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Abstract 

An adaptive Kalman filter is proposed to estimate the states of a system where the system noise is 

assumed to be a multivariate generalized Laplace random vector. In the presence of outliers in the 

system noise, it is shown that improved state estimates can be obtained by using an adaptive factor to 

estimate the dispersion matrix of the system noise term. For the implementation of the filter, an 

algorithm which includes both single and multiple adaptive factors is proposed. A Monte-Carlo 
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investigation is also carried out to access the performance of the proposed filters in comparison with 

other robust filters. The results show that, in the sense of minimum mean squared state error, the 

proposed filter is superior to other filters when the magnitude of a system change is moderate or large. 

 

1. Introduction 

The well-known Kalman filter (Kalman 1960) was introduced to deal with problems of linear estimation 

and prediction for a linear Gaussian system defined by 

 1t t t t+ = +X A X W  (1.1) 

 
t t t t
= +Y C X V  (1.2) 

where 
t

W  and 
t

V  are respectively system noise and measurement noise sequences which are mutually 

uncorrelated. 
t

W  and 
t

V  are distributed as zero mean Gaussian random vectors with covariance 

matrices WΣ  and VΣ , respectively. By means of orthogonal projections, the original Kalman filter was 

derived in the sense of minimum mean squared state error. It consists of estimates of the state and its 

covariance matrix given by 

 ( )1 1
ˆ ˆ ˆ

t t tt t t t t t− −= + −X X K Y C X  (1.3) 

and ( ) 1t tt t t t−= −P I K C P  (1.4) 

where     11 1 1
ˆ ˆ

tt t t t−− − −=X A X             (1.5) 

  1 11 1 1t tt t t t− −− − −
′= + WP A P A Σ  (1.6) 
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and 

1

1 1

1

2
t t t tt t t t

−

− −

 ′ ′= + 
 

VK P C C P C Σ  (1.7) 

However, the presence of outliers in the system noise term can cause a shift in the mean to a new level. 

In this situation, the traditional Kalman filter is no longer optimal due to the non-Gaussian noise term. 

To accommodate the outlier, the noise term is frequently assumed to have a symmetric heavy-tailed 

distribution such as a mixture of Gaussian components (Sorenson & Alspach 1971, Pena & Guttman 

1988, Yatawara et al. 1991), a mixture of Student-t distributions (Meinhold & Singpurwalla 1989) or a 

univariate generalized Gaussian distribution (Niehsen 2002). 

The construction of the adaptive filter proposed in this manuscript depends on a covariance 

matrix of the system noise which is estimated sequentially in time by exploiting system knowledge 

based on the discrepancy between the predicted state estimate and the measurement at a given time. 

There are several techniques available to estimate the noise covariance matrix such as Bayesian 

estimation, maximum likelihood estimation, correlation method, and covariance matching technique 

(Mehra 1972). In addition, a single adaptive factor (see, Yang et al. (2001)) which acts as a weighting 

factor between the predicted state estimates and the measurements can also be used in conjunction 

with the estimated noise covariance matrix to obtain an improved adaptive filter. A drawback of the 

latter technique is that all variables of the state vector are weighed by a single adaptive factor at the 

same time. Yang and Cui (2008) introduced an alternative adaptive filter with multi adaptive factors. 

This approach could reduce the state estimation errors more significantly than the filter with a single 

adaptive factor. 

In this manuscript, an adaptive Kalman filter is developed by assuming that the system noise 

term is multivariate generalized Laplace distributed whose shape depends upon a shape parameter. In 

the presence of outliers, the shape parameter can be easily manipulated to estimate the covariance 
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matrix of the system noise term in real time which enhances the performance of the filter. It is also 

shown that further gains in efficiency of the filters are achievable through the introduction of single and 

multi adaptive factors. 

The paper is organized as follows. In Section 2, a brief description of the multivariate generalized 

Laplace distribution is given. The adaptive Kalman filtering as well as the algorithms with single and 

multi adaptive factors are developed in Section 3. In Section 4, the performances of the proposed 

adaptive filters are compared with the traditional Kalman filter and other robust filters. Finally, the 

summary and conclusions are provided in Section 5. 

 

2. Multivariate Generalized Laplace Distribution 

The multivariate generalized Laplace (MGL) distribution was introduced by Ernst (1998) as a class of 

multivariate models consisting of several distributions depending on the value of a shape parameter. 

This shape parameter λ  distinguishes between members of the family such as the multivariate Laplace 

( )1λ = , the multivariate normal ( )2λ =  and the multivariate uniform ( )λ →∞  distributions as 

shown in Figure 1.  

Let Y  be a 1k ×  random vector, µ  be a 1k ×  vector of constants, and ( )ij
σ =  Σ  be a k k×  

non-negative definite matrix. Suppose the random vector Y  has an MGL distribution with the mean 

vector µ , the scale parameter matrix Σ , and the shape parameter λ , denoted by 

( )~ , ,kMGL λY µ Σ , with the joint density of Y  defined as 

 ( ) ( )
( )

( ) ( )
1
2

2

22 1exp
2

k

k

k
f

λ

λ

λ

π

− −
 Γ   ′= − − −   Γ   

y Σ y µ Σ y µ  (2.1) 
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where ( )Γ ⋅  denotes a gamma function. The mean vector and the covariance matrix of the MGL random 

vector Y  are given respectively by 

 E =Y µ  (2.2) 

and     ( ) ( )
( )

2k

k
Cov

k

λ

λ

+Γ
=

Γ
Y Σ            (2.3) 

Also, let a partitioned random vector ( ) ( )( )( )
1 1

1 1 1 2 1
,

k k k k× × × −
′ =Y Y Y  with a mean vector 

( ) ( )( )( )
1 1

1 1 1 2 1
,

k k k k× × × −
′ =µ µ µ , and a scale parameter matrix 

( ) ( )( )

( )( ) ( ) ( )( )

1 1 1 1

1 1 1 1

11 12

21 22

k k k k k

k k k k k k k

× × −

− × − × −

 
 =
  

Σ Σ
Σ

Σ Σ
 be given. 

Then, the conditional MGL density of 
*

1 22
=Y Y y  is defined as 

( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1
*

2
1 2 2 11.2

12

2 2
1 * 1 * * 1 *

1 1.2 11.2 1 1.2 2 2 22 2 2 2 2 22 2 2

2

2

       exp

k

k kk

f
k kk

λ λ

λ

π
λ

−

− − −

−  Γ Γ   
   = =

−  Γ Γ   
   

 
    ′ ′′− − − + − − + − −         

y y y Σ

y µ Σ y µ y µ Σ y µ y µ Σ y µ

 (2.4) 

where ( )1 *

1.2 1 12 22 2 2

−= + −µ µ Σ Σ y µ  and 
1

11.2 11 12 22 21

−= −Σ Σ Σ Σ Σ . The mean vector and the covariance 

matrix of 
*

1 22
=Y Y y  are given respectively by 

 ( )*

1 2 1.22
E = =Y Y Y µ  (2.5) 

and    ( ) ( )
( )
1

1

2

*

1 2 11.22

1

k

k
Cov

k

λ

λ

+Γ
= =

Γ
Y Y Y Σ           (2.6) 
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See further details in Fang, Kotz & Ng (1990). 

 

3. Adaptive Kalman Filtering 

Consider a linear discrete-time stochastic system which possesses properties of observability and 

reachability given by equations (1.1) and (1.2) where 
t

W  is assumed to be distributed as an zero mean 

MGL random vector with a scale parameter WΣ  and a shape parameter λW , denoted by 

( )~ 0, ,t rMGL λW WW Σ . 
t

V  is a Gaussian random vector, denoted by ( )~ 0, , 2t kMGL VV Σ  and  the 

scale parameter matrices WΣ  and VΣ  are assumed to be known positive definite matrices. Then,by 

means of the least squares technique (Kalman 1960, Duncan & Horn 1972), an unbiased minimum 

variance state estimate can be derived leading to an adaptive Kalman filter with recursive estimates of 

the state and its covariance matrix given by 

 ( )1 1
ˆ ˆ ˆ

t t tt t t t t t− −= + −X X K Y C X  (3.1) 

and ( ) 1t tt t t t−= −P I K C P  (3.2) 

where     11 1 1
ˆ ˆ

tt t t t−− − −=X A X             (3.3) 

 1 11 1 1

2

t tt t t t

r

r
r

λ

λ

− −− − −

 +
Γ 
 ′= +
 

Γ 
 

W

W

W

P A P A Σ  (3.4) 

and 

1

1 1

1

2
t t t tt t t t

−

− −

 ′ ′= + 
 

VK P C C P C Σ  (3.5) 
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The use of MGL system noise term makes the adaptive Kalman filter, referred to as the MGLF here after, 

more versatile as it can accommodate outliers appearing in a system. However, to implement the MGLF, 

the shape parameter of the system noise term λW  in (3.4) should be estimated at each point in time. 

Define a pseudo state innovation, ( )1 1
ˆ ˆ ˆ

t t t tt t t t t t− −= − = −Z X X K Y C X , which is assumed to be an 

MGL distributed random vector with time-varying shape parameter, denoted by 

( )( )~ , ,t r t
MGL λZ Z

Z 0 Σ , with the covariance matrix 

( )
( )

( )

1

2

1

2

t

t t t tt t t

t

r

r
r

λ

λ

−

 +
 Γ
     ′ ′= = +    
 Γ
 
 

Z

Z VZ

Z

Σ Σ K C P C Σ K . Also, define a partitioned random vector 

( )*,t jt tZ
′=Z Z  where ( ) ( )( )*

1 2 1 1
, , , , , ,t t t rtj t j t

Z Z Z Z Z− +=Z K K  and the corresponding covariance 

parameter matrix 

*

* *

jj j

j

σ ′
=  
  

Z

Σ
Σ

Σ Σ
 for 1, 2, ,j r= K . Then, the conditional density function of 

jtZ  

given 
* *

t t=Z z  is also distributed as a zero mean univariate generalized Laplace random variable with a 

scale parameter 
2 * * 1 *

j jj j jσ σ −′= −Σ Σ Σ  and a shape parameter ( )jZ t
λ , denoted by 

( )( )* * 2

1~ 0, ,
j

jt t t j Z t
Z MGL σ λ=Z z , where the conditional variance of 

* *

jt t t
Z =Z z  is given by 

( )

( )

* *

2 2

3

1

j

jt t t

j

Z t

jZ

Z t

λ
σ σ

λ

=

 
 Γ
 
 =
 
 Γ
 
 

Z z
. The MGLF can be implemented using the following algorithm. 

i) Enter the initial estimates 
1

ˆ
t t−X  and 

1t t−P . 
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ii) Collect a new measurement tY . 

iii) Compute the filter gain 

1

1 1

1

2
t t t tt t t t

−

− −

 ′ ′= + 
 

V
K P C C P C Σ . 

iv) State vector update 

Update the state estimate ˆ
t t

X  and state error covariance matrix 
t t

P   by 

( )
( )

1 1

1

ˆ ˆ ˆ

.

t t tt t t t t t

t tt t t t

− −

−

= + −

= −

X X K Y C X

P I K C P
 

v) Approximating the shape parameter 

Compute a pseudo state innovation, 
1

ˆ ˆ
t t t t t−= −Z X X , by assuming that tZ  is distributed as an 

MGL random vector, denoted by ( )( )~ , ,t r t
MGL λZ Z

Z 0 Σ . 

a. MGLF with single adaptive factor (MGLF-S) 

Obtain a maximum likelihood estimate ( )
ˆ

t
λ

Z
 with the scale parameter matrix 

Z
Σ  defined 

by 
2

1

1
2

2
t t t t tt t

δ −

 ′ ′= + 
 

Z V
Σ K C P C Σ K  where 

( )1
ˆ

2

t

t

λ
δ −

=
Z

 is a time-varying adaptive 

factor.  

b. MGLF with multi adaptive factors (MGLF-M) 

Obtain maximum likelihood estimators ( )
ˆ

jZ t
λ  for 1,2, ,j r= K  from the conditional 

distribution of 
jtZ  given 

* *

t t=Z z  with the scale parameter matrix 
2

jσ  defined by 

( )2 2 * * 1 *2j jt jj j jσ δ σ −′= −Σ Σ Σ  where 
( )1

ˆ

2

jZ t

jt

λ
δ

−
=  is a time-varying adaptive factor of variable 

j  at time t . 

vi) Time update 
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Compute the one step ahead state estimate 
1

ˆ
t t+X  and state forecast error covariance matrix 

1t t+P  given by 

a. For MGLF-S,  

 
1

ˆ ˆ
tt t t t+ =X A X  

  and   
( )

( )

1

2

ˆ

.

ˆ

t

t tt t t t

t

r

r
r

λ

λ

+

 + Γ
 
 ′= +
 
 Γ
 
 

Z

W

Z

P A P A Σ  

b. For MGLF-M, 

 
1

ˆ ˆ
tt t t t+ =X A X  

  and   

1 1

2 2
1

,t tt t t t+
′= + WP A P A Λ Σ Λ  

  where  
( )

( )

( )

( )

( )

( )

1 2

1 2

2 2 2

ˆ ˆ ˆ

, , ,

ˆ ˆ ˆ

r

r

Z t Z t Z t

Z t Z t Z t

r r r

diag

r r r
r r r

λ λ λ

λ λ λ

      + + +      Γ Γ Γ
      
      =

      
      Γ Γ Γ
            

Λ K . 

vii) Let 1t t= +  and go to step 2. 

 

The algorithms of both MGLF-S and MGLF-M are similar. However, as shown in the simulation study 

their performances are significantly different. Suppose a bivariate linear discrete-time stochastic system 

with a shift in the first variable is considered. In Figure 2(a), both the MGLFs and the traditional Kalman 
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filter are presented to illustrate their performances. It is clear that the state estimates of MGLFs can 

describe the system more accurately than those of the traditional Kalman filter. Furthermore, the state 

estimates from MGLF-M are much smoother than those of MGLF-S in the second variable as shown in 

Figure 2(b). 

Consider a particular system shift at time 51 in the first variable. For this case, the evolution of the 

estimated shape parameter values of the first variable, calculated by MGLF-M, are given in Figure 2(d). 

These values are similar to those of MGLF-S as in Figure 2(c). However, unlike in this case the shape 

parameter values of MGLF-M in the second variable are rarely affected by a change in the first variable 

as shown in Figure 2(e). Hence, it can be argued that the use of multi adaptive factors tend to protect 

against over adjustment providing state estimates which are more reliable for all variables. 

 

4. Effect of adaptive factor 

Essentially the adaptive factor ranging between 0 and 1 is used as a weighting factor in the covariance 

matrix of the state innovations for calculating the shape parameter. Its role is pivotal to the efficiency of 

the MGLF algorithm and facilitates a spontaneous response to a large system change by assuming a 

value less than 1 in a short period of time. In the estimation of adaptive state estimates, the adaptive 

factor and the adaptively estimated covariance matrix of the system noise term function together to 

significantly improve the ability of the MGLFs.  

Figure 3 shows the mean squared state error (MSSE) for each value of the adaptive factor 
t

δ  in 

a range of 0.1 to 4 stepped up by 0.1 when the systems are subjected shifts of  various magnitudes  0, 1, 

3, and 5 times the standard deviation. In the absence of a shift, the value of 
t

δ  becomes approximately 

equal to one when the filter attains a minimum MSSE value. However, when the magnitude of a system 
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shift increases, 
t

δ  tends to zero when MSSE is minimum. Therefore, the adaptive factor should be 

varied over time depending upon the magnitude of the pseudo state innovation. This further suggests 

that the use of a time-varying adaptive factor could considerably improve the performance of the MGLF.  

These are explored in the next section. 

 

5. Performance Study 

Consider the 5-variate linear discrete-time Gaussian system defined by equations (1.1) and (1.2) where 

the matrices 
t

A  and 
t

C  are set to be the identity matrices, I . A Monte Carlo simulation consisting of 

2,000 iterations with MSSE as a preferred criterion for comparison was conducted under following 

conditions. 

i) To compare with the traditional Kalman filter (KALMAN), the robust filter with mixture Gaussian 

noises (MIXTURE) (see Yatawara (1986)), the robust filter with generalized Gaussian noise 

(GGAUSSIAN) (see Masreliez (1975) and Niehsen (2002)), the MGLF-S and the MGLF-M are 

selected. 

ii) Measurement noise variances 
2 1σ =V

 and correlation coefficients of the measurement noise 

terms 0,  0.4,ρ =
V

 and 0.8 , 

iii) System noise variances 
2 0.01σ =W

 and correlation coefficients of system noise terms 

0,  0.4,ρ =
W

 and 0.8 , 

iv) Magnitude of system shift 0,  0.5,  1,  2,  3,  4,
M

δ =  and 5 , 
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v) A mean shift in the first variable  at time 26 of the multivariate time series of length 50 is 

introduced, by means of ( )1 26
W which is distributed as Gaussian random variable with mean 

1 0 M
µ µ δ σ= +

V
 where 0 0µ =  and variance 

2σ
W

, 

vi) MSSE using 10 time points after a system shift is calculated by,    

( ) ( )
35

26

1 ˆ ˆMSSE
10

t tt t t t

t=

′
= − −∑ X X X X . 

The structure of both noise covariance matrices is based on ( )2 21σ ρ σ ρ= − +Σ I J  where J  is a 

matrix of one and I  is an identity matrix. 

The results in Table 1 reveal that MSSE values of KALMAN tend to increase rapidly and are 

considerably higher than those of the robust filters when 
M

δ  increases for all cases of correlation of the 

system and the measurement noise terms. Evidently, the KALMAN is not optimal following an 

occurrence of a system shift. In comparison, the MSSE values of the robust filters also increase but at a 

slower rate and with significantly less magnitudes than the KALMAN. This implies that robust filters 

provide more consistent state estimates than the KALMAN.  

When a system is not subjected to a shift ( )0Mδ = , KALMAN clearly provides the smallest 

MSSE values for all combinations of ρ
W

 and ρ
V

showing its optimality in this situation. However, for 

0.5
M

δ = , MSSE values of MIXTURE become the smallest in comparison to all other filters. When 
M

δ  is 

moderate or large, MGLF-M shows superiority over other filters in the minimum MSSE sense. This 

implies that MGLF-M gives more precise state estimates than other filters for all significant 
M

δ  and 

( ),  ρ ρW V  combinations. 
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All filters excluding GGAUSSIAN are affected by ρ
W

 and ρ
V

and the MSSE values of the filters 

tend to increase proportional to ρ
W

. Unfortunately, a large value of ρ
W

 depreciates the precision of 

the state estimates. In contrast, MSSE values decrease as ρ
V

 increases. But, the effects of ρ
W

 and ρ
V

 

are not overwhelming as shown by the results of the comparisons. It’s also noticeable that the MSSE 

values of GGAUSSIAN are consistently higher than for other robust filters when ρ
V

=0.4 and 0.8 but are 

insensitive to the value of ρ
W

.  

The rate of convergence in MSSE of all filters excluding GGAUSSIAN are illustrated in Figure 4. 

For 0
M

δ =  and 0.5 , MGLF-S and MGLF-M provide larger MSSE values than KALMAN and MIXTURE. 

When the magnitude of a shift is significant ( )1Mδ ≥ , MSSE values of MGLF-M are the smallest values 

and decrease more rapidly than in other filters after a shift occurs. In contrast, KALMAN yields a gradual 

decrease in MSSE values and then becomes excessively large when 
M

δ  is large. MSSE values of 

MIXTURE become closer to those of MGLF-M as 
M

δ  increases. Clearly, the larger 
M

δ , the slower the 

convergence rate in MSSE of MGLF-S is, in comparison to MGLF-M.  

 

6. Conclusion 

The adaptive Kalman filtering approach proposed in this paper mainly deals with the presence of an 

outlier in the system noise term. The filters are developed by assuming an MGL system noise 

distribution to adaptively estimate the system noise covariance matrix requiring only information of the 

current measurement. In addition, a time-varying adaptive factor is also used to enhance the 

performance of the MGLFs. This leads to a more accurate recursive estimation procedure to represent 

the evolution of a system. 
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Moreover, algorithms to implement the MGLFs are given in both situations of the single and 

multi adaptive factors. The adaptive factor is mainly used as a weight in the scale parameter matrix of 

the state innovation to approximate the shape parameter. The single adaptive factor suggested treats all 

variables equally. This was shown to be a drawback of the method as it tends to adjust all variables 

whether they are changing or not. To eliminate this drawback, the single adaptive factor was replaced 

by multi adaptive factors which were determined by considering magnitudes of innovations 

corresponding to each state variable. This leads to an efficient recursive filter with reduced estimation 

error of the state and provides more reliable information of each variable. 

The simulation results show that when a system shift is moderate or large, the MGLFs are more 

effective than the traditional Kalman filter and other investigated robust filters for all combinations of 

ρ
W

 and ρ
V

. Also, MGLF-M provides the most rapid reduction in MSSE. Moreover, MGLFs are not more 

cumbersome to implement than the algorithm of the traditional Kalman filter. However, it is far superior 

to track the evolution of a system than the traditional one. 
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Figures 

Figure 1  Density plots of the bivariate MGL distribution with =µ 0  and =Σ I  when values of the 

shape parameter are 1, 2, 5, and ∞  

 

Figure 2  Performances and shape parameters of MGLF-S and MGLF-M: (a) the state estimates of the 

first variable ( )1
ˆ

t t
X , (b) the state estimates of the second variable ( )2

ˆ
t t

X , (c) the estimated shape 

parameter ( )
ˆ

t
λ

Z
 of MGLF-S, (d) the estimated shape parameter ( )1

ˆ
t

λ
Z

 of MGLF-M for the first variable, 

(e) the estimated shape parameter ( )2

ˆ
t

λ
Z

 of MGLF-M for the second variable. 

 

Figure 3  The magnitude of adaptive factor tδ  corresponding to a minimum mean of squared state error 

for various magnitudes of system shift. 

 

Figure 4  Rate of convergence in MSSE for various magnitudes of system shift. 

 

Tables 

Table 1  MSSE of the filters for various magnitudes of system shifts and combinations of correlation 

coefficients ρ
W

 and ρ
V

. 
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1λ = 2λ =

5λ = λ →∞

 

Figure 1  Density plots of the bivariate MGL distribution with =µ 0  and =Σ I  when values of the 

shape parameter are 1, 2, 5, and ∞  
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Figure 2  Performances and shape parameters of MGLF-S and MGLF-M: (a) the state estimates of the first variable ( )1
ˆ

t t
X , (b) the state 

estimates of the second variable ( )2
ˆ

t t
X , (c) the estimated shape parameter ( )

ˆ
t

λ
Z

 of MGLF-S, (d) the estimated shape parameter ( )1

ˆ
t

λ
Z

 of 

MGLF-M for the first variable, (e) the estimated shape parameter ( )2

ˆ
t

λ
Z

 of MGLF-M for the second variable. 
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Figure 3  The magnitude of adaptive factor tδ  corresponding to a minimum mean of squared state 

error for various magnitudes of system shift. 
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Figure 4  Rate of convergence in MSSE for various magnitudes of system shift. 
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Table 1 

MSSE of the filters for various magnitudes of system shifts and combinations of correlation coefficients 

ρ
W

 and ρ
V

. 

   FILTER 

ρ
W

 ρ
V

 
M

δ  KALMAN MIXTURE GGAUSSIAN MGLF-S MGLF-M 

        

0 0 0 0.47306 0.47351 1.56170 0.62759 0.56687 

  0.5 0.54853 0.54632 1.57122 0.66713 0.60918 

  1 0.80302 0.79079 1.63258 0.77635 0.74448 

  2 1.76552 1.65742 1.65939 1.12863 1.04947 

  3 3.35479 2.75679 1.67633 1.56973 1.21407 

  4 5.66575 3.33769 1.61848 1.98901 1.24630 

  5 8.52175 2.86450 1.64129 2.31587 1.21557 
        

 0.4 0 0.44519 0.44571 16.67773 0.58836 0.52951 

  0.5 0.50892 0.50693 16.35445 0.61494 0.56322 

  1 0.74167 0.72835 16.38809 0.72911 0.69935 

  2 1.59116 1.44404 16.28529 1.03751 0.91943 

  3 3.11503 2.19364 15.90009 1.43165 1.01234 

  4 5.11525 2.07543 15.74169 1.74691 0.99905 

  5 7.72958 1.65953 15.60685 2.03978 0.96043 
        

 0.8 0 0.33066 0.33162 45.71241 0.43776 0.39486 

  0.5 0.38418 0.38405 45.66550 0.46858 0.43362 

  1 0.55562 0.54411 45.73173 0.56040 0.51760 

  2 1.15418 0.86298 45.65861 0.78913 0.56478 

  3 2.21408 0.90197 45.99350 1.03920 0.59230 

  4 3.65632 1.05598 45.67210 1.27708 0.60305 

  5 5.55024 1.36908 45.60713 1.48399 0.64258 

 

 

 

Page 23 of 29

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

23 

 

 

Table 1 

continued 

   FILTER 

ρ
W

 ρ
V

 
M

δ  KALMAN MIXTURE GGAUSSIAN MGLF-S MGLF-M 

        

0.4 0 0 0.43686 0.43730 1.56489 0.58704 0.53526 

  0.5 0.53176 0.52939 1.58837 0.63899 0.59534 

  1 0.80035 0.78652 1.60171 0.74960 0.72858 

  2 1.89129 1.77652 1.64419 1.18731 1.07480 

  3 3.74580 3.05963 1.65336 1.73108 1.29312 

  4 6.25678 3.62481 1.63848 2.25208 1.34365 

  5 9.57008 3.07329 1.65172 2.69843 1.33901 
        

 0.4 0 0.47704 0.47748 16.59604 0.62938 0.56642 

  0.5 0.55529 0.55270 16.51674 0.67367 0.61205 

  1 0.79237 0.77821 16.52560 0.77053 0.72434 

  2 1.74497 1.56634 16.31735 1.11680 0.94753 

  3 3.38400 2.23078 15.94353 1.50707 1.01349 

  4 5.60411 2.01532 15.77101 1.83702 0.99266 

  5 8.57257 1.56396 15.74194 2.09234 0.95245 
        

 0.8 0 0.43708 0.43813 45.94689 0.57344 0.50412 

  0.5 0.49812 0.49774 46.00221 0.61934 0.55478 

  1 0.65673 0.64157 45.75734 0.68350 0.60001 

  2 1.28498 0.91278 45.64017 0.87591 0.62314 

  3 2.36920 0.91058 45.94054 1.06529 0.59882 

  4 3.87421 1.05157 45.78245 1.21801 0.59907 

  5 5.76528 1.28089 45.67897 1.29987 0.60281 

 

 

 

 

 

Page 24 of 29

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

24 

 

 

Table 1 

Continued 

   FILTER 

ρ
W

 ρ
V

 
M

δ  KALMAN MIXTURE GGAUSSIAN MGLF-S MGLF-M 

        

0.8 0 0 0.33839 0.33870 1.57574 0.47722 0.47394 

  0.5 0.46595 0.46404 1.57797 0.54466 0.54371 

  1 0.85827 0.84862 1.64532 0.76548 0.75477 

  2 2.43277 2.32896 1.67108 1.52171 1.24368 

  3 5.01866 4.26382 1.67592 2.50489 1.53625 

  4 8.65884 5.18856 1.64364 3.50083 1.65543 

  5 13.47593 4.27368 1.63858 4.49276 1.78279 
        

 0.4 0 0.42751 0.42793 16.56262 0.58113 0.54110 

  0.5 0.55203 0.54940 16.53059 0.65677 0.62284 

  1 0.89735 0.88085 16.51947 0.83868 0.77381 

  2 2.31026 2.05126 16.34804 1.43225 1.07659 

  3 4.63855 2.81756 15.54790 2.10278 1.17461 

  4 7.90570 2.33690 15.53645 2.70485 1.20841 

  5 12.18559 1.65301 15.65867 3.22789 1.19132 
        

 0.8 0 0.47304 0.47354 46.08451 0.64046 0.56837 

  0.5 0.55684 0.55543 45.43531 0.68207 0.60777 

  1 0.80269 0.77461 45.88378 0.80331 0.68161 

  2 1.77115 1.05534 45.63807 1.14735 0.76462 

  3 3.37481 0.91471 46.11275 1.38656 0.74408 

  4 5.65228 1.05940 45.86809 1.60624 0.75353 

    5 8.54040 1.25765 45.69582 1.68928 0.74807 
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