and S = 1000. The deviation of p[2]
X and p[3]

X from the true density is subtancial, mainly in panels

B1 and B2
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Figure 3: Comparison between the true conditional mean, equation (9) and the approximation (12), for

different values of M
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