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Abstract

In this paper, we deal with semi-parametric corrected-bias estimation of a positive
extreme value index (EVI), the primary parameter in statistics of extremes. Under
such a context, the classical EVI-estimators are the Hill estimators, based on any
intermediate number k& of top order statistics. But these EVI-estimators are not
location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra
tuning parameter ¢, with 0 < ¢ < 1, and where PORT stands for peaks over random
threshold. On the basis of second-order minimum-variance reduced-bias (MVRB)
EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the
stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algo-
rithm, for the adaptive choice of k and ¢, based on the bias pattern of the estimators

as a function of k. Applications in the fields of insurance and finance will be provided.

*Research partially supported by FCT / OE and PTDC / FEDER.
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1 Introduction and preliminaries

Given an underlying distribution function (d.f.) F, and with the notation
F=(y) := inf{z: F(z) >y} for the generalized inverse function of F', let us denote
U(t):= F—(1—1/t), t > 1, the associated reciprocal quantile function. As usual, the
notation RV, will be used for regularly-varying functions with an index of regular variation
equal to a, i.e., positive measurable functions g(-) such that for any = > 0, g(tx)/g(t) — z,
as t — oco. Under a semi-parametric framework, we deal with the estimation of a positive
extreme value index (EVI) v, the primary parameter in statistics of extremes, i.e. we shall

consider parents such that
UeRV, <+ F:zl—FERV,l/,Y,

the usually called heavy-tailed parents, quite common in the most diversified areas of
application, like finance, insurance, bibliometrics and biology. We are then working in
Dj(/l = Dm(EV,)y=0, the domain of attraction for maxima of EV,, v > 0, with EV,
denoting the general extreme value (EV) d.f., given by
exp (—(1+7x)*1/7), 14+vx>0 if v#0
EV,(x) = . (1)
exp(—exp(—x)), z € R if v=0.
For these heavy-tailed parents, given a sample X, = (X3,..., X,,) and the associated sam-
ple of ascending order statistics (0.8.’s), (X1, < -+ < X,,.,), the classical EVI-estimators

are Hill estimators (Hill, 1975), here denoted H = H(k), k =1,2,...,n — 1, and given by

H(k)=H(k;X,) =

| =

k
Z{ln ani+1:n —In ank:n}a (2)
i=1
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the average of the k log-excesses over a high random threshold X, j.,. Consistency of the

estimators in (2) is achieved if X,,_j., is an intermediate o.s., i.e., if
k=k,— oo and k/n— 0, asn — oc. (3)

The Hill estimators, in (2), are scale-invariant, but not location-invariant, as often desired,
and this contrarily to the PORT-Hill estimators, introduced in Aratjo Santos et al. (2006)
and further studied in Gomes et al. (2008a), with PORT standing for peaks over random
thresholds. The class of PORT-Hill estimators is based on a sample of excesses over a

random threshold X, .,, i.e., it is based on

XD = (X — Xngns -+ s X ton — Xngm)s With  ng == [ng] + 1, (4)

£xn

where [z] denotes, as usual, the integer part of . We can generally have 0 < ¢ < 1, for
d.f.’s with finite or infinite left endpoint x, := inf{z : F(z) > 0} (the random threshold
is an empirical quantile), and ¢ = 0, for d.f.’s with finite left endpoint x, (the random
threshold is the minimum). These new classes of EVI-estimators are the so-called PORT-

Hill estimators, denoted H|q = H@ = H@ (k) and given by

k
1 n i 1n_an:n
HD(k) := H(k; X9) ) =1 §j - 0<qg<1l, k<n-—ng (5)

)
n kn — an:n

i.e., they have the same functional form of the Hill estimator in (2), but with the original
sample X, = (X1,. .., X,) replaced by the sample of excesses X'? in (4). These estimators
are now invariant for both changes of scale and location in the data, and depend on the
tuning parameter q, that provides a highly flexible class of EVI-estimators, which may
even compare favorably with the second-order minimum-variance reduced-bias (MVRB)
EVI-estimators described in the following, provided that we adequately choose the tuning
parameter ¢. Indeed, and due to the high bias of the Hill estimator, in (2), for moderate up
to large k, several authors have been dealing with bias reduction in the field of extremes,
working usually in a slightly more restrict class than D7}, the class of models U(-) such

that
Ut)=Ct7"(1+ A(t)/p+ o(t)), Alt) =~ B 1, (6)

3
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as t — oo, where C, v >0, p < 0 and # # 0. This means that the slowly varying function
L(t) in U(t) = t"L(t) is assumed to behave asymptotically as a constant C. Note that to
assume (6) is equivalent to saying that we can choose A(t) = v ( t?, p < 0, in the more
general second-order condition

. InU(tx) —InU(t) —ylnz 2f—1
lim = .
t—o0 A(t) p

(7)

Indeed, the Hill estimator reveals usually a high asymptotic bias, i.e., as n — oo, and if
(3) and (7) hold, vk (H(k) — ~) is asymptotically normal with variance 42 and a non-null
mean value, equal to A/(1 — p), whenever V& A(n/k) — X # 0, finite, with A(-) the
function in (7). This non-null asymptotic bias, together with a rate of convergence of the
order of 1/ V'k, leads to sample paths with a high variance for small k, a high bias for large
k, and a very sharp mean squared error (MSFE) pattern, as a function of k. A simple
class of second-order MVRB EVI-estimators is the one in Caeiro et al. (2005), used for
a semi-parameteric estimation of In VaR, in Gomes and Pestana (2007). This class, here
denoted H = H(k), depends upon the estimation of the second-order parameters (3, p) in

(6). Its functional form is
H(k) = H(k;X,,) = Hp (k) := H(k)(1 = B(n/k)’ /(1= p)), (8)

with H(k) the Hill estimator in (2), and where (3, j) needs to be an adequate consistent
estimator of (f3,p). Then, under the same conditions as before, i.e., if (3) holds and
Vk A(n/k) — X # 0, finite, vk (H(k) — ) is asymptotically normal with variance also
equal to 72 but with a null mean value. Indeed, it follows from the results of de Haan and

Peng (1998) that for models in (6), and with H (k) given in (2),

VE(n/k)?

VE(H(E) ) £ Normal (0, 72) + 1 (e (), (9)

where the bias v # Vk (n/k)?/(1 — p) can be very large, moderate or small (i.e. go to
infinity, constant or zero) as n — oo. Also, from the results in Caeiro et al. (2005), we
know that it is possible to adequately estimate the second-order parameters § and p, so

that we get
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Vi (H(k) —~) £ Normal (0, ¥*) + 0,(Vk(n/k)?),
for H(k) in (8), i.e. H(k) outperforms H (k) for all k.

In this paper, we shall consider the new EVI-estimators,
H (k) = H(k; X0), (10)

with the same functional form of the MVRB estimators in (8), but with the original sample

X replaced by the sample of excesses X@ in (4). The estimators ﬁ(q)(k), in (10), will be

=n

named PORT-MVRB estimators. They are invariant for both changes of location and scale
and, similarly to the relationship between H and H, it is obvious that for any g, F(q)(k;)
outperforms H@ (k) for all k. A full theoretical study of these PORT-MVRB estimators,
with detailed information on the dominant component of bias, is still under investigation,

and out of the scope of this paper.

Remark 1. On the basis of (9), the optimal k-value for the EVI-estimation through the
Hill estimator in (2), i.e. kT := argmin MSE(H (k)), is thus well approzimated by

arg min {1/1+ (/K / (1 = p)*} = (1= p)’ n ) (37(=2p) ) (1)

Remark 2. With the notation by, =1+ p(n/k)?/(1—=p), and provided that
VE (n/k)P — X\, finite, \/E{H(k)/y — iy} is approzimately Normal(0,1). We can then
get approximate 100(1 — «) % confidence intervals (C1's) for «y, given by

(HE)/ (b + Eapp/ VE), HE)/ (Bhinp — &1-a/2/VE) ). (12)

where &, denotes the quantile of probability p of a standard normal d.f. If X = 0, we can
replace in (12) the bias summand F(n/k)?/(1 — p) by 0, i.e., we can take by, = 1.

Remark 3. If we consider a second-order MVRB EVI-estimator, and levels k such that
VE (n/k)P — X, finite, we can also easily get even simpler approzimate 100(1 — a)% CI's

5
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for . On the basis of the statistic H in (8), or even "7 in (10), for adequate values of q,
and for this same type of levels k, we get the following 100(1 — ) % approzimate C1I for -y,

(F0)/ (1 + &/ VE), HE)/ (1= €10/ VE)).

Algorithms for the estimation of (3, p) are provided in Gomes and Pestana (2007),
among others, and such estimation will be only briefly reformulated in Section 2 of this
paper. In Section 3, we describe the results associated with a large-scale Monte-Carlo
simulation study of the new PORT-MVRB EVI-estimators, in (10). Section 4 is dedicated
to a data-driven choice of the tuning parameters k and ¢, inspired in the heuristic choice
considered in Figueiredo et al. (2010) for the Value-at-Risk estimation. In Section 4.1, due
to the reasonably high stability on k& of the MVRB estimates H, in (8), and F(q), in (10),
for adequate values of ¢, we provide an algorithm for the choice of k, whenever we use H,

(q), in (10), as estimators of

in (8), as well as for the choice of k and ¢, whenever we use H
the EVI. Such algorithm is based on the bias pattern of the estimators as a function of k.
Finally, in Section 4.2, we provide applications of the adaptive methodology to data in the
fields of insurance and finance, as well as to a simulated sample from a Student underlying

parent.

2 Estimation of second-order parameters

All reduced-bias EVI-estimators, like the ones in (8) and (10), require the estimation of
shape and scale second-order parameters, 3 and p, respectively. Also, the estimation of the
optimal sample fraction (OSF) for classical EVI-estimators, like the Hill estimator, in (2),
i.e. the sample fraction k&' /n, with k' defined in Remark 1, depends on the estimation of

B and p, in (6). Indeed, on the basis of (11) and with (5, p) any consistent estimator of

(8, p), we can use

- (1 — p)2n=2P\1/(1-2p)
(Hall, 1982). Such an estimation will next be briefly discussed.
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For models in (6), and after taking a decision of working in the region |[p| < 1, the
region where bias reduction is indeed needed, as well as common in applications to real
data, we consider a particular member of the class of estimators introduced in Fraga Alves
et al. (2003), parameterized in a tuning real parameter 7, here taken equal to zero, the
value suggested in previous papers whenever working in this region of p-values. Given a
sample, X, , we shall thus essentially work with 7 = 0, i.e., with

(T (k;X,) — 1)
" (k;X,,) -3 ) ’ "

/30(]{:) = pAO(kJXn) ‘= min (07
dependent on the statistics
In <M(1(k:X ) ( (kX)) /2)

T ) = (VX )/2)_§ (M9 (k:X,)/6)

where .
M (k) =+ ;1 (I X, i1 — M Xy}, j=1,2,3. (15)

In the simulations we shall however also consider the estimator in Fraga Alves et al. (2003),

associated with 7 =1, i.e.

(16)

p1(k) = p1(k; X,,) := min (0 3(T7gl)(k;X”) _ 1)>

TV (k;X,) -3
where, with M,(Lj)(k) given in (15),
1/
(MP(k:x,)) = (MP (k:X,)/2)
1/2 1/3°
(MPk:x,)/2) " = (MO X,)/6)

Distributional properties of the estimators in (14) and (16) can be found in Fraga Alves et

TV (k; X,) =

n

al. (2003). Consistency is achieved in the class of models in (6), for intermediate k-values,
i.e., k-values such that (3) holds, and also such that vk A(n/k) — 0o, as n — oco. As
already suggested in previous papers, we have here decided for the computation of p,(k),

7=0,1, at k = kq, given by
ki=[n'"], €=0.001, (17)

7
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the threshold used in Caeiro et al. (2005) and Gomes and Pestana (2007). With such a
choice of k;, and whenever /k; A(n/ki;) — oo, we get p— p = p.(k1) — p = 0,(1/1Inn),
a condition needed, in order not to have any increase in the asymptotic variance of the
bias-corrected Hill estimators in equations (8) and (10). Note that with the choice of k; in
(17), we get ki A(n/ki) — oo if and only if p > 1/2 — 1/(2¢) = —499.5, an irrelevant
restriction, from a practical point of view. Interesting alternative classes of p-estimators
have recently been introduced in Goegebeur et al. (2008, 2010) and Ciuperca and Mercadier
(2010).

For the estimation of the scale second-order parameter 3, in (6), and again on the basis

of a sample X, , we shall here consider

(18)

s a e (B da(k) Do(k) — Dy(k)
Bolk) = Byl Xn) 2= (‘) 0,(8) Dy(k) — Dap(h)’

n
dependent on the estimator p = p,(k1;X,,), 7 = 0 or 1, suggested before and where, for
any a < 0,

1 k i —Q 1 k 7 . Xn—iJrl:n
0= 3 (5) e pa= g3 (5) v vms ()

with U;, 1 <@ < k, the scaled log-spacings associated with X . Details on the distributional
behaviour of the estimator in (18) can be found in Gomes and Martins (2002) and more
recently in Gomes et al. (2008b) and Caeiro et al. (2009). Consistency is achieved for models
in (6), k values such that (3) holds and vk A(n/k) — oo, as n — oo, and estimators p of
p such that p — p = 0,(1/Inn). Alternative estimators of 3 can be found in Caeiro and

Gomes (2006) and Gomes et al. (2010).

Remarks

e Asmentioned before, bias reduction is really needed when |p| < 1, a common situation
in practice. Hence the fundamental role played by the tuning parameter 7 = 0, and

the estimators in (14).

e In the simulation study, the EVI-estimators in (8) and (10) will be denoted H, and

8
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F[()q), respectively, to enhance the choice 7 = 0 in the class of p-estimators in Fraga

Alves et al. (2003). For 7 = 1, we shall use the obvious notation H; and ﬁﬁq’.

3 Finite sample behaviour: a Monte-Carlo simulation

In this section, for ¢ = 0,0.1 and 0.25, we are interested in the finite-sample behaviour
of the PORT-MVRB EVlI-estimators, ﬁ(Q)(k’), in (10), comparatively with the classical
Hill EVI-estimators, H(k), in (2) and the MVRB EVI-estimators H(k), in (8). We have
performed a large-scale multi-sample simulation with size 5000 x 20, i.e., 20 replicates with
5000 runs each. For details on multi-sample simulation refer to Gomes and Oliveira (2001).
The patterns of mean values (E) and root mean squared errors (RMSE) are based on the
first replicate. As an illustration, we shall present in this article the results associated with

the following underlying parents, all with a shape second-order parameter equal to —0.5:

I. the Burr model, with d.f. F(z) =1 — (1 +27?/")Y? 2 >0, v > 0, with v = 0.25 and
p=—0.5;

IT. the Student’s ¢,-model with v degrees of freedom, with a probability density function

fo () =T((v+1)/2) [+ /0] 2 J(V7o T(w)2), te R (v >0),
with v = 4 degrees of freedom (v = 0.25 and p = —0.5);

III. the general £V, model, in (1), with v = 0.5 (p = —0.5).

3.1 Mean values and mean squared errors paterns

In Figures 1, 2 and 3, for the models in 1., II. and III., respectively, we show the simulated
patterns of mean value, E(e), and root mean squared error, RMSE(e), of the EVI-estimators
H(k), HO(k), Ho(k) and H."(k), with H, H@, 7 and H? defined in (2), (5), (8) and
(10), respectively. For the sake of simplicity, we denote these estimates by H, H|q, Hy and
Hylq, respectively.
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E(*) HI0.1 0_3RMSE(')

H1025/ H|0)/

" H,1025

0.4 -

17 0.3 |

21 0.2 : k 0 \ k
22 0 200 400 0 200 400

Figure 1: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Burr

26 parent with (v, p) = (0.25, —0.5).

These parents were chosen just to illustrate the fact that:

e The PORT-MVRB EVlI-estimators can be not able to improve the performance of
32 Hy, as happens also with the PORT-Hill estimators when compared with the Hill
34 estimator H (see Figure 1, associated with the Burr model). Indeed, this hapens for

36 all models with a left endpoint greater than or equal to zero.

38 e The PORT-Hill estimators can outperform the MVRB-estimator H, (see Figure 2,
20 associated with a Sudent ¢, underlying parent). For this type of models, with a left
endpoint equal to infinity, the value ¢ = 0 should be discarded due to inconsistency
43 (see the patterns of H|0 and Hy|0 in Figure 2, and Gomes et al., 2008a, for further
45 details on the subject).

47 e We can often find a value of ¢ that provides the best estimator of ~, regarding for
49 instance minimum MSE, through the use of the new class of estimators F(q)(k), in

(10) (the value ¢ = 0.1, in Figure 2, and the value ¢ = 0, in Figure 3).

59 10
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H]0.1
,/; HO |0
AL
7/ H0.25

,, Hy10.1
| ‘ k
; 200 400 600

Figure 2: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Student

t4 parent (y = 0.25, p = —0.5).
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Figure 3: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Extreme

Value parent with v = 0.5 (p = —0.5).

3.2 Relative efficiencies and mean values at optimal levels

Given a sample X, = (Xi,...

, X»), let us denote S(k) = S(k;X,,) any statistic or r.v.

dependent on k, the number of top 0.s.’s to be used in an inferential procedure related with

a parameter of extreme events. Just as mentioned before for the Hill estimator H(k), in(2),

the OSF for S(k) is denoted kj /n, with k§ := argmin, M SE (S(k)). We shall now present,

11
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for n = 200, 500, 1000, 2000 and 5000, and with e denoting H or H|q or H, or H,|q,
7 =0, 1, the simulated OSF (k8 /n), mean values (EJ) and relative efficiencies (REFF) of
the EVI-estimators under study, at their optimal levels. The search of the minimum MSE
has been performed over the region of k-values between 1 and [0.95 x n]. The MSE of H
is also provided so that it is possible to recover the MSE of any other EVI-estimator, due
to the fact that for any EVI-estimator different from H, generally denoted S, the REFFy

indicator is given by

MSE{H(k{")}  RMSE[
MSE{S(k§)} ~ RMSES"

REFF) =

Among the estimators considered, and for all n, the one providing the smallest squared bias
and smallest MSE, or equivalently, the highest REFF' is underlined and in bold. Tables
1, 2 and 3 are related with the underlying parents in 1., II, and III., respectively, and 95%

confidence intervals are associated with all the estimates provided in the tables.

For an easier visualization, we present, in Figure 4, the REFF-indicators of the new PORT-
MVRB EVlI-estimators, in (10), as well as of the PORT-Hill EVI-estimators in (5) and the
MVRB EVI-estimators in (8), all at optimal levels, comparatively with the classical EVI-
estimators, in (2), also at their optimal level, for the underlying parents in I., II. and

III.

REFF, REFF, REFF,
1.5 8.0 0 3.5
_ H,0
7, H, 0.1 vol
\ 6.0
,10 HI0. 25|
77777/""' _
1.0 {revveesemeencenmeceeaaeeeeearenneees 4.0 _— - — 204 ,10.1
H|0 / H,10.25 H,0.25 HIO
H, 0.1 s n
H,10.25 H|0.25 : =
—_— H|0.1 2.0 — 0 0101
H, Y T T —— 25—
H|0.25
0.5 n o0 no o5 n

0 2000 4000 0 2000 4000 0 2000 4000

Figure 4: REFF-indicators for a Burr model with v = 0.25 and p = —0.5 (left), a Student t4 model (center) and an EV
model, with v = .5 (right).
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Table 1: Simulated OSFs (k3 /m), mean values (Eg), MSE of Hy and relative efficiency measures (REFFJ) at optimal
levels, for a Burr parent with (v, p) = (0.25, —0.5).

200

500

‘ 1000

2000

|

5000

kS /n

0.0778 + 0.0023

0.0520 £ 0.0017

0.0388 + 0.0008

0.0291 £ 0.0009

0.0187 £ 0.0006

H|0

0.0720 + 0.0025

0.0493 + 0.0016

0.0376 £ 0.0009

0.0281 + 0.0010

0.0181 + 0.0005

HI0.1

0.0540 + 0.0026

0.0357 £ 0.0011

0.0260 + 0.0009

0.0183 + 0.0006

0.0115 4 0.0003

H|0.25

0.0425 + 0.0014

0.0281 £ 0.0010

0.0202 + 0.0007

0.0138 + 0.0005

0.0084 £ 0.0003

Ho

0.1573 + 0.0062

0.1019 4 0.0031

0.0719 + 0.0021

0.0504 + 0.0019

0.0299 £ 0.0009

Hol0

0.1460 + 0.0059

0.0961 + 0.0026

0.0684 + 0.0024

0.0479 + 0.0015

0.0292 £ 0.0010

Hplo.1

0.0938 £ 0.0000

0.0573 4+ 0.0020

0.0396 £ 0.0010

0.0276 + 0.0012

0.0156 4+ 0.0006

Hl0.25

0.0688 + 0.0000

0.0426 + 0.0018

0.0286 + 0.0007

0.0196 + 0.0008

0.0114 4 0.0004

Hy

0.0783 + 0.0023

0.0531 4+ 0.0015

0.0389 + 0.0008

0.0291 £ 0.0009

0.0187 £ 0.0006

110

0.0728 + 0.0786

0.0500 + 0.0345

0.0378 + 0.0210

0.0281 + 0.0139

0.0183 £ 0.0078

H1l0.1

0.0550 £+ 0.0000

0.0358 + 0.0010

0.0262 £ 0.0009

0.0183 + 0.0006

0.0116 + 0.0003

H1|0.25

0.0425 4 0.0000

0.0281 £ 0.0010

0.0202 + 0.0007

0.0138 + 0.0005

0.0114 £ 0.0004

B

H

0.3106 + 0.0012

0.2965 + 0.0010

0.2889 £ 0.0006

0.2827 + 0.0007

0.2754 + 0.0006

H|0

0.3145 + 0.0011

0.2986 £ 0.0011

0.2904 + 0.0007

0.2835 + 0.0007

0.2758 4+ 0.0005

H|0.1

0.3334 + 0.0021

0.3158 4+ 0.0014

0.3059 + 0.0010

0.2972 4+ 0.0007

0.2879 £ 0.0006

H|0.25

0.3498 + 0.0016

0.3296 + 0.0016

0.3178 + 0.0011

0.3070 £ 0.0009

0.2961 £ 0.0008

Ho

0.2974 + 0.0010

0.2883 + 0.0007

0.2825 + 0.0004

0.2776 + 0.0005

0.2718 + 0.0004

Hol0

0.3024 + 0.0011

0.2907 4+ 0.0006

0.2839 £ 0.0005

0.2784 + 0.0004

0.2723 £+ 0.0004

Hplo.1

0.3220 + 0.0000

0.3076 £ 0.0009

0.2994 + 0.0007

0.2927 4+ 0.0008

0.2844 4+ 0.0005

Hgl0.25

0.3383 + 0.0000

0.3215 + 0.0014

0.3113 + 0.0007

0.3032 £ 0.0007

0.2937 £ 0.0006

Hy

0.3102 + 0.0011

0.2969 + 0.0008

0.2888 + 0.0006

0.2827 + 0.0007

0.2754 £+ 0.0006

H1l0

0.3145 + 0.0011

0.2988 + 0.0010

0.2904 £ 0.0007

0.2835 + 0.0007

0.2759 4+ 0.0005

H1l0.1

0.3341 £ 0.0000

0.3158 £ 0.0013

0.3060 + 0.0010

0.2972 + 0.0007

0.2881 £ 0.0006

H1]0.25

0.3497 + 0.0000

0.3295 + 0.0015

0.3177 + 0.0011

0.3069 £ 0.0009

0.2937 £ 0.0006

’ MSE(Hg)

0.0091 + 0.0001

0.0052 £ 0.0001

0.0035 + 0.0000

0.0023 £ 0.0000

0.0014 £ 0.0000

REFFS

H|0

0.9454 + 0.0011

0.9633 + 0.0010

0.9718 £ 0.0004

0.9783 + 0.0005

0.9852 + 0.0002

H|0.1

0.7568 £ 0.0033

0.7492 + 0.0029

0.7387 + 0.0026

0.7267 + 0.0017

0.7122 4+ 0.0021

H|0.25

0.6396 + 0.0032

0.6308 £ 0.0032

0.6198 + 0.0018

0.6074 £+ 0.0018

0.5909 £+ 0.0019

Ho

1.3826 + 0.0065

1.3373 £ 0.0052

1.3000 + 0.0045

1.2623 £ 0.0045

1.2303 + 0.0048

Holo

1.2869 £ 0.0060

1.2744 £ 0.0051

1.2542 £ 0.0053

1.2288 + 0.0045

1.2080 £ 0.0047

Hoplo.1

0.9616 + 0.0000

0.9173 4+ 0.0011

0.8838 £ 0.0006

0.8509 + 0.0006

0.8113 4+ 0.0014

Hl0.25

0.7840 % 0.0000

0.7486 £ 0.0021

0.7176 % 0.0020

0.6884 + 0.0014

0.6546 £ 0.0019

Hy

1.0049 + 0.0004

1.0025 + 0.0002

1.0015 £ 0.0003

1.0010 + 0.0000

1.0005 + 0.0000

H1|0

0.9490 + 0.0009

0.9652 £ 0.0008

0.9730 + 0.0003

0.9791 £+ 0.0004

0.9856 + 0.0003

H1l0.1

0.7579 £+ 0.0000

0.7500 + 0.0029

0.7392 £ 0.0026

0.7269 + 0.0017

0.7123 4+ 0.0021

H1|0.25

0.6401 £+ 0.0000

0.6314 £ 0.0032

0.6202 + 0.0018

0.6076 + 0.0018

0.6546 + 0.0019
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Table 2: Simulated OSFs (k3 /m), mean values (Eg), MSE of Hy and relative efficiency measures (REFFJ) at optimal

levels, together with corresponding 95% confidence intervals, for a Student ¢4 parent (y = 0.25,p = —0.5).

200

1000

2000

|

5000

kS /n

0.0385 £ 0.0017

0.0258 + 0.0010

0.0196 + 0.0007

0.0144 + 0.0005

0.0096 + 0.0003

H|0.1

0.1478 + 0.0027

0.1345 + 0.0014

0.1275 + 0.0012

0.1247 £ 0.0007

0.1218 + 0.0005

H|0.25

0.0700 £+ 0.0019

0.0534 + 0.0016

0.0428 £ 0.0012

0.0348 + 0.0009

0.0266 + 0.0007

Ho

0.0863 + 0.0033

0.0503 + 0.0028

0.0352 £ 0.0011

0.0249 + 0.0007

0.0151 + 0.0004

Hoplo.1

0.3718 4 0.0030

0.3882 + 0.0020

0.3934 + 0.0013

0.3970 + 0.0008

0.3988 + 0.0004

Hp|0.25

0.1375 £ 0.0045

0.1067 + 0.0022

0.0899 + 0.0023

0.0742 + 0.0015

0.0598 £ 0.0009

Hy

0.0435 + 0.0019

0.0283 + 0.0012

0.0200 £ 0.0007

0.0144 + 0.0005

0.0096 £ 0.0003

H1l0.1

0.1533 4+ 0.0026

0.1395 £ 0.0018

0.1314 4+ 0.0016

0.1287 + 0.0009

0.1255 + 0.0005

H10.25

0.0703 £ 0.0018

0.0540 + 0.0016

0.0430 £ 0.0013

0.0352 + 0.0010

0.0267 + 0.0007

B§

H

0.3392 £ 0.0026

0.3167 + 0.0016

0.3055 + 0.0013

0.2959 + 0.0009

0.2862 + 0.0007

H|0.1

0.2634 + 0.0009

0.2564 + 0.0004

0.2533 + 0.0004

0.2520 £ 0.0002

0.2508 + 0.0002

H|[0.25

0.2935 + 0.0012

0.2806 % 0.0011

0.2728 £ 0.0008

0.2672 + 0.0006

0.2613 + 0.0005

Ho

0.3104 4 0.0009

0.3005 + 0.0013

0.2939 £ 0.0008

0.2879 + 0.0006

0.2805 + 0.0004

Holo.1

0.2498 + 0.0005

0.2499 + 0.0004

0.2498 + 0.0002

0.2500 + 0.0001

0.2500 + 0.0000

Hl0.25

0.2783 + 0.0012

0.2686 + 0.0006

0.2641 + 0.0006

0.2599 £ 0.0003

0.2561 + 0.0002

Hy

0.3365 + 0.0024

0.3181 + 0.0015

0.3052 + 0.0012

0.2956 + 0.0009

0.2860 + 0.0007

H1l0.1

0.2634 4+ 0.0008

0.2565 £ 0.0006

0.2532 4+ 0.0005

0.2520 + 0.0003

0.2508 + 0.0002

H10.25

0.2930 £ 0.0012

0.2806 + 0.0010

0.2728 £+ 0.0008

0.2674 + 0.0006

0.2612 + 0.0005

MSEE

0.0205 £ 0.0003

0.0112 + 0.0001

0.0073 £ 0.0001

0.0048 + 0.0000

0.0029 + 0.0000

REFFS

H|0.1

2.9437 £+ 0.0206

3.4305 + 0.0218

3.9106 + 0.0209

4.4822 + 0.0305

5.4522 + 0.0335

H|[0.25

1.6823 £ 0.0083

1.7745 £+ 0.0072

1.8702 £ 0.0077

1.9850 + 0.0081

2.1777 + 0.0092

Ho

1.3982 £ 0.0084

1.3615 £+ 0.0053

1.3223 + 0.0057

1.2834 £ 0.0057

1.2358 + 0.0048

Hoplo.1

4.6598 + 0.0358

5.5036 + 0.0348

6.2959 + 0.0364

7.2692 + 0.0563

8.8478 + 0.0457

‘Hgl0.25

2.5115 £+ 0.0167

2.7219 £ 0.0153

2.8846 + 0.0169

3.1153 £ 0.0215

3.5054 + 0.0174

Hy

1.0443 £ 0.0033

1.0163 £ 0.0013

1.0078 £ 0.0006

1.0039 £ 0.0002

1.0016 £ 0.0002

H1l0.1

2.9950 + 0.0216

3.4867 £+ 0.0220

3.9712 + 0.0205

4.5530 £ 0.0325

5.5340 + 0.0349

H1|0.25

1.6917 + 0.0083

1.7820 £ 0.0073

1.8758 + 0.0079

1.9898 £ 0.0081

2.1816 + 0.0092

Figure 5 is equivalent to Figure 4, but with the simulated mean values of the EVI-

estimators at optimal levels.

Regarding the REFF-indicators, we would like to draw the following comments:

e For models like the Burr, with a left endpoint equal to zero, we cannot acchieve any

improvement with the shifted estimators.
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Table 3: Simulated OSFs (k3 /m), mean values (Eg), MSE of Hy and relative efficiency measures (REFFJ) at optimal
levels, together with corresponding 95% confidence intervals, for a EVj.5 parent (y = —p = 0.5).

200

500

1000

2000

5000

kS /n

0.0663 + 0.0021

0.0465 £ 0.0008

0.0351 + 0.0010

0

.0254 +

0.0006

0.0173 £ 0.0006

H|0

0.1338 £+ 0.0039

0.1003 + 0.0030

0.0767 £ 0.0022

0

.0616 =+

0.0022

0.0427 4+ 0.0012

HI0.1

0.0955 + 0.0031

0.0666 £ 0.0020

0.0503 + 0.0011

0

.0370 £+

0.0009

0.0256 + 0.0006

H|0.25

0.0790 + 0.0030

0.0542 £+ 0.0020

0.0400 + 0.0013

0

.0306 +

0.0006

0.0204 £ 0.0005

Ho

0.2045 + 0.0065

0.1223 4+ 0.0044

0.0886 + 0.0029

0

.0605 +

0.0025

0.0372 £+ 0.0011

Hol0

0.4818 + 0.0082

0.4504 + 0.0056

0.4193 + 0.0080

0

.3764 +

0.0079

0.3350 £ 0.0067

Hplo.1

0.2735 £+ 0.0066

0.2019 4+ 0.0048

0.1505 £ 0.0049

0

1146 +

0.0036

0.0700 £+ 0.0028

Hl0.25

0.1919 + 0.0076

0.1348 4 0.0042

0.1014 + 0.0030

0

.0718 +

0.0028

0.0446 £+ 0.0016

Hy

0.0803 + 0.0028

0.0513 4 0.0021

0.0367 + 0.0015

0

.0259 +

0.0007

0.0174 £ 0.0006

110

0.1440 + 0.0423

0.1053 £ 0.0326

0.0805 + 0.0302

0

.0630 +

0.0247

0.0436 + 0.0157

H1l0.1

0.0988 + 0.0031

0.0679 + 0.0021

0.0510 £ 0.0010

0

.0376 +

0.0010

0.0257 + 0.0006

H1|0.25

0.0806 + 0.0049

0.0550 £ 0.0020

0.0400 + 0.0013

0

.0309 +

0.0006

0.0446 £ 0.0016

BS

H

0.6236 + 0.0033

0.5957 + 0.0011

0.5791 + 0.0016

0

.5647 +

0.0010

0.5513 £ 0.0010

H|0

0.5814 + 0.0017

0.5611 + 0.0014

0.5485 £ 0.0010

0

.5401 +

0.0009

0.5303 + 0.0006

H|0.1

0.6001 £ 0.0023

0.5769 4+ 0.0015

0.5638 + 0.0009

0

5524 +

0.0009

0.5419 4+ 0.0006

H|0.25

0.6155 + 0.0035

0.5879 + 0.0021

0.5717 + 0.0015

0

.5607 +

0.0009

0.5477 £+ 0.0007

Ho

0.5733 + 0.0016

0.5643 + 0.0014

0.5579 + 0.0010

0

.5499 +

0.0009

0.5412 £+ 0.0006

Holo

0.5346 + 0.0007

0.5270 + 0.0003

0.5231 + 0.0003

0.5222 +

0.0002

0.5211 + 0.0001

Hoplo.1

0.5596 + 0.0011

0.5495 + 0.0007

0.5427 £+ 0.0006

0

.5382 &

0.0006

0.5315 4+ 0.0005

Hl0.25

0.5769 + 0.0019

0.5619 £ 0.0010

0.5536 + 0.0009

0

.5459 +

0.0008

0.5374 £ 0.0006

Hy

0.6188 + 0.0032

0.5954 £ 0.0021

0.5788 + 0.0020

0

.5645 +

0.0011

0.5512 £ 0.0010

H1|0

0.5827 + 0.0019

0.5618 + 0.0013

0.5494 + 0.0008

0

.5403 =+

0.0009

0.5304 £ 0.0005

H1l0.1

0.6008 + 0.0021

0.5770 + 0.0015

0.5638 £+ 0.0008

0

5527 +

0.0009

0.5419 + 0.0006

H1|0.25

0.6157 £ 0.0060

0.5878 £ 0.0021

0.5714 + 0.0015

0

.5609 £

0.0009

0.5374 £+ 0.0006

’ MSE(Hog)

0.0409 £ 0.0005

0.0227 £ 0.0002

0.0149 + 0.0001

0

.0099 +

0.0001

0.0059 £+ 0.0000

REFFJ

1.5056 £ 0.0097

1.5443 + 0.0058

1.5752 £ 0.0066

-

.6080 =+

0.0066

1.6494 £ 0.0079

1.2348 + 0.0057

1.2320 £ 0.0038

1.2316 £ 0.0045

Jun

.2288 +

0.0036

1.2275 £ 0.0041

1.0912 £ 0.0020

1.0878 + 0.0021

1.0872 £ 0.0026

1

.0859 +

0.0018

1.0860 £ 0.0020

1.5009 £ 0.0097

1.4760 + 0.0059

1.4519 £ 0.0057

1

4167 +

0.0057

1.3590 £ 0.0052

3.0038 + 0.0192

3.2385 + 0.0149

3.3792 + 0.0143

3.2726 +

0.0145

3.0308 + 0.0114

2.1648 £ 0.0149

2.0932 £ 0.0120

2.0248 £ 0.0094

1

19490 +

0.0079

1.8406 £ 0.0066

1.7370 £+ 0.0198

1.6770 £+ 0.0084

1.6322 £ 0.0075

1

5778 +

0.0067

1.5068 + 0.0065

1.0624 + 0.0047

1.0245 £+ 0.0012

1.0128 £ 0.0009

[un

.0066 =+

0.0005

1.0030 £ 0.0003

1.5283 £ 0.0097

1.5594 + 0.0057

1.5851 £ 0.0068

o

.6160 =+

0.0067

1.6544 + 0.0080

Hql0.1

1.2447 £ 0.0060

1.2377 £ 0.0039

1.2356 £ 0.0046

[

.2313 +

0.0037

1.2290 £ 0.0041

H10.25

1.0980 + 0.0053

1.0929 + 0.0023

1.0901 £ 0.0028

[un

.0880 =+

0.0018

1.5068 £+ 0.0065
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Figure 5: Mean values at optimal levels for a Burr model with v = 0.25 and p = —0.5 (left) , a Student t4 model (center
and an EV model, with v = .5 (right).

e For a model like the Student ¢,, here illustrated for v = 4, the PORT-MVRB EVI-
estimators have the best performance for all n, if ¢ = 0.1. However, even the PORT-

Hill EVI-estimators associated with ¢ = 0.1 exhibit also a high efficiency.

e For an underlying EV model, we reach a clear improvement in the estimation of ~,
whenever we consider the PORT estimators, based on the MVRB EVI-estimator.
The REFF-indicators of the PORT-MVRB EVI-estimators associated with ¢ = 0 are
the highest ones for all n. Note however that even the PORT-Hill estimators provide
REFF-indicators higher than one for all n, with the highest indicator associated with

¢ = 0 (a shift induced by the minimum of the available sample).

It is also clear from Figures 4 and 5 that there is not a full agreement between REFF and
BIAS indicators, but the discrepancies are moderate. Regarding bias at optimal levels, we

can draw the following comments:

e For the simulated Burr model the MVRB EVI-estimators exhibit the smallest bias
for all n, but not a long way from the PORT EVI-estimator associated with ¢ = 0,

as expected.

e For the Student t;, model, the PORT-MVRB EVI-estimator based on ¢ = 0.1 has a

quite interesting bias pattern, practically equal to zero for all n.

e For an EV model with v = 0.5 and for all n, the smallest bias is achieved by the
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PORT-MVRB EVI-estimator based on the shifted version of H, associated with ¢ = 0.

This also happens for other values of ~.

e Note also the over-estimation achieved by all EVI-estimators considered, with an

exception for the PORT-MVRB EVlI-estimators associated with ¢ = 0.1 in a Student

underlying parent.

In Figure 6, we still present the REFF-indicators of the EVI-estimators, in (5), (8) and

(10), comparatively with the classical EVI-estimators, in (2), all at optimal levels, for an

EV model with v =1 (p = —1) and a Fréchet model with v = 0.25 (p = —1, as well). The

Fréchet d.f. is @/, (z) = exp(—2~1/7), 2 > 0.

REFF, REFF,
4.0 2.0
1.5 H{)
1.0 e mr
1.5 H | 0 -
0.5 Ho |0
e [ H025 N
0.5 i n o0 LH10.25

2000 4000

Figure 6: REFF-indicators for a GEV model with v = 1 (left) and a Fréchet model with v = 0.25 (right), both with

p=—1

Figure 7 is equivalent to Figure 6, but with the mean values at optimal levels, for the

same extra models as in Figure 6.

In summary we may draw the following final conclusions:

1. If the underlying model has a finite left endpoint greater than or equal to zero, the

PORT estimators can never bit the original estimators.

2. For the range of p-values close to zero (greater than —1, say), the use of 7 = 1 provides

results only slightly better than the ones associated with the classical estimator. If

|p| > 1, the choice 7 = 1 is more convenient, as already detected in other papers on

the subject.
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21 Figure 7: Mean values at optimal levels for a GEV model with v = 1 (left) and a Fréchet model with v = 0.25 (right),
22 both with p = —1.

25 3. For parents with an infinite left endpoint, like the Student parents, or a left endpoint
27 smaller than zero, like the EV parents, the best performance regarding efficiency is
attained by the new estimators for an adequate value of ¢q. Such a ¢ depends on
30 the underlying model and on the sample size n. A similar comment applies to bias

32 reduction.

36 4 Data-driven choice of tuning parameters and case
39 studies

With the notation Xj., = 0, and with H and ﬁ(q), given in (8) and (10), respectively, we
43 can consider that 7 = A" for q=—1/n(n, =0). Our interest lies then on the estimation
45 of v through H(q), in (10), now also including H, in (8). Based on the stability on k of the
47 MVRB estimates, in (8), and the PORT-MVRB estimates, in (10), for adequate values of

q, we propose now a method for an adaptive heuristic estimation of ~.

52 4.1 An algorithm for the heuristic choice of k£ and ¢
Algorithm.

57 1. Given an observed sample (z1,xs,...,2,), consider, for ¢ = —1/n, 0(0.1)0.5, the

59 18
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observed sample of excesses, g,(f), with stq) given in (4), and compute p = py =

ﬁo(kl;ggq)) and B = 3y = Bﬁo(kl;g%@), po(k), ki and Bﬁ(k) given in (14), (17) and
(18), respectively.

. Next compute, for k =1,2,...,n — [ng] — 1, the observed values of ﬁéq)(k), with

F(q)(k') given in (10) (note that, as mentioned before and with H given in (8),
7 =),

. Obtain jy, the minimum value of j, a non-negative integer, such that ax(j) =

[ﬁéq)(k:) x 107], k=1,2,--- ,n — [ng] — 1, has distinct elements (in the applications,

in Section 4.2, we were led to jo = 1 for all data sets considered).

. For each ¢ and for £ > %{ , with l%é{ given in (13), consider as an estimate of ~

the equal consecutive values ﬁéq)(k), k e K,, with K, = 9 k9., to which is
. k(Q)

min’

associated the largest size [, 1= #K, = k:,(f{&m

. Choose next qq := argmax, [,.

. Consider all those estimates, F(()%)(k:), J(a0) <k< k%%, now with an extra decimal

place, i.e., F(QO)(k) = ag(jo + 1)/10%T Count the frequencies associated to those
estimates and obtain the mode 7y = 7,, of these values. Let us denote K* the set of

k-values corresponding to those estimates.

. In order to enlarge the size of the associated CI, take ky as the minimum of * and

the adaptive EVI-estimate 4 = F(()QO)(kO).

4.2 Case studies and a simulated sample
4.2.1 A data set in the field of insurance

We shall first consider an illustration of the performance of the Algorithm, when applied to
the analysis of automobile claim amounts exceeding 1,200,000 Euro over the period 1988-
2001, gathered from several European insurance companies co-operating with the same
re-insurer (Secura Belgian Re). This data set was already studied in Beirlant et al. (2004),

Vandewalle and Beirlant (2006) and Beirlant et al. (2008) as an example to excess-of-loss
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reinsurance rating and heavy-tailed distributions in car insurance. As detected before, and
can be seen from the histogram in Figure 8, the right-tail is quite heavy. The data is
censored at the left, with a finite positive left endpoint, and we thus expect to have no
improvement through the use of the PORT methodology, and we expect to be led by the
Algorithm to the choice of the MVRB EVI-estimator, H, in (8).

4e-07 6e-07
|

2e-07

e

I T T T T T T ]
1e+06 3e+06 5e+06 7e+06

0e+00
|

Figure 8 A histogram associated with the SECURA data.

In Figure 9, we present, for the original sample, the sample path of the p-estimates in
(14) and (16), as function of k, together with the sample paths of the S-estimators in (18),
also for 7 = 0 and 7 = 1. We have n = nyg = 371, and we got p = pp(368) = —0.74. We
were next led to the estimate 3 = 0.80.

In Figure 10, we present the estimates of 7, provided by H and ﬁ(Q), qg=—1/n, 0 and
0.2, with H and 7 given in (2) and (10), respectively. Regarding the EVI-estimation, note
that the Hill estimator H(k), in (2), is unbiased for the estimation of the extreme value index
~ only when the underlying model is a strict Pareto model. Otherwise, i.e. when we have
only Pareto-like tails, as happens here and can be seen from Figure 10, it exhibits a quite
relevant bias. The MVRB EVI-estimators, H, in (8), which are “asymptotically unbiased”,
have a smaller bias, exhibit more stable sample paths as functions of k, and enable us

to take a decision upon the estimate of 7 and other parameters of extreme events to be
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Figure 9: Estimates of the shape second-order parameter p and of the scale second-order parameter 8 for the SECURA

data.
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Figure 10: EVI-estimates, as a function of k, for the SECURA data, as well as the adaptive estimates obtained through

the Algorithm.

used, with the help of any heuristic stability criterion, like the “largest run” suggested in

Gomes et al. (2004), and the one written algorithmically in Section 4.1, regarding adaptive
PORT-MVRB EVI-estimation.

e In Step 5. of the Algorithm, we have been led to the choice gy = —1/n, associated

with a size equal to 0.089.

21

with a run of size 140 of a ~v-estimate equal to 0.3. In Step 6., we got a mode
1o = 59 for the y-estimate 0.26, ky = 233 and the adaptive PORT-MVRB estimate
4 = 0.255. The associated 99% MVRB-confidence interval for v is (0.218,0.307),
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e The estimate of k. provided in (13), is kY = 54 and H(54) = 0.320. The approxi-
10 mate 99% confidence interval is then (0.219, 0.420), with a size equal to 0.201 > 0.089.

13 4.2.2 A data set in the field of finance

16 We have also considered the performance of the Algorithm, when applied to the analysis of
the log-returns associated with one of the four sets of financial data considered in Gomes
19 and Pestana (2007), the daily closing values of the Microsoft Corp. (MSFT). Although there
21 is some increasing trend in the volatility, stationarity and weak dependence are assumed,
23 under the same considerations as in Drees (2003). For this data set, we now present, in
Figure 11, a box-and-whiskers’ plot of the available data. From Figure 11, we immediately
26 see that the underlying model has heavy left and right tails. This is the usual situation for
28 log-returns data, and leads to the elimination of the estimators associated with ¢ = 0, due

30 to their inconsistency. Figure 12 is similar to Figure 10, now for the MSFT data..

36
37 o 000 T - - - - %-mmc oo oo
38

46 Figure 11: Box-and-whiskers plot associated with the MSFT data.

49 e The number of positive elements in the available sample of log-returns is now ng =
51 882. We were led to the p-estimate p = py = —0.72, obtained at the level k; =
53 [n9999] = 876. The associated B-estimate is § = fy = 1.02.

55 e In Step 5. of the Algorithm, we have been led to the choice ¢y = 0.1, associated with
a run of size 810 of a y-estimate equal to 0.2. In Step 6. of Algorithm I, we got a mode

59 29
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0.1 ‘ k
0 500 1000

Figure 12: EVI-estimates, as function of k, for the MSFT data, as well as the adaptive estimates obtained through the
Algorithm..

1o = 402 for the ~-estimate 0.24, ky = 72 and the adaptive PORT-MVRB estimate
4 = 0.238. The associated 99% MVRB-confidence interval for v is (0.183,0.342),
with a size equal to 0.159.

e The estimate of k. provided in (13), is k& = 71 and H(71) = 0.391. The approxi-
mate 99% confidence interval is then (0.286,0.518), with a size equal to 0.232 again
larger than the size 0.159 obtained through the heuristic Algorithm in this paper.

4.2.3 A simulated data set

Due to the specificity of the log-returns, often modelled by a Student-¢ or its skewed versions
(see Jones and Faddy, 2003, and McNeill et al., 2005), we have arbitrarily simulated a
random sample of size n = 1762, from a Student’s t,-model with v = 4 degrees of freedom.

Figure 13 is equivalent to Figure 10, but for the Student ¢, generated sample.

e The number of positive elements is now ny = 904. We were led to the p-estimate
p = po = —0.72, obtained at the level k1 = [nJ9%?] = 897. The associated (-estimate
was B = Bo = 1.02.

e In Step 5. of Algorithm 1, we have been led to the choice go = 0.1, associated with
a run of size 667 of a y-estimate equal to 0.2. In Step 6. of the Algorithm I, we

23

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



Page 47 of 49 Communications in Statistics - Simulation and Computation

©CoO~NOUTA,WNPE

18 7=H"V(115)=0.244

0.1 - T k
0 400 800

23 Figure 13: EVI-estimates, as function of k, associated with an underlying Student ¢4 model, as well as the adaptive
24 estimates obtained through the Algorithm.

27 got a mode 1y = 361 for the v-estimate 0.24, ky = 115 and the adaptive PORT-
MVRB estimate 4 = 0.244. The associated 99% MVRB-confidence interval for v is
30 (0.197,0.321), with a size equal to 0.124.

32 e The estimate of k. provided in (13), is k& = 73 and H(73) = 0.359. The approxi-
34 mate 99% confidence interval is then (0.257,0.452), with a size equal to 0.195.

36 e In this case we know the true value of v, the value 0.25, and we see that such a
38 value does not even belong to the 99% confidence interval associated with the Hill
20 estimate. On the other way round, it belongs to the 99% CI associated with the
41 adaptive PORT-MVRB estimate. Moreover, the fact that the size of the MVRB-
43 CI is always smaller than the size of the Hill-CI, even when we consider both the
45 classical and the PORT-MVRB estimators at the level k| in (13), favours the new
methodology.

50 4.2.4 A general summary of the performed data analysis

52 In Table 4, we present a summary of the data analysis performed in this section, providing
54 the estimates of k for the Hill EVI-estimation and the values of (ko, qo) provided by the

Algorithm considered. We also provide not only the most usual adaptive EVI-estimation of
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a positive 7y, done through the classical Hill estimator, in (2), computed at the estimated
level l%gl , in (13), as well as the adaptive EVI-estimation provided by the Algorithm in
Section 4.1, related with the PORT-MVRB EVI estimators discussed in this article.

Data n no | k| EE | @ ko A= ﬁéqo)(ko) AH = H(EH)

SECURA | 371 | 371|368 | 54 | —1/n | 233 | 0.255 (0.218, 0.307) | 0.320 (0.219, 0.420)

MSFT 1762 | 882 | 876 | 71 0.1 72 | 0.238 (0.183, 0.342) | 0.391 (0.286, 0.518)

(
(

STU1 1762 | 904 | 897 | 73 0.1 | 115 | 0.244 (0.197, 0.321) | 0.359 (0.257, 0.452)

Table 4: Adaptive EVI-estimates for the different data sets under analysis.

For the SECURA data, and as desired, the adaptive PORT-MVRB EVI-estimate is
inside the 99% CI associated with the adaptive Hill EVI-estimate. But nothing similar
happens with the other adaptive estimates. For the generated Student sample, the true
value of 7 does not even belong to the 99% CI associated with the adaptive Hill EVI-
estimate. Moreover, 7 is below the lower limit of the 99% CI associated with the adaptive
Hill estimate, as well as the adaptive Hill estimate is above the upper limit of the 99% CI
associated with the adaptive PORT-MVRB EVlI-estimate. A similar comment applies to
the MSFT data, and we strongly believe that in this case the true value of v is slightly
below 0.286. These case studies claim obviously for a simulation study of the Algorithm
presented in Section 4.1, but this is a topic out of the scope of this paper. However, the
results obtained for other simulated samples, clearly indicate an over-estimation of the
adaptive Hill estimate and an overall best performance of this data-driven (and location-

invariant) method of estimation of the extreme value index.
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