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1 Introduction

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent random samples from pop-
ulations with absolutely continuous distribution functions F (x) and F ( x

eϑ ),
ϑ ∈ R, respectively. We wish to test

H0 : ϑ = 0

against
H1 : ϑ 6= 0.

The Klotz test and the Mood test are the most familiar nonparametric tests
for this problem. In the present paper we will consider a class of tests based
on U-statistics. This interesting class of tests has drawn considerable attrac-
tion in the literature, cf., e.g. Deshpande and Kochar (1982), Shetty and
Govindarajulu (1988), Kumar (1997), Xie and Priebe (2000, 2002), John and
Priebe (2007) for the location problem.

For the scale problem there are also some papers, cf. e.g. Sukhatme
(1957, 1958), Tamura (1960, 1962, 1966), Deshpande and Kusum (1985),
Kusum (1985), Kochar and Gupta (1986).

The statistics of Kochar and Gupta are special cases of our class, and
they again are generalizations of that used by Tamura (1960, 1962, 1966).
From the ARE considerations we will see that our statistics U5:1 and U8:1

(and U5:2 for densities with very long tails) outperform the other statistics
(see section 3). A somewhat different class of scale tests based on U-statistics
was proposed by Joshi and Shetty (2008). However, as we will see, some of
their statistics are asymptotically equivalent to some of ours.

In section 2 a general class Uk:i of U-statistics is defined. Scale alternatives
of the form ϑ = θN = θ/

√
N , N = n1+n2, are considered and the asymptotic

efficacies of the tests based on Uk:i are compared in Section 3. It is shown
that there are different tests of this type which are efficient for densities with
short, medium or long tails, respectively. For example, the test based on U8:1

is efficient for densities with short tails, and that based on U6:3 is efficient
for densities with very long tails. However, the practising statistician has
generally no clear idea on the underlying density, thus he/she should apply
an adaptive test which takes into account the given data set. In Section 4 two
versions of such an adaptive test are proposed, one of them is distribution-
free. The adaptive tests first classify the underlying distribution with respect
to some measures like that of tailweight and then select an appropriate test

2
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based on U-statistics. Our adaptive test is compared briefly with adaptive
tests based on linear rank tests in Section 5. In Section 6 a simulation study
is performed and the finite sample power is compared with the asymptotic
power. A data example is provided in Section 7. We give some conclusions
in Section 8.

2 Test statistics

We consider the class of U-statistics, which was proposed by Kumar (2008).
Let k, 1 ≤ k ≤ min(n1, n2), and i, i ≤ k+1

2
, be fixed integers. Define

Φi(x1, . . . , xk, y1, . . . , yk) =


1 if x(i)k < y(i)k and x(k−i+1)k < y(k−i+1)k

−1 if x(i)k > y(i)k and x(k−i+1)k > y(k−i+1)k

0 otherwise,

where x(i)k is the ith order statistic in a subsample of size k from the X-
sample (and likewise for y’s). Let Uk:i be the U-statistic associated with
kernel Φi, i.e.

Uk:i =
n1n2(

n1

k

)
·
(

n2

k

) ∑
Φi(Xr1 , . . . , Xrk

, Ys1 , . . . , Ysk
),

where the summation extends over all possible combinations (r1, . . . , rk) of
k integers from {1, . . . , n1} and all possible combinations (s1, . . . , sk) of k
integers from {1, . . . , n2}. The null hypothesis H0 is rejected in favour of H1

for large values of Uk:i.

Remark: For i = 1 or i = k we have the Kochar-Gupta test (cf. Kochar
and Gupta, 1986).

There is also a rank representation of the Uk:i. Let R(s) be the rank of
Y(s) in the joint ranking of the X-sample and Y -sample, where Y(s) is the sth
order statistics of the Y -sample. Then(

n1

k

)(
n2

k

)
n1n2

Uk:i =

n2∑
s=i

k∑
j=i

(
s− 1

i− 1

)(
n2 − s

k − i

)(
R(s) − s

j

)(
n1 + s−R(s)

k − j

)

−
n2∑

s=k−i+1

k∑
j=k−i+1

(
s− 1

k − i

)(
n2 − s

i− 1

)(
R(s) − s

j

)(
n1 + s−R(s)

k − j

)
.
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Let

ϕ
(i)
1,0(x) = EΦi(x, X2, . . . , Xk, Y1, . . . , Yk)

ϕ
(i)
0,1(y) = EΦi(X1, . . . , Xk, y, Y2, . . . , Yk)

ζ
(i)
1,0 = Var(ϕ

(i)
1,0(X))

ζ
(i)
0,1 = Var(ϕ

(i)
0,1(Y )),

where E and Var denote the expectation and variance respectively. More-
over, let F(i)k(.) be the cumulative distribution function of the ith order
statistics of a sample of size k.

Proposition 2.1 (cf. Kumar, 2008) Under assumptions N →∞, n1/N →
λ, 0 < λ < 1 the limiting distribution of N1/2(Uk:i−ηk,i)/σk,i is standard nor-
mal, where expectation ηk,i = EUk:i and variance σ2

k,i =Var (Uk:i) have the
forms

ηk,i = n1n2

(
i

(
k

i

))2
(∫ ∞

−∞
y(F (y))2i−2(1− F (y))2k−2if 2(y) dy −∫ ∞

−∞
y(F (y))2k−2i(1− F (y)2i−2f 2(y) dy

)
σ2

k,i = n2
1n

2
2

(k2ζ
(i)
10

λ
+

k2ζ
(i)
01

1− λ

)
.

Remark: Under H0 we have ηk,i = 0 and

σ2
k,i = n2

1n
2
2k

2 ρk,i

λ(1− λ)
,

where ρk,i depends on k and i only. The expression for ρk,i is rather long,
that is why we do not write it out. It can be found in Kumar (2008).

3 The asymptotic efficacies

The asymptotic (Pitman-) efficacies AE of the statistics Uk:i under the alter-
native θN = N−1/2 · θ are given by

AE(Uk:i|f) = λ(1− λ) · C2
k,i(f),

4
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where f(·) denotes the probability density function belonging to the c.d.f. F (·)
and

Ck,i(f) =
(
(

k
i

)
i)2

(k2ρk,i)1/2
·
(∫ ∞

−∞
x(F (x))2i−2(1− F (x))2k−2if 2(x) dx−∫ ∞

−∞
x(F (x))2k−2i(1− F (x))2i−2f 2(x) dx

)
.

Note that the asymptotic efficacy is defined by the limit of η2
k,i/σ

2
k,i, cf.

Noether (1955). Since only the factor Ck,i(f) is of interest here we refer to
this factor if we say AE.

Remark: It may be shown that the Mood test is asymptotically equiv-
alent to the test U2:1.

Before we continue with the investigation of our class of U-statistics, we
will compare the asymptotic efficacies of our tests with that of other tests
based on U-statistics. First, let us note that the statistics SJ(2k−1, r, 1) with
r = 1 of Joshi and Shetty are asymptotically equivalent to our statistics Uk:1.
(Joshi and Shetty consider only the case r = 1.) In Table 1 we find the AE
of the tests of Sukhatme (1958), Kusum (1985), three of the best variants
of Joshi and Shetty (2008) (abbreviated by SJ(5, 1), SJ(9, 1), SJ(5, 2)) as
well as of the tests U8:1, U2:1 and U5:2 for five densities, the uniform, logistic,
Cauchy, DE, and normal. The AE of the best of these eight tests is written
in bold style, respectively. Missing entries are not relevant or not computed.
Most computations are done with the Mathematica package, few could be
done analytically. From Table 1 we see that Sukhatme, Kusum, SJ(5,1) and
SJ(5,2) are in no cases the best tests. Recall that SJ(9, 1) is asymptotically
equivalent to U5:1.

Table 1 about here

For further investigations we have to make some restrictions. We re-
stricted the choice of k at first to k ≤ 6 ourselves just for illustrative purpose.
Of course, computations can be made for values of k beyond that.

We compute the asymptotic Pitman efficacies for all tests Uk:i with 1 ≤
i ≤ k

2
, k ≤ 6. Obviously, for i = k+1

2
we have Ck,i = 0. Values of the factors

C2
k,i(f) for various densities are, together with that of the well established

Klotz test presented in Table 2.
The L-DE density was proposed by Policello and Hettmansperger (1976),

5
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the U-L by Gastwirth (1965), the RST is named after Ramberg, Schmeiser
and Tukey, cf. Ramberg and Schmeiser (1972, 1974), CN(ε, σ) is the scale
contaminated normal with contaminating proportion ε, and the skew-logistic
is proposed by Nadarajah (2009).

The bold entries denote, for the given density, the asymptotically best test
among the considered tests. (If the Klotz-test is the asymptotically best, it
is denoted in italics.) If no test is bold, then one of the tests U7:1, U8:1, or
U9:1 has larger AE-values (see below), and the corresponding entry is bold in
Table 3.

On the first view we see that the columns for U8:1, U5:1 and U2:1 have the
most bold entries. This observation gives rise to the idea to use these few
statistics in our adaptive test.

To get a closer idea how to classify symmetric densities we apply the
method of Hall and Joiner (1982). The content of information in the asymp-
totic efficacy matrix is analysed by a principal component analysis where the
densities are the observations and the efficacies of the Uk:i are the variables.
The first principal component explains already 98% of the variability. For
better visibility we display in Figure 1 the values of the first two principal
components (Factors one and two). Nearly symmetric densities with short
tails are denoted by a green plus, those with short-medium and long-medium
tails by a cyan X and a blue star, respectively, and that with very long tails
with a red dot.

On the left side we have densities with long tails, in the centre that with
medium tails, and on the right that with short tails. For an exact definition
what we understand by very long, (long- and short-) medium and short tails
see below. On the first view we see that the AE(Uk:i) classify the densities
according to their tailweight.

Since very often the tests U6:1 and U5:1 are asymptotically the best it
might be desirable to investigate also the tests U7:1, U8:1, and U9:1. From this
investigation we found that it might be a good idea to choose the test U8:1

for short tail densities. AE values for the test U8:1 are, togehter with that of
U5:1 given in Table 3.

When we consider skew densities we have to differ between densities de-
fined on the whole real line (such as the Gumbel or the skew-logistic) and
that starting at some point, e.g. at zero (as it is, e.g. for time data). Skew
densities of the former group may be included in the scheme designed for
symmetric densities. For the latter the considered U-tests are bad (cf. Table
4). Much better in this case are tests that are designed for testing locations,

6
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e.g. the Mann-Whitney test (or another U-test, cf. Kössler, Kumar, 2008).
In Table 4 we included the Mann-Whitney test, denoted by U1,1. The location
U-test U2,1 of Kössler and Kumar (2008) seems to be asymptotically slightly
better than the Mann-Whitney test, but for convenience of the reader we
preferred the latter test here.

Insert Figure 1 about here

4 Adaptive test

At first we have to decide whether we have a density with some starting
point (which is generally zero) or not. In the first case we apply a location
test on the data, such as the Mann-Whitney-Wilcoxon test. Alternatively
we may perform a logarithmic transformation and then apply an adaptive
location test, e.g. that of Kössler and Kumar (2008) which is also based on
U-statistics.

Assume now that we have a symmetric density or a skew density that is
defined on the whole real line. We apply the concept of Hogg (1974), that
is, to classify at first the type of the underlying density with respect to one
measure of tailweight t̂, which is defined by

t̂ =
Q̂(0.95)− Q̂(0.05)

Q̂(0.85)− Q̂(0.15)
(1)

where Q̂(u) is the so-called classical quantile estimate of F−1(u),

Q̂(u) =


X(1) − (1− δ) · (X(2) −X(1)) if u < 1/(2 ·N)

(1− δ) ·X(j) + δ ·X(j+1) if 1
2·N ≤ u ≤ 2·N−1

2·N
X(N) + δ(X(N) −X(N−1)) if u > (2 ·N − 1)/(2 ·N),

(2)

where δ = N · u + 1/2− j and j = bN · u + 1/2c.
In Table 5, together with the AE of the adaptive tests, the values of

the corresponding theoretical measures t for various selected densities are
presented.

Comparing Tables 2 and 3 with the tailweight measures roughly we see
that the tests U4:1, U5:1 and U6:1 are asymptotically good tests for symmetric

7
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densities with small to medium tailweight, U3:1 and U2:1 for symmetric den-
sities with longer tailweight, U4:2, U5:2, U6:2 and U6:3 for symmetric densities
with very large tailweight.

From Table 3 we see that for medium tails the tests U5:1 or U6:1 are the
best choices whereas for short tails the tests U8:1 and U9:1 are the best.

The reasoning of the last two sections gives rise to the following adaptive
test.

Define regions E1, . . . , E4 which are based on the selector statistic t̂ which
is given by (1),

E1 = {t̂ < 1.61} “short tails”
E2 = {1.61 ≤ t̂ < 1.93} “light medium tails”
E3 = {1.93 ≤ t̂ ≤ 2.5} “long tails”
E4 = {t̂ > 2.5} “very long tails”

The cutoff values of the regions are determined in such a way that the
vast majority of densities is classified correctly, i.e. they fall in the class
that has the highest asymptotic power (cf. Tables 2 and 3 with Table 5).
For example, the normal (tailweight t=1.59, cf. Table 5) is classified to E1,
and the test U8:1, which is the best among the considered tests (cf. Tables 2
and 3), is performed. The logistic is mapped to region E2 and the test U5:1

is performed. Similar observations for the other densities lead to the given
cutoff values. In few cases, if the classification doesn’t be correct, then the
efficacy loss is very small in almost all cases. In Tables 2 and 3 the chosen
test is underlined if it is not already the (bold) best.

Now, we propose the Adaptive test A which is based on the four U-
statistics U8:1, U5:1, U2:1, and U5,2. We denote the tests by (8:1), (5:1), (2:1)
and (5:2), respectively.

A = A(t̂) =


(8 : 1) if Ŝ ∈ E1

(5 : 1) if Ŝ ∈ E2

(2 : 1) if Ŝ ∈ E3

(5 : 2) if Ŝ ∈ E4

(3)

In Figure 2 the corresponding adaptive scheme is given.

Insert Figure 2 about here

8
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The two-stage procedure defined above is asymptotically distribution-free

since the selector statistic t̂ is based on the order statistic only and the U-
statistics are based on the ranks only.

The Adaptive test A is only asymptotically distribution-free because asymp-
totic critical values are used in the adaptive scheme.

Proposition 4.1 Let {θN} be a sequence of ‘near’ alternatives with
√

NθN →
θ. The asymptotic power function of the Adaptive test A equals

β(θ) =


1− Φ(z1−α −

√
AE(U8:1|f) · θ) if f ∈ E1

1− Φ(z1−α −
√

AE(U5:1|f) · θ) if f ∈ E2

1− Φ(z1−α −
√

AE(U2:1|f) · θ) if f ∈ E3

1− Φ(z1−α −
√

AE(U5:2|f) · θ) if f ∈ E4

Proof. Let be h = 1 if (k : i) = (8 : 1), h = 2 if (k, i) = (5 : 1), h = 3 if
(k, i) = (2 : 1), h = 4 if (k, i) = (5 : 2) Let be T1 = U8:1, T2 = U5:1, T3 = U2:1,
T4 = U5:2. The proposition follows from the total probability theorem and
from the consistency of the selector statistics, i.e.

β(θ) =
4∑

h=1

Pθ(Th > cαh|Th chosen) · Pθ(Th chosen)

=
4∑

h=1

(
1− Φ(z1−α −

√
AE(Th|f) · θ) + o(1)

)
·

{
1 + o(1) if f ∈ Eh

o(1) else

∼ 1− Φ(z1−α −
√

AE(Th|f) · θ) if f ∈ Eh,

where cαh is the (1−α)-quantile of the asymptotic null distribution of Th.

The Adaptive test A(t̂) is based on selector statistics computed from
the pooled sample. However, location differences may effect the estimates
of tailweight and skewness. That is why we also consider a modification
A(t̂∗) of the adaptive test, where tailweights are estimated from the single
samples. Let t̂i, i = 1, 2 be statistics of the form (1) for tailweight. Applying
the A(t̂∗)-test the selector statistic t̂∗) with

t̂∗ =
n1

N
t̂1 +

n2

N
t̂2

is used instead of t̂. This procedure is also asymptotically distribution-free.
However, it is not distribution-free also if the exact critical values are used.

9
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This property is since the selector statistic is no longer based on the pure
order statistic.

For various densities asymptotic power functions (together with finite
power functions) are given in Figures 3 and 4.

The blue dotted line is for U8:1, the violet short-dashed line for U5:1, the
green long-dashed line for U2:1, the red dashed-dotted line for U5:2 (and the
black continuous line for the adaptive test).

5 Comparison to adaptive tests based on lin-

ear rank statistics

Restrictive adaptive tests for the two-sample scale problem based on linear
rank tests are proposed by Rünstler (1987) and Kössler (1994), as well as
by Hall and Padmanabhan (1997), cf. also Büning (1991). All of them are
based on the concept of Hogg (1974), and they use few linear rank statistics,
with some scores. Rünstler (1987) considered only symmetric densities, and
he used the Gastwirth scores (for short tails), Mood scores (for medium
tails), and Cauchy scores (for long tails). Kössler (1994) used the Klotz
scores (for symmetric densities with short tails), logistic scores (for symmetric
densities with medium tails), Ansari-Bradley scores (for long-tail densities),
the Savage and Wilcoxon scores for skew densities with short or medium tails,
respectively. Hall and Padmanabhan (1997) performed a transformation to
handle unequal locations and applied the Klotz-test and the Wilcoxon test
to the transformed data (their Adaptive procedure II). For the estimation of
tailweight Rünstler (1987) and Hall and Padmanabhan (1997) used integral
measures whereas Kössler (1994) used quantile measures for his tailweight
and skewness estimates.

Let us denote the adaptive test of Kössler (1994) by B(Ŝ), where Ŝ =
(t̂, ŝ) and ŝ is a suitable skewness estimator. In Table 5 we compare, for
each density considered, the AE of the test (asymptotically) chosen by the
Adaptive tests A(t̂) and B(Ŝ). In that table the respective larger AE-value
is underlined.

For most of the classical densities considered the Adaptive test B(Ŝ)
based on linear rank statistics has slightly higher asymptotic power than the
new test A(t̂). The same is true for the densities of the L-DE family (not
included in Table 5). For densities with larger tails and for the majority of

10
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the contaminated normal densities the U-statistics based test A(t̂) is asymp-
totically better. However, the differences in asymptotic efficacies are small
in most cases. For the contaminated normal and for the very skew densities
defined on the whole real line the new adaptive test is clearly better.

6 Simulation study

In order to assess whether the asymptotic theory can also be applied for
medium to small sample sizes a simulation study (10,000 replications each for
the null case, 1,000 replications each for the alternative cases) is performed.
We choose the following six distributions:

- Uniform distribution (density with small tailweight),
- Normal distribution (density with medium tailweight),
- Logistic distribution (density with medium tailweight),
- Doubleexponential distribution (density with large tailweight),
- Cauchy distribution (density with very large tailweight),
- Gumbel distribution (skew density)

We consider the four single U-tests U8,1, U5,1, U2,1, U5,2, and the Adaptive
test A(t̂). (Results for the Klotz-test may be obtained, e.g. from Kössler
(1994), they are in accordance with the asymptotic results.) The sample sizes
n1 = n2 = 10, 20, 40, 100 and the alternatives θN = N−1/2θ with various θ are
considered. Estimated levels of significance are summarized in Table 6 for
the uniform density. For the other densities we get very similar values. The
test U8:1 has the largest levels. That is why we have, for short-tail densities,
for the adaptive tests also relatively large values. For densities with longer
tails these values are slightly smaller (about 0.02 for n1 = n2 = 10 and 0.01
for n1 = n2 = 40).

Table 6 about here

As we see from Table 6 all the tests are, for n1 = n2 ≤ 100 slightly
anticonservative. For n1 = n2 = 100 the level is almost always less than
0.053, and therefore ε = 0.1-robust in almost all cases. (For the notion of
ε-robustness see e.g. Rasch, Teuscher, and Guiard (2007).)
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For n1 = n2 = 10, 20, 40 almost all tests are more or less anticonservative,

for n1 = n2 = 10 the estimated attained level of significance is always in
(0.085,0.125), for n1 = n2 = 20 it is always in (0.063,0.085), and for n1 =
n2 = 40 it is always in (0.053,0.068), For n1 = n2 = 100 the results of the
simulation study are summarized in Figures 3 and 4. Again, the blue dotted
line is for U8:1, the violet short-dashed line for U5:1, the green long-dashed
line for U2:1, the red dashed-dotted line for U5:2 and the continuous line is
for the Adaptive test A(Ŝ). At first we see that, for n1 = n2 = 100, the
finite power is well approximated by the asymptotic power. Moreover, it can
be seen that, for a given density, there is always, sometimes together with
another test, a single test which is the best. The test U8:1 is the best for
the uniform and for the normal (together with the Adaptive test A(t̂)) the
test U5:1 is the best for the logistic density (together with the Adaptive test
A(t̂)), and the test U5:2 is the best for the double exponential and for the
Cauchy (again together with the Adaptive test A(t̂)). All these facts are not
surprising. Also, not surprisingly, that all the tests, except the adaptive test,
may be bad for some densities. The Adaptive test A(t̂) is, over all densities,
the best.

Although the tests are slightly anticonservative for smaller sample sizes
the order of the tests is almost the same as in the asymptotic case. For small
sample sizes, n1 = n2 ≤ 20 the adaptive test has slightly lower power as
expected because of the higher misclassification probabilities.

Insert Figures 3 and 4 about here

7 Data example

In this section we give a data example to illustrate our adaptive procedure.
Example (cf. Example 9 of Büning, 1991). In a statistics lesson vari-

ances of median and mean are estimated for the Doubleexponential by two
independent groups of students of size 24 each. Figure 7 gives a box plot of
these data.

Insert Figure 5 about here
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At first, we estimate the tailweight, cf. (1), and we obtain t̂ = 1.4916.

According to our adaptive procedure the test U8:1 is chosen. We obtain
U8:1 = −3.401 an one-sided p-value of 0.0003, a result which is, of course,
not surprising. Because of the very low p-value it is no problem that the
(adaptive) procedure is slightly anticonservative for the given sample size.

8 Conclusions

What are the results of our study? At first, we see that the finite power
of the considered tests based on U-statistics can be well approximated by
their asymptotic power. However, the ‘convergence’ of the finite power to
the asymptotic power is slower than in the location case. Second, there
are modifications of the “classical” Klotz test that may have (considerably)
higher power than Klotz for symmetric as well asymmetric densities. Third,
the Adaptive test A(Ŝ) is a serious alternative to the Klotz test or to the
Mood test U2:1 for moderate to large sample sizes, if the densities have very
short tails or very long tails or if they are skew. Also, for short-tail or for
long-tail densities or for skew densities the adaptive test considered here may
be better than the adaptive test B(Ŝ) based on linear rank tests.

Many tests based on U-Statistics have good power properties. They can
be applied to a broader class of underlying densities than a linear rank test
with fixed scores if the sample sizes are moderate to large.

For moderate to large sample sizes (about n1, n2 ≥ 100) the recommen-
dation for the practising statistician is as follows: If the density is known to
be exactly normal take the F -test. If it is only known that it has medium
tails then take the Klotz test or the test U5:1. For densities with short tails
take the test U8:1, and for those with long tails the test U2:1. If the density is
known to be defined on a half interval only and is skew, then take a location
test. For a completely unknown density take the adaptive test A(Ŝ).

For relatively small sample sizes (about n1, n2 ≤ 10) take the Klotz test.

Note that we considered the scale problem for continuous data only. How
the procedures behave for ordinal data may be a topic for further studies.
Further investigations are also desirable for more general alternatives, es-
pecially for the case of unknown and unequal locations or for the case of
F 6= G.
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Kumar, N., Singh, R.S., Öztürk, Ö. (2003). A New Class of Distribution-Free
Tests for Location parameters. Sequential Analysis, 22:107-128.

Kusum, K. (1985). A new distribution-free test for the two-sample scale
problem, J. Indian Statistical Assoc. 23, 97-107.

Nadarajah, S. (2009). The skew-logistic distribution, Advances in Statistical
Analysis 93,2, 187-204.

Noether, G.E. (1955). On a Theorem of Pitman. Annals of Mathematical
Statistics, 26:64-68.

Policello, G.E., Hettmansperger, T.P. (1976). Adaptive robust procedures
for the one-sample location problem. Journal of the American Statistical
Association, 71:624-633.

Ramberg, J.S., Schmeiser, B.W. (1972). An approximate method for gener-
ating symmetric random variables, Communications of the ACM, 11:987-
990.

Ramberg, J.S., Schmeiser, B.W. (1974). An approximate method for generat-
ing asymmetric random variables, Communications of the ACM, 17:78-82.

Rasch, D., Teuscher, F, and Guiard, V. (2007). How robust are tests for
two independent samples? Journal of Statistical Planning and Inference,

15

Page 16 of 26

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
137:2706-2720.

Shetty, I.D., Govindarajulu, Z. (1988). A Two-Sample Test for Location.
Communications in Statistics, Theory and Methods, 27:2389-2401.

Shetty, I.D., Pandit, P.V. (2004). A note on a new class of distribution-
free tests for the two-sample scale problem based on subsample medians,
Comm.Stat., theory Methods 33 (9), 2271-2280.

Sukhatme, B.V. (1957). On certain two-sample nonparametric tests for vari-
ances. AMS 28, 188-194.

Sukhatme, B.V. (1958). A two-sample distribution-free test for comparing
variances. Biometrika 45, 544-548.

Tamura, R. (1960). On the nonparametric tests based on certain U-statistics.
Bull.Math.Stat. 9, 61-67.

Tamura, R. (1962). On the efficiency of Sukhatme‘s test. Bull.Math.Stat.
10, No.3-4, 31-38.

Tamura, R. (1966). Nonparametric tests for scale. Bull.Math.Stat. 12, No.1-
2, 89-94.

Xie, J., Priebe, C.E. (2000). Generalizing the Mann-Whitney-Wilcoxon
Statistic. Nonparametric Statistics, 12:661-682.

Xie, J., Priebe, C.E. (2002). A weighted generalization of the Mann-Whitney-
Wilcoxon Statistic. Journal of Statistical Planning and Inference, 102:441-
466.

16

Page 17 of 26

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Figure 1: The first two principal components

Figure 2: Adaptive scheme.
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Figure 3: The asymptotic and finite (n1 = n2 = 100) power functions of the
tests U2:1, U5:1, U8:1, U5:2 and A(t̂); densities: uniform, normal and logistic.
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Figure 4: The asymptotic and finite (n1 = n2 = 100) power functions of the
tests U2:1, U5:1, U8:1, U5:2 and A(t̂); densities: doubleexponential, Cauchy and
exponential (Continuation from Figure 3.)
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Figure 5: Boxplot of the median and mean estimates data
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Table 1: The asymptotic efficacies for various U-tests and various densities

density Sukhatme Kusum SJ(5,1) SJ(5,2)∗ SJ(9,1)
U3:1 U5:1 U8:1 U2:1 U5:2

Uniform 12.00 12.44 6.222 2.333 9.800 15.66 5.000 1.802
Logistic 1.040 1.333 1.307 1.037 1.372 1.250 0.947
Cauchy 0.493 0.407 0.435 0.496 0.350 0.462 0.500
Doubleex 0.75 0.913 0.902 0.676 0.936 0.868 0.676
Normal 1.216 1.681 1.624 1.187 1.795 1.862 1.520 1.061
Gumbel 1.224 1.316 0.950 1.467 1.537 1.228 0.847

∗: computed from Joshi and Pandit (2008).
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Table 2: The asymptotic efficacies of the Uk:i-tests and the corresponding
factor for the Klotz-test for the scale problem
density Klotz U2:1 U3:1 U4:1 U4:2 U5:1 U5:2 U6:1 U6:2 U6:3

uniform ∞ 5.000 6.222 7.936 1.583 9.800 1.802 11.735 2.160 1.020
logistic 1.396 1.250 1.307 1.353 0.890 1.372 0.947 1.371 1.026 0.708
Cauchy 0.277 0.462 0.435 0.394 0.497 0.350 0.500 0.311 0.496 0.468
DE 0.997 0.868 0.902 0.927 0.641 0.936 0.676 0.933 0.722 0.526
normal 2.000 1.520 1.624 1.727 0.987 1.795 1.061 1.837 1.169 0.759
Gumbel 1.670 1.228 1.316 1.406 0.786 1.467 0.847 1.506 0.935 0.603
skew-log 1 0.804 1.089 1.149 1.204 0.745 1.233 0.797 1.245 0.870 0.584
skew-log 2 0.788 0.841 0.892 0.216 0.925 0.206 0.943
t1.5 0.454 0.659 0.641 0.605 0.626 0.560 0.642 0.515 0.658 0.555
t2 0.610 0.800 0.794 0.768 0.700 0.729 0.730 0.686 0.761 0.604
t3 0.853 0.983 0.997 0.993 0.790 0.968 0.829 0.934 0.880 0.654
t4 1.030 1.093 1.122 1.135 0.837 1.124 0.884 1.100 0.947 0.681
t5 1.163 1.166 1.207 1.232 0.866 1.232 0.918 1.215 0.989 0.696
t10 1.509 1.330 1.398 1.457 0.925 1.485 0.988 1.491
RST -1.0 0.249 0.414 0.389 0.351 0.450 0.313 0.451 0.278 0.445 0.429
RST -0.5 0.508 0.684 0.672 0.643 0.628 0.604 0.646 0.563 0.665 0.553
RST -0.4 0.603 0.765 0.760 0.737 0.673 0.701 0.697 0.662 0.724 0.582
RST -0.3 0.726 0.859 0.863 0.850 0.722 0.820 0.752 0.785 0.789 0.612
RST -0.2 0.886 0.969 0.986 0.986 0.774 0.966 0.812 0.937 0.861 0.643
RST -0.1 1.102 1.098 1.132 1.151 0.830 1.147 0.877 1.129 0.940 0.675
RST 0.05 1.588 1.336 1.407 1.471 0.922 1.504 0.984 1.516 1.073 0.725
RST 0.14 2.035 1.509 1.613 1.716 0.981 1.784 1.054 1.826 1.161 0.756
RST 0.2 2.435 1.641 1.771 1.906 1.022 2.006 1.103 2.075 1.223 0.777
RST 0.4 4.948 2.188 2.446 2.750 1.166 3.015 1.278 3.238 1.449 0.846
L-DE 0.55 0.977 0.872 0.905 0.931 0.645 0.938 0.680 0.936 0.726 0.530
L-DE 0.61 0.986 0.888 0.920 0.944 0.663 0.950 0.697 0.946 0.743 0.548
L-DE 0.7 1.025 0.939 0.969 0.989 0.714 0.991 0.749 0.984 0.795 0.595
L-DE 0.75 1.061 0.983 1.013 1.031 0.752 1.031 0.789 1.020 0.837 0.626
L-DE 0.8 1.106 1.037 1.069 1.087 0.793 1.085 0.833 1.071 0.887 0.655
L-DE 0.9 1.241 1.166 1.208 1.236 0.863 1.239 0.914 1.226 0.984 0.695
L-DE 0.95 1.328 1.223 1.274 1.313 0.884 1.324 0.939 1.318 1.015 0.705
L-DE 0.97 1.361 1.239 1.294 1.337 0.888 1.352 0.944 1.348 1.022 0.707
L-DE 0.99 1.388 1.249 1.305 1.351 0.890 1.369 0.947 1.368 1.026 0.708

continuation on the following page
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density Klotz U2:1 U3:1 U4:1 U4:2 U5:1 U5:2 U6:1 U6:2 U6:3

U-L 0.55 1.481 1.331 1.393 1.443 0.945 1.463 1.007 1.462 1.093 0.749
U-L 0.61 1.602 1.471 1.542 1.599 1.034 1.623 1.105 1.622 1.204 0.811
U-L 0.7 2.016 1.798 1.900 1.989 1.207 2.032 1.303 2.040 1.443 0.912
U-L 0.75 2.377 2.061 2.200 2.331 1.313 2.404 1.432 2.431 1.608 0.959
U-L 0.8 2.925 2.402 2.605 2.813 1.412 2.947 1.559 3.019 1.783 0.992
U-L 0.9 5.595 3.398 3.886 4.472 1.552 4.975 1.753 5.375 2.077 1.018
U-L 0.95 9.585 4.106 4.879 5.882 1.578 6.854 1.794 7.743 2.147 1.020
U-L 0.97 13.62 4.439 5.368 6.612 1.582 7.874 1.800 9.090 2.157 1.020
U-L 0.99 25.10 4.794 5.888 7.387 1.586 8.958 1.807 10.519 2.169 1.020
CN 2,0.01 1.861 1.503 1.602 1.699 0.983 1.762 1.057 1.797 1.163 0.758
CN 2,0.02 1.782 1.486 1.581 1.673 0.980 1.730 1.053 1.760 1.158 0.756
CN 2,0.05 1.610 1.439 1.523 1.599 0.969 1.641 1.040 1.658 1.141 0.751
CN 2,0.10 1.449 1.370 1.438 1.495 0.952 1.519 1.018 1.519 1.113 0.743
CN 3,0.01 1.711 1.485 1.579 1.670 0.981 1.725 1.053 1.753 1.159 0.757
CN 3,0.02 1.569 1.451 1.537 1.615 0.974 1.659 1.045 1.676 1.148 0.754
CN 3,0.05 1.292 1.358 1.420 1.469 0.955 1.483 1.021 1.473 1.116 0.745
CN 3,0.10 1.094 1.225 1.259 1.274 0.921 1.257 0.980 1.221 1.062 0.730
CN 5,0.01 1.560 1.466 1.554 1.637 0.978 1.684 1.050 1.704 1.154 0.755
CN 5,0.02 1.403 1.414 1.489 1.553 0.969 1.582 1.038 1.584 1.139 0.752
CN 5,0.05 1.075 1.273 1.313 1.334 0.940 1.321 1.003 1.286 1.091 0.739
CN 5,0.10 0.841 1.079 1.082 1.058 0.888 1.009 0.938 0.946 1.006 0.717
CN 10,0.01 1.387 1.449 1.533 1.609 0.976 1.649 1.047 1.662 1.150 0.755
CN 10,0.02 1.318 1.382 1.447 1.500 0.964 1.516 1.033 1.507 1.131 0.750
CN 10,0.05 0.904 1.201 1.224 1.223 0.927 1.189 0.986 1.136 1.069 0.734
CN 10,0.10 0.685 0.961 0.942 0.894 0.858 0.825 0.901 0.749 0.956 0.705
RST-.4,-.49 0.585 0.718 0.710 0.686 0.640 0.650 0.661 0.612 0.685 0.556
RST-.2,-.49 0.595 0.646 0.661 0.665 0.502 0.655 0.530 0.638 0.566 0.409
RST-.2,-.4 0.678 0.751 0.764 0.765 0.596 0.750 0.626 0.726 0.666 0.492
RST .2,.4 3.415 1.898 2.094 2.316 1.072 2.500 1.169 2.648 1.316 0.790
RST .2,.49 4.222 2.084 2.327 2.611 1.117 2.868 1.224 3.065 1.387 0.811
RST .4,.49 3.962 2.353 2.654 3.016 1.203 3.342 1.324 3.624 1.509 0.863
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Table 3: The asymptotic efficacies of the tests U8:1 and U5:1 for the scale
problem, short tail densities only
density tailweight U8:1 U5:1 density tailweight U8:1 U5:1

uniform 1.286 15.66 9.800 U-L 0.55 1.668 1.425 1.463
normal 1.587 1.862 1.795 U-L 0.61 1.623 1.580 1.623
Gumbel 1.655 1.537 1.467 U-L 0.7 1.534 1.993 2.032
RST 0.05 1.657 1.499 1.504 U-L 0.75 1.474 2.393 2.404
RST 0.14 1.591 1.854 1.784 U-L 0.8 1.409 3.027 2.947
RST 0.2 1.552 2.146 2.006 U-L 0.9 1.300 5.888 4.945
RST 0.4 1.446 3.576 3.015 U-L 0.95 9.214 6.854

U-L 0.97 11.28 7.874
U-L 0.99 11.68 8.958

CN 2,0.01 1.592 1.812 1.762 CN 2,0.02 1.597 1.765 1.730
CN 2,0.05 1.611 1.639 1.641 CN 2,0.10 1.636 1.470 1.519
CN 3,0.01 1.596 1.755 1.725 CN 3,0.02 1.605 1.655 1.659
CN 3,0.05 1.635 1.400 1.483 CN 3,0.10 1.697 1.086 1.257
CN 5,0.01 1.600 1.690 1.684 CN 5,0.02 1.614 1.535 1.582
CN 5,0.05 1.665 1.154 1.321 CN 5,0.10 1.974 0.728 1.009
CN 10,0.01 1.603 1.633 1.649 CN 10,0.02 1.622 1.433 1.516
CN 10,0.05 1.694 0.966 1.189 CN 10,0.10 1.944 0.498 0.825
skew-log 1 1.672 1.233 1.233
skew-log 2 1.684 0.925
RST 0.2,0.4 1.546 2.852 2.500
RST 0.2,0.49 1.507 3.374 2.868
RST 0.4,0.49 1.456 4.070 3.342

Table 4: The AE of the tests Uk:i, for the scale problem, together with that
for the Mann-Whitney test U1,1, skew densities with F (0) = 0.
density U1,1 U2:1 U3:1 U4:1 U4:2 U5:1 U5:2 U6:1 U6:2 U6:3

exponential 0.750 0.139 0.148 0.157 0.092 0.162 0.098 0.165 0.108 0.071
Gamma1.5 1.216 0.150 0.159 0.169 0.098 0.175 0.105 0.179 0.116 0.076
Gamma2 1.688 0.155 0.165 0.175 0.101 0.182 0.109 0.185 0.120 0.078
Gamma2.5 2.162 0.158 0.168 0.179 0.103 0.185 0.111 0.189 0.122 0.080
Gamma3 2.637 0.160 0.170 0.181 0.104 0.188 0.112 0.192 0.123 0.080
Gamma4 3.589 0.162 0.173 0.184 0.106 0.191 0.114 0.195 0.125 0.081
Gamma5 4.542 0.164 0.175 0.186 0.107 0.193 0.115 0.197 0.126 0.082
LogNormal 0.955 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 5: The test chosen by the Adaptive tests A(t̂) and B(Ŝ) and their
factors C2

k,i(f)

Adaptive test A(t̂) Adaptive test B(Ŝ)
density tailweight chosen test AE chosen test AE
uniform 1.286 U8:1 15.66 Klotz ∞
logistic 1.697 U5:1 1.372 logistic scores 1.428
Cauchy 3.217 U5:2 0.500 Ansari-Bradley 0.498
DE 1.912 U5:1 0.936 logistic scores 0.996
Normal 1.587 U8:1 1.862 Klotz 2.000
t1.5 2.433 U2:1 0.659 Ansari-Bradley 0.657
t2 2.107 U2:1 0.800 Ansari-Bradley 0.750
t3 1.798 U5:1 0.968 logistic scores 0.942
t4 1.786 U5:1 1.124 logistic scores 1.111
t5 1.737 U5:1 1.232 logistic scores 1.232
t10 1.672 U5:1 1.485 logistic scores 1.537
RST -1 3.451 U5:2 0.451 Ansari-Bradley 0.448
RST -0.5 2.302 U2:1 0.684 Ansari-Bradley 0.661
RST -0.4 2.146 U2:1 0.765 Ansari-Bradley 0.720
RST -0.3 2.010 U2:1 0.859 logistic scores 0.808
RST -0.2 1.891 U5:1 0.966 logistic scores 0.963
RST -0.1 1.788 U5:1 1.147 logistic scores 1.164
RST 0.05 1.657 U5:1 1.516 logistic scores 1.592
RST 0.14 1.591 U8:1 1.854 Klotz 2.015
RST 0.2 1.552 U8:1 2.146 Klotz 2.394
RST 0.4 1.446 U8:1 3.576 Klotz 4.531
U-L 0.55 1.668 U5:1 1.463 logistic scores 1.517
U-L 0.61 1.623 U5:1 1.623 Klotz 1.602
U-L 0.7 1.534 U8:1 1.993 Klotz 2.016
U-L 0.75 1.474 U8:1 2.393 Klotz 2.377
U-L 0.8 1.409 U8:1 3.027 Klotz 2.925
U-L 0.9 1.300 U8:1 5.888 Klotz 5.595
U-L 0.95 U8:1 9.214 Klotz 9.585
U-L 0.99 U8:1 11.28 Klotz 13.62

continuation on the following page
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Adaptive test A(t̂) Adaptive test B(Ŝ)
density tailw. skewn. chosen test AE chosen test AE
CN 2,0.01 1.592 U8:1 1.812 Klotz 1.861
CN 2,0.02 1.597 U8:1 1.765 Klotz 1.782
CN 2,0.05 1.611 U5:1 1.641 Klotz 1.610
CN 2,0.1 1.636 U5:1 1.519 Klotz 1.449
CN 3,0.01 1.596 U8:1 1.755 Klotz 1.711
CN 3,0.02 1.605 U5:1 1.655 Klotz 1.569
CN 3,0.05 1.635 U5:1 1.483 Klotz 1.292
CN 3,0.1 1.697 U5:1 1.257 logistic scores 1.198
CN 5,0.01 1.600 U8:1 1.690 Klotz 1.560
CN 5,0.02 1.614 U5:1 1.582 Klotz 1.403
CN 5,0.05 1.665 U5:1 1.321 logistic scores 1.202
CN 5,0.1 1.794 U5:1 1.009 logistic scores 0.956
CN 10,0.01 1.603 U8:1 1.634 Klotz 1.387
CN 10,0.02 1.622 U5:1 1.516 Klotz 1.318
CN 10,0.05 1.694 U5:1 1.189 logistic scores 1.044
CN 10,0.1 1.944 U2:1 0.961 logistic scores 0.798
Gumbel 1.655 U5:1 1.467 logistic scores ...
skew-log1 1.672 0.1313 U5:1 1.233 logistic scores 0.955
skew-log2 1.684 0.2279 U5:1 0.925 logistic scores
RST-0.4,-0.49 2.226 0.375 U2:1 0.718 Wilcoxon 0.047
RST-0.2,-0.49 2.195 0.490 U2:1 0.646 Wilcoxon 0.002
RST-0.2,-0.4 2.073 U2:1 0.751 Ansari-Bradley 0.665
RST 0.2,0.4 1.546 U8:1 2.852 Klotz 3.415
RST 0.2,0.49 1.507 U8:1 3.374 Klotz 4.222
RST 0.4,0.49 1.456 U8:1 4.070 Klotz 3.962

Table 6: Estimated levels of significance for various sample sizes and for
various U-tests and for the adaptive test.

U2:1 U5:1 U8:1 U5:2 Adaptive
n1 = n2 = 10 0.085 0.100 0.125 0.118 0.123
n1 = n2 = 20 0.065 0.071 0.085 0.072 0.085
n1 = n2 = 40 0.058 0.060 0.067 0.060 0.067
n1 = n2 = 100 0.052 0.051 0.053 0.053 0.053
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