
HAL Id: hal-00637024
https://hal.science/hal-00637024

Submitted on 29 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple method to ensure plausible multiple
imputation for continuous multivariate data

Shakir Hussain, Mohammed Mohammed, Sayeed Haque, Roger Holder, John
Macleod

To cite this version:
Shakir Hussain, Mohammed Mohammed, Sayeed Haque, Roger Holder, John Macleod. A
simple method to ensure plausible multiple imputation for continuous multivariate data.
Communications in Statistics - Simulation and Computation, 2010, 39 (09), pp.1779-1784.
�10.1080/03610918.2010.518267�. �hal-00637024�

https://hal.science/hal-00637024
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

A simple method to ensure plausible multiple imputation for 

continuous multivariate data 
 
 

Journal: Communications in Statistics - Simulation and Computation 

Manuscript ID: LSSP-2009-0272.R3 

Manuscript Type: Original Paper 

Date Submitted by the 

Author: 
06-Aug-2010 

Complete List of Authors: Hussain, Shakir; School of Medicine, University of Birmingham, 
Division of Primary Care and General Practice 
Mohammed, Mohammed; University of Birmingham, Department of 
Public Health 
Haque, Sayeed; University of Birmingham, Primary Care 
Holder, Roger; University of Birmingham, Primary Care 
Macleod, John; University of Bristol 

Keywords: 
Multiple imputation, implausible imputed values, plausible imputed 
values 

Abstract: 

Multiple Imputation (MI) is an established approach for handling 
missing values. We show that MI for continuous data under the 

multivariate normal assumption is susceptible to generating 
implausible values. Our proposed remedy, is to 1) transform the 
observed data into quantiles of the standard normal distribution, 2) 
obtain a functional relationship between the observed data and it’s 
corresponding standard normal quantiles, 3) undertake MI using 
the quantiles produced in step 1 and finally 4) use the functional 
relationship to transform the imputations into their original domain. 
In conclusion, our approach safeguards MI from imputing 
implausible values. 
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Multiple Imputation (MI) is an established approach for handling missing values. We 

show that MI for continuous data under the multivariate normal assumption is 

susceptible to generating implausible values. Our proposed remedy, is to 1) transform 

the observed data into quantiles of the standard normal distribution, 2) obtain a 

functional relationship between the observed data and it’s corresponding standard 

normal quantiles, 3) undertake MI using the quantiles produced in step 1 and finally 

4) use the functional relationship to transform the imputations into their original 

domain. In conclusion, our approach safeguards MI from imputing implausible 

values. 
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1. Introduction 
 

Multiple Imputation (MI) is an established comprehensive approach to dealing with 

the challenges of missing data. Developed by Rubin (1987) and described further by 

Schafer (1997) and Little and Rubin (2002), MI methods work by imputing the 

missing values multiple times and then consolidating across imputed data sets to 

account for variation within and between imputations reflecting the fact that imputed 

values are not the known true values.  Inevitably MI has to be based on a set of 

assumptions relating to the distributional form of the variables and the original MI 

approach generally assumed a joint multivariate normal model for the continuous 

variables. 

Although some researchers have argued that by definition the quality of the 

imputations cannot be assessed because the missing values are unobserved, there is 

nevertheless, growing emphasis on the need to assess the quality of the imputations 

(Abayomi et al. 2008). Amongst the various numerical and graphical approaches 

suggested to investigate the quality of imputations it seems sensible to ensure that the 

imputed values are not implausible for the specific application area. For example, the 

height of a person can only be positive and has a practical upper bound, so imputation 

of missing heights must also be positive and below the upper bound. The generation 

of implausible values would suggest problems with the MI which should be remedied 

before subsequent statistical analyses (Abayomi et al. 2008). Of course if for a 

particular application the assumption of multivariate normality is not valid then 

subsequent imputations will be suspect. 

In this paper, we use an illustrative data set (household survey data used by Schafer 

1997), to demonstrate that MI can sometimes generate implausible values. To 

safeguard against these implausible imputations we propose a method which 

essentially makes use of an empirical transformation to normality based on the 

observed variable in question which naturally constrains any imputed values from MI 

to fall within the observed range of the variable as well as ensuring the multivariate 

normality assumption for MI is met. 

In Section 2 of the paper, we first illustrate the problem of implausible values arising 

from the standard application of MI to the household survey data with missing values 

and show how our proposed strategy mitigates against implausible values. In Section 
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3 of the paper we offer a practical demonstration of the problem of implausible 

imputation in practice and apply our approach to data from a healthcare study. In 

Section 4 we summarise the key issues and conclude the paper. 

 

2. Illustration of implausible imputations 

Consider the household survey data included as part of the “norm” package (Novo 

2003) in R (R Development Core Team 2010).  This small data set (n=25) has five 

variables (ageh, agew, inc, edu and kid), where only one variable (ageh) is complete. 

A practical constraint is that no variable can possibly have a negative value. A 

Kolmogrov-Smirnov test suggested that of the variables with missing data, edu and 

kid were not consistent with the normal distribution (test statistic both equal 0.21, 

p=0.016 and p=0.007 respectively) 

We used the missing data library in S-plus version 8.1 (TIBCO 2008) to multiply 

impute the missing values.  We imputed twenty-five data sets on ten occasions and 

found that on three occasions, the imputed data sets contained one or more negative 

(implausible) values (see Figure 1) involving the inc and/or edu variables. Of course, 

since the negative values were not frequent, the reader may wonder what all the fuss 

is about, but we show later a data set where all iterations contained implausible 

values. 
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Figure 1 Histograms showing the presence of negative values in three of the four imputed 

variables. Y-axes are counts. Note that each histogram is not necessarily from the same set of 

imputations. 
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3. Our proposed solution 

We now describe our approach to safeguarding MI against negative values without 

the need to ensure that variables meet the normality assumption. Our steps are as 

follows:-. 

Step 1: Transform each raw variable into quantiles of the standard normal 

distribution. Let Yi represent a raw variable in ascending order with some missing 

values that we are trying to impute. Let Zi be the equivalent normal quantile for Yi, 

where 

 

)/)5.0((1
niZ i −Φ= −    where i = 1,...,n, and n is the sample size of Yi 

 

Note, when Yi is missing, Zi will also be missing. 

Step 2: Derive a functional relationship, such as a second-order polynomial, between 

Yi and Zi for non-missing values of Yi only. For example 

 

 iiii eZZY +++= 2

210 βββ ,        (1) 

 

where β0, β1 and β2 are the coefficients and ei  is an error term defined to be 

normally distributed with mean zero and variance σ
2
. 

 

Step 3: Use MI to derive imputations for the missing in Equation (1) values in Zi. 

 

Step 4: For each imputed value of Zi use Equation (1) to determine its corresponding 

Yi . Substituting a simulated random N(0, σ
2
) value for ei rather than its mean value is 

enables the possible imprecision of the chosen functional relationship to be 

incorporated.  

 

In the unlikely event that an imputed value of Z, say Z*, is outside the “empirical” 

range of Zi, (a plotting position estimate of the first quantile would suggest that the 

probability of this occurring is approximately 1/n) then we caution against using 

Equation (1) because we are now extrapolating outside the bounds of the observed 

data.  So, for the special case where Z* is less than the minimum of Zi, all we can say 

is that the corresponding imputed value of Y, say Y*, should also be less than the 

minimum of Yi. Similarly, where Z* is greater than the maximum of Zi, Y* should be 

greater than the maximum of Yi. However if a lower or upper limit to Y was known 

(zero, for instance) then that might, with caution, be incorporated into the chosen 

functional relationship to extend its range of validity. 
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We applied the above procedure to the household data and found no negative values 

because Equation (1) constrains the imputations to the observed range of the raw 

variable. We could have incorporated the knowledge that Y must be positive by using 

a log-polynomial functional relationship. 

 

 

4. Application to healthcare data 

Our motivation stems from data obtained from a follow-up study of the young adult 

offspring of mothers who participated in a trial of nutritional supplementation during 

pregnancy. The study aimed to investigate the influence of maternal nutritional status 

(and other factors) on offspring risk of cardiovascular diseases (Tang et al. 2004). 

Sixty-five offspring were invited for clinical assessment where measures undertaken 

included age, gender, body mass index and blood Insulin level - fasting (If), thirty 

minutes (I30) and 120 minutes (I120) after a standard glucose challenge. Because of 

incomplete follow-up, 9% of If and I30 and 14% of I120 were missing. Figure 2 (top 

row) shows histograms of the three insulin variables. A complete cases only analysis 

was not deemed to be appropriate because this could lead to biased estimates and loss 

of precision from a reduced sample size. The pattern of missing data in these variables 

is an example of monotone missing data and the mechanism was not considered to be 

missing completely at random (Little’s d-squared test statistic =3, p=0.08). 

Twenty-five multiply imputed datasets were generated, but each set was found to 

contain one or more negative values (see Figure 2 middle row) - in reality, such 

values cannot occur. However using our proposed solution we found no negative 

values (see Figure 2, bottom row)  and a Kolmogorov-Smirnov test showed no 

significant difference between the observed and imputed values using our approach 

(all test statistics <0.04 with p =1). 
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Figure 2: Histograms for the three insulin variables. Top row is observed data.  Middle row is the 

first set of imputed data showing some negative values. Bottom row is the first set of imputed 

data using our proposed solution showing no negative values. 
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5. Comment 

In this paper we introduce a simple empirical approach to safeguarding MI from 

imputing implausible values, which we define as being outside the observed range of 

the variable. We undertook all our analyses using the missing data library in S-plus 

version 8.1. (TIBCO 2008) and we were also able to replicate our results using the 

“norm” library (Novo 2003) in R. Our approach is intended to provide some useful 

guidance but is not prescriptive. There is considerable room for modification. For 

instance, practitioners may prefer to use spline or lowess functions or elementary 

interpolation to describe the functional relationship (see step 2 of our approach) 

between the observed data and the quantiles from the standard normal. 

There are several advantages to our proposed solution. It dovetails into the MI 

methodology and so can be regarded as pre and post processing around the MI 

approach thus allowing it to be used as an adjunct to existing MI algorithms. The use 

of normal quantiles ensures that the multivariate normal assumption is satisfied and 

there is no reason to suspect that this could adversely interfere with the core MI 

algorithms. The use of quantiles is also well suited to ordinal variables which are 

frequently met in practice. Whilst it may be argued that transforming the raw variable 

to achieve normality can mitigate against the production of implausible imputed 

values, our illustrative example shows that, even when variables are apparently 

consistent with the normal distribution, MI is still susceptible to the production of 

implausible values. Actually, our approach obviates the need to transform the raw 

variable to normality, which is useful because some variables will, even after 

transformation, not meet the normality assumption adequately. Our approach seeks to 

ensure that an imputed value does not fall outside of the range of the observed data. 

This concurs with the advice to exercise caution when extrapolating outside the range 

of the observed data, but seems unsatisfactory for situations where the missing value 

is somehow known to lie outside the range of the observed values. We suggest that 

where the feasible range of the variable is known this may, with caution, be 

incorporated into the functional relationship chosen to extend its range of validity. 

Interestingly, we imputed our healthcare data in two more recent R libraries – “mi” 

(Gelman et al. 2009) and “mice” (van Buuren and Groothuis-Oudshoorn 2009). 

Fortunately, neither produced implausible values. Since the S-plus missing data 
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library (and “norm” in R) relies on a joint multivariate normal assumption and “mi” 

and “mice” are based on more recent formulations involving multiple imputation by 

chained equations (Raghunathan et al. 2001), it would seem that the former 

specification may be more susceptible to implausible values although the latter 

specification is not without its own challenges (Stuart et al. 2009). Nevertheless the 

general question of implausibility in either MI paradigm needs greater emphasis and 

further research (Abayomi et al. 2008, Stuart et al. 2009). Meanwhile we suggest that, 

at least for MI based on the multivariate normal assumption, our empirical approach 

offers a simple way to safeguard against implausible imputed values. 

Acknowledgments: We are grateful to the anonymous reviewers for their helpful 

criticism and comments on earlier drafts of this paper. 
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