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Large deviation results for wave governed random motions driven

by semi-Markov processes∗

Claudio Macci†

Abstract

In this paper we present large deviation results for a model {ξ1+· · ·+ξn : n ≥ 1} which is close
to a random walk. More precisely we consider independent random variables {ξn : n ≥ 1} such
that {ξn : n ≥ 2} are i.i.d. and a different distribution for ξ1 is allowed. We prove large deviation
estimates for P (Nx ≤ xT ) and P (Nx < ∞) as x →∞, where Nx := inf{n ≥ 1 : ξ1+· · ·+ξn ≥ x}.
Moreover we provide an asymptotically efficient simulation law for the estimation of P (Nx ≤ xT )
and P (Nx < ∞) by Monte Carlo simulation based on the importance sampling technique. These
results will be adapted to wave governed random motions driven by semi-Markov processes and
we present some simulations. Finally we study the convergence of some large deviation rates
for standard wave governed random motions based on a scaling presented in the literature (see
e.g. Kac (1974) and Orsingher (1990)).

Short title: Wave governed random motions driven by semi-Markov processes.
Keywords: Importance sampling, level crossing probability, telegrapher’s process.
AMS Subject Classification: 60F10, 60K15, 65C05.

1 Introduction

A wave governed random motion is a two-valued integrated telegraph signal with upward velocity
c1 > 0 and downward velocity −c2 < 0, and rates λ1 > 0 and λ2 > 0 of the occurrences of velocity
switches, respectively (thus, in particular, we think to have two states 1 and 2, the holding times in
state 1 and in state 2 are independent, and the holding times in the state i ∈ {1, 2} are independent
and exponentially distributed with failure rate λi). We remark that it is a particular continuous
time Markov additive process with environment’s state space E = {1, 2}; see e.g. section 2.5 in
Asmussen (2000) for the preliminaries on Markov additive processes (and in particular for the case
with finite environment’s state space).

The theory of large deviations gives an asymptotic computation of small probabilities on ex-
ponential scale; see e.g. Dembo and Zeitouni (1998) as a reference on this topic. There is a wide
literature on large deviations for Markov additive processes, and the results for continuous time
Markov additive processes can be applied to wave governed random motions.

In this paper we consider a more general situation, i.e. wave governed random motions driven
by semi-Markov processes. There is a wide literature on semi-Markov processes with applications
in several fields. Recent monographs on this topic are Janssen and Manca (2006, 2007) and Barbu
and Limnios (2008); see also Limnios and Oprişan (2001). As we shall see in this case the holding
times are independent and compound geometric distributed (and the holding times in each state
are i.i.d.).

∗This paper was presented in the poster session of the Actuarial and Financial Mathematics Conference (Bruxelles,
February 4-5, 2010).

†Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133 Rome, Italy.
e-mail: macci@mat.uniroma2.it

1

Page 2 of 18

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

In section 2 we present large deviation estimates for level crossing probabilities (as the level
tends to infinity) and we address the problem of the estimation of the level crossing probabilities
by Monte Carlo simulation. More precisely we use the importance sampling technique and we
determine an asymptotically efficient simulation law. There is a wide literature on large deviations
and importance sampling for the estimation by Monte Carlo simulation of rare events: here we
cite Bucklew (1990, 2004), Mandjes (2007) and Asmussen and Glynn (2007). Moreover, among the
papers on this topic which study the level crossing probabilities, we recall Lehtonen and Nyrhinen
(1992a-b) and Stabile and Torrisi (2010).

The results in section 2 are presented for a model which is close to a random walk. In section
3 these results are applied to wave governed random motions driven by semi-Markov processes;
moreover we present some simulations. In section 4 we prove the convergence of some large deviation
rates for standard wave governed random motions. This kind of results appear in Macci (2009),
but here we consider a different scaling in the literature (see e.g. Kac (1974) and Orsingher (1990);
here we can have a non-null drift as in Beghin et al. (2001)). Finally we present an Appendix with
an interesting large deviation principle.

2 Results on large deviations and importance sampling

In this section we present large deviation results for a model which is close to a random walk. More
precisely we consider i.i.d. increments but a different distribution for the first increment is allowed.
In the next section 3 we shall adapt the results in this section to wave governed random motions
driven by semi-Markov processes.

In subsection 2.1 we present large deviation estimates for level crossing probabilities. In sub-
section 2.2 we address the problem of the estimation of the level crossing probabilities by Monte
Carlo simulation. More precisely we use the importance sampling technique and we determine an
asymptotically efficient simulation law.

2.1 Large deviation results

Let {ξn : n ≥ 1} be a sequence of independent random variables such that {ξn : n ≥ 2} are i.i.d.;
moreover let κ̃ and κ be the functions defined by

κ̃(γ) := logE[eγξ1 ] and κ(γ) := logE[eγξ2 ].

We denote the Fenchel-Legendre transform of the function of κ by κ∗, i.e. we set

κ∗(x) := sup
γ∈R

{γx− κ(γ)}. (1)

The functions κ̃, κ and κ∗ are convex. In general, for any convex function f as κ̃, κ and κ∗, the set

D(f) := {γ ∈ R : f(γ) < ∞}
is called domain of f . Moreover the interior of the set D(f) will be denoted by D(f)◦.

The first result is the large deviation principle (LDP) for the sequence {ξ̄n : n ≥ 1}, where
ξ̄n := ξ1+···+ξn

n . This LDP is a consequence of Gärtner Ellis Theorem (see e.g. Theorem 2.3.6 in
Dembo and Zeitouni, 1998); in particular we refer to the concept of essentially smooth function
(see e.g. Definition 2.3.5 in Dembo and Zeitouni, 1998).

Lemma 2.1 Assume that D(κ) ⊂ D(κ̃) and the function κ is essentially smooth and lower semi-
continuous. Then {ξ̄n : n ≥ 1} satisfies the LDP with good rate function κ∗ defined by (1); namely
κ∗ has compact level sets,

lim sup
n→∞

1
n

log P (ξ̄n ∈ C) ≤ − inf
x∈C

κ∗(x) for all closed sets C ⊂ R

2
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and
lim inf
n→∞

1
n

log P (ξ̄n ∈ G) ≥ − inf
x∈G

κ∗(x) for all open sets G ⊂ R.

Proof. For all γ ∈ D(κ) we have

lim
n→∞

1
n

logE[enγξ̄n ] = lim
n→∞

{
κ̃(γ)
n

+
(n− 1)κ(γ)

n

}
= κ(γ),

and the LDP holds with an application of Gärtner Ellis Theorem. ¤

Thus, as one expects, the different distribution of ξ1 does not change the behavior of large
deviations. However the situation could be different if D(κ) is not a subset of D(κ̃) (see the LDP
presented in the Appendix).

The aim of this section is to present large deviation estimates for suitable level crossing proba-
bilities which can be expressed in terms the random variables {Nx : x > 0} defined by

Nx := inf{n ≥ 1 : ξ1 + · · ·+ ξn ≥ x}.
In view of what follows we need to introduce some preliminaries. We consider the value

w := sup{γ ≥ 0 : κ(γ) ≤ 0},
and the following condition
(H): the inclusion D(κ) ⊂ D(κ̃) holds, the function κ is strictly convex on D(κ)◦ and satisfies the
hypotheses of Gärtner Ellis Theorem, limγ→∞ κ(γ) = ∞, κ(w) = 0 and w ∈ D(κ)◦.

Note that κ′(w) ∈ [0,∞), and we can have κ′(w) = 0 only if w = 0; moreover κ′(w) ∈ D(κ∗)◦

by some arguments of convex analysis (see e.g. Rockafellar, 1970, as a reference on this topic).
Moreover let R : (0,∞) → (0,∞) be defined by

R(T ) :=
{

Tκ∗(1/T ) if T < 1/κ′(w)
w if T ≥ 1/κ′(w),

(2)

where the case T ≥ 1/κ′(w) is empty if κ′(w) = 0; this detail will be omitted in other parts of the
paper.

Furthermore, for each γ ∈ D(κ), we consider the probability measure Pγ which is absolutely
continuous with respect to P on each σ-algebra Fn (n ≥ 1), where Fn is the σ-algebra generated
by {ξ1, . . . , ξn}, with density

`
Pγ ,P
n = eγ(ξ1+···+ξn)−{κ̃(γ)+(n−1)κ(γ)}. (3)

In what follows we use the symbol EPγ [·] for the expected value under the law Pγ .
Now we are ready to prove Proposition 2.2 which provides a large deviation estimate for P (Nx ≤

xT ) as x →∞; the infinite horizon case, i.e. the large deviation estimate for P (Nx < ∞), will be
presented in Remark 2.3.

Proposition 2.2 Assume that condition (H) holds. Then we have limx→∞ 1
x log P (Nx ≤ xT ) =

−R(T ) for all T ∈ (0,∞) such that 1/T ∈ D(κ∗)◦.

Proof. We have to prove the lower bound lim infx→∞ 1
x log P (Nx ≤ xT ) ≥ −R(T ) and the upper

bound lim supx→∞
1
x log P (Nx ≤ xT ) ≤ −R(T ).

Proof of the lower bound. Let us consider the set E := {s ∈ (0,∞) : 1/s ∈ D(κ∗)◦}. For all
s ∈ E ∩ (0, T ] we have

P (Nx ≤ xT ) ≥ P (ξ1 + · · ·+ ξxs ≥ x) = P

(
ξ1 + · · ·+ ξxs

xs
≥ 1

s

)

3
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and, by the large deviation lower bounds in Lemma 2.1, we have

lim inf
x→∞

1
x

log P (Nx ≤ xT ) ≥ lim inf
x→∞

s

xs
log P

(
ξ1 + · · ·+ ξxs

xs
≥ 1

s

)
≥ −s inf

z>1/s
κ∗(z).

We have three cases: κ′(0) < 0; κ′(0) ≥ 0 and 1/T > κ′(w) (i.e. 1/T > κ′(0) since w = 0);
κ′(0) ≥ 0 and 1/T ≤ κ′(w) (i.e. 1/T ≤ κ′(0) since w = 0).

• In the latter case we have lim infx→∞ 1
x log P (Nx ≤ xT ) ≥ 0 = −R(T ) choosing s = T and

noting that infz>1/T κ∗(z) = κ∗(κ′(0)) = 0.

• In the other cases we have s infz>1/s κ∗(z) = sκ∗(1/s) by the continuity of κ∗ at 1/s, and
therefore we obtain

lim inf
x→∞

1
x

log P (Nx ≤ xT ) ≥ − inf
s∈E∩(0,T ]

sκ∗(1/s). (4)

If we consider the function s 7→ γs defined on E by κ′(γs) = 1/s, we have

sκ∗(1/s) = s
{γs

s
− κ(γs)

}
= γs − sκ(γs); (5)

moreover, since s 7→ γs is differentiable (indeed we have γ′s = (κ∗)′(1/s) by a known argument
of convex analysis, see e.g. Theorem 26.5 in Rockafellar, 1970), we obtain

d

ds
sκ∗(1/s) =

d

ds
{γs − sκ(γs)} = γ′s − κ(γs)− sκ′(γs)γ′s = −κ(γs). (6)

We also remark that, since κ′ is increasing by the convexity of κ, γs is decreasing; moreover
γs = w for s = 1/κ′(w). In conclusion the derivative in (6) is negative if s ∈ (0, 1/κ′(w)) and
positive if s ∈ (1/κ′(w),∞); thus one can check that infs∈E∩(0,T ] sκ

∗(1/s) = R(T ) by (2) and,
by (4), this completes the proof of the lower bound.

Proof of the upper bound. We start noting that

P (Nx ≤ xT ) = EPγ [(`Pγ ,P
Nx

)−11{Nx≤xT}] = EPγ [e−γ(ξ1+···+ξNx )+(κ̃(γ)+(Nx−1)κ(γ))1{Nx≤xT}];

in what follows we prove the upper bound by setting γ = w(T ), where w(T ) is defined by

w(T ) :=
{

γT if T < 1/κ′(w)
w if T ≥ 1/κ′(w),

for any T > 0 such that 1/T ∈ D(κ∗)◦. (7)

Firstly one can check that w(T ), κ(w(T )) ≥ 0 for any T > 0 such that 1/T ∈ D(κ∗)◦. Then, if we
set D := eκ̃(w(T ))−κ(w(T )), we have

P (Nx ≤ xT ) ≤ e−w(T )x+{κ̃(w(T ))+(Nx−1)κ(w(T ))}Pw(T )(Nx ≤ xT ) ≤ De−w(T )x+xTκ(w(T )),

whence we obtain

lim sup
x→∞

1
x

log P (Nx ≤ xT ) ≤− {w(T )− Tκ(w(T ))}

=
{ −(γT − Tκ(γT )) = −Tκ∗(1/T ) if T < 1/κ′(w)
−(w − Tκ(w)) = −w if T ≥ 1/κ′(w)

= −R(T )

by (7), (5) with s = T , the equality κ(w) = 0 and (2). ¤

4
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Remark 2.3 Under the hypotheses of Proposition 2.2 we have limx→∞ 1
x log P (Nx < ∞) = −w;

thus, in some sense, we extend the previous result to the infinite horizon case, indeed w = R(∞) :=
limT→∞R(T ). This can be checked following the lines of the proof above. Firstly we note that
P (Nx < ∞) ≥ P (Nx ≤ xT ) and, by the lower bound lim infx→∞ 1

x log P (Nx ≤ xT ) ≥ −R(T )
proved in Proposition 2.2, we have

lim inf
x→∞

1
x

log P (Nx < ∞) ≥ −R(T ); (8)

then we obtain the lower bound lim infx→∞ 1
x log P (Nx < ∞) ≥ −w by taking taking the supre-

mum over T in (8), indeed supT>0−R(T ) = − infT>0 R(T ) = −w. The matching upper bound
lim supx→∞

1
x log P (Nx < ∞) ≤ −w can be proved by putting {Nx < ∞} in place of {Nx ≤ xT} in

the proof of the upper bound in Proposition 2.2; one obtains the same formulas that we had when
T ≥ 1/κ′(w).

2.2 Importance sampling results

Let us start with some preliminaries on importance sampling. Let us consider K independent
replications of Nx under the original law P ; then an unbiased estimator of πx,T := P (Nx ≤ xT ) is
the relative frequency π̂x,T of the level crossings

π̂x,T :=
1
K

K∑

i=1

1{N(i)
x ≤xT},

where N
(1)
x , . . . , N

(K)
x are the sampled values of Nx in each replication.

Moreover, by Proposition 2.2, this Monte Carlo approach needs K growing exponentially with
x to keep a fixed relative precision, indeed the relative precision of π̂x,T is

1
P (Nx ≤ xT )

√
P (Nx ≤ xT )(1− P (Nx ≤ xT ))

K
.

Thus we overcome this problem by considering K independent replications under another law P ◦

chosen in a suitable way. Firstly P ◦ is such that P is absolutely continuous with respect to P ◦

locally on the event {Nx ≤ xT} with positive local density; moreover an unbiased estimator of
P (Nx ≤ xT ) is

[π̂x,T ]P ◦ =
1
K

K∑

i=1

`P,P ◦

N
(i)
x

1{N(i)
x ≤xT} =

1
K

K∑

i=1

(`P ◦,P
N

(i)
x

)−11{N(i)
x ≤xT},

where in general `P,P ◦

N
(i)
x

is the local density of P with respect to P ◦. The variance of this unbiased
estimator is

VarP ◦ [[π̂x,T ]P ◦ ] =
VarP ◦ [(`

P ◦,P
Nx

)−11{Nx≤xT}]
K

=
EP ◦ [(`

P ◦,P
Nx

)−21{Nx≤xT}]− (P (Nx ≤ xT ))2

K
. (9)

The aim is to choose P ◦ in order to minimize VarP ◦ [[π̂x,T ]P ◦ ]. One could think to choose P ◦

to have a null variance but, as we see, P ◦ should depend on the unknown quantity P (Nx ≤ xT ) to
estimate: we have a null variance if and only if (`P ◦,P

Nx
)−1 is constant and, by taking into account

the equality EP ◦ [(`
P ◦,P
Nx

)−11{Nx≤xT}] = P (Nx ≤ xT ), the constant density should be equal to
P (Nx≤xT )
P ◦(Nx≤xT ) .

5
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In what follows we choose P ◦ in order to minimize VarP ◦ [[π̂x,T ]P ◦ ] in the sense of the criterion
of Siegmund (1976). By (9) the only part of VarP ◦ [[π̂x,T ]P ◦ ] which depends on P ◦ is the second
moment

η(x, T ; P ◦) := EP ◦ [(`
P ◦,P
Nx

)−21{Nx≤xT}].

The minimization of this second moment for a fixed x is often intractable. Thus, since in the
applications we are interested in large values of x, we concentrate our attention on the asymptotic
behavior of 1

x log η(x, T ; P ◦) as x →∞. In this way we can use standard features on large deviations,
indeed we have

lim inf
x→∞

1
x

log η(x, T ; P ◦) ≥ lim inf
x→∞

1
x

log(P (Nx ≤ xT ))2 = −2R(T ) (10)

by Jensen’s inequality and Proposition 2.2. Thus a law P ◦ (with respect to which P is absolutely
continuous with respect to P ◦ locally on the event {Nx ≤ xT} with positive local density) is said
to be an asymptotically efficient simulation law if

lim
x→∞

1
x

log η(x, T ; P ◦) = −2R(T ); (11)

indeed, if K is chosen to guarantee a fixed relative precision

1
P (Nx ≤ xT )

√
η(x, T ; P ◦)− (P (Nx ≤ xT ))2

K

for the estimator [π̂x,T ]P ◦ , K has chance of growing less than exponentially if and only if (11) holds.

Remark 2.4 (Admissible laws for the infinite horizon case) We can consider the infinite
horizon case, i.e. πx,∞ := P (Nx < ∞) in place of πx,T = P (Nx ≤ xT ). The presentation
above can be adapted by replacing the inequality ≤ xT with the inequality < ∞; then we have an
unbiased estimator π̂x,∞ and we have to refer to η(x,∞;P ◦) := EP ◦ [(`

P ◦,P
Nx

)−21{Nx<∞}]. Note that
we trivially have P (Nx < ∞) = 1 for all x > 0 if the net profit condition fails (i.e. if κ′(0) ≥ 0);
so this case has no interest. On the contrary, if the net profit condition κ′(0) < 0 holds, we have a
further problem: the simulation time under P is not finite if the level crossing does not occur. Thus
we overcome this problem choosing P ◦ in a class of admissible laws A such that, for any P ◦ ∈ A,
we have P ◦(Nx < ∞) = 1 for all x > 0. Therefore the simulation time under each P ◦ ∈ A is
almost surely finite because the level crossing occurs in a finite time with probability 1.

We conclude with the results. We shall see that, for each fixed T ∈ (0,∞), Pw(T ) is an asymp-
totically efficient simulation law for the estimation of P (Nx ≤ xT ) when x is large. Moreover we
shall see in Remark 2.6 that the asymptotically efficient simulation law for the infinite horizon case,
i.e. for the estimation of P (Nx < ∞), is Pw (note that Pw = Pw(∞) where w(∞) := limT→∞w(T )).

Proposition 2.5 Assume condition (H) holds. Then we have limx→∞ 1
x log η(x, T ; Pw(T )) = −2R(T )

for all T ∈ (0,∞) such that 1/T ∈ D(κ∗)◦.

Proof. The lower bound lim infx→∞ 1
x log η(x, T ;Pw(T )) ≥ −2R(T ) holds by (10) with P ◦ =

Pw(T ). For the matching upper bound we follow the same lines of the proof of the upper bound of
Proposition 2.2; then we have η(x, T ; Pw(T )) ≤ D2e−2w(T )x+2xTκ(w(T )), whence we obtain

lim sup
x→∞

1
x

log η(x, T ;Pw(T )) ≤ −2{w(T )− Tκ(w(T ))} = −2R(T ). ¤

Remark 2.6 (The infinite horizon case) Let η(x,∞; Pw) be as in Remark 2.4. Under the hy-
potheses of Proposition of 2.5 we have limx→∞ 1

x log η(x,∞; Pw) = −2w. Moreover, as we said in
Remark 2.4, we have to check the admissibility of Pw if the net profit condition holds. It is known
that Pγ ∈ A if and only if κ′(γ) > 0. Moreover the net profit condition holds if and only if κ′(0) < 0;
so, by the convexity of κ, we have w > 0 and κ′(w) > 0, and therefore Pw ∈ A.

6

Page 7 of 18

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3 On wave governed random motions driven by semi-Markov pro-
cesses

In this section we illustrate how the results in section 2 can be adapted to wave governed random
motions driven by semi-Markov processes. We also present some simulations.

3.1 Preliminaries

We start by recalling the definition of semi-Markov process. Let J = {Jn : n ≥ 0} be a discrete
time Markov chain with finite state space E with transition matrix (pij : i, j ∈ E) and define the
set Σ = {(i, j) ∈ E ×E : pij > 0}. Moreover let (Fij : (i, j) ∈ Σ) be a family distribution functions
of positive random variables. Furthermore let S = {Sn : n ≥ 0} be a strictly increasing sequence
of nonnegative random variables such that S0 = 0 and {Sn+1 − Sn : n ≥ 0} are conditionally
independent given J , with conditional distribution function

P (Sn+1 − Sn ≤ t|J) = FJnJn+1(t) for all n ≥ 0.

Then Z = {Z(t) : t ≥ 0} defined by

Z(t) = Jn for t ∈ [Sn, Sn+1) and n ≥ 0

is called semi-Markov process.
Throughout this paper we consider the following particular case:




E = {1, 2};
the distribution functions (Fij : (i, j) ∈ Σ) depend on i only, and we use the symbol Fi;

the transition matrix is P =
(

1− p1 p1

p2 1− p2

)
with p1, p2 ∈ (0, 1].

The cases p1 = 0 and p2 = 0 are avoided to have an irreducible Markov chain J .
Then, given c1, c2 > 0, a wave governed random motion A = {A(t) : t ≥ 0} driven by a

semi-Markov process Z is a continuous and piecewise linear process such that: A is linear (and
increasing) with slope c1 when Z occupies the state 1; A is linear (and decreasing) with slope −c2

when Z occupies the state 2. We remark that we recover the standard wave governed random
motion if p1 = p2 = 1 and, for each i ∈ {1, 2}, Fi is the distribution function of the exponential
distribution with rate λi.

The holding times in i ∈ E = {1, 2} will be denoted by {Y (i)
n : n ≥ 1}. We explain how they

are defined with a specific example of state selection generated by J = {Jn : n ≥ 0}:

(J0, J1, J2, J3, J4, J5, J6, J7, . . .) = (1, 1, 2, 1, 2, 2, 2, 1, . . .).

We recall that S0 = 0. Then we have

Z(t) =





1 if 0 ≤ t < S2,
2 if S2 ≤ t < S3,
1 if S3 ≤ t < S4,
2 if S4 ≤ t < S7,
1 if S7 ≤ t < . . .
...

...

and





Y
(1)
1 = (S2 − S1) + S1,

Y
(2)
1 = S3 − S2,

Y
(1)
2 = S4 − S3,

Y
(2)
2 = S7 − S4 = (S7 − S6) + (S6 − S5) + (S5 − S4),

Y
(1)
3 = . . .

...

where:
Y

(1)
1 is a sum between two independent random variables with distribution function F1;
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Y
(2)
1 is a random variable with distribution function F2;

Y
(1)
2 is a random variable with distribution function F1;

Y
(2)
2 is a sum between three independent random variables with distribution function F2;

Y
(1)
3 ...

...

Thus, conditionally on J , we have sums of i.i.d. random variables, and the distribution of each
random variable depends on the occupied state; moreover the number of the random variables
in each sum is given by the number of consecutive transitions of J in each state. In conclusion
{Y (i)

n : n ≥ 1} are i.i.d., and they are pi-geometric compound sums of i.i.d. random variables with
distribution function Fi, i.e. they have distribution function Gi =

∑∞
n=1(1 − pi)n−1piF

∗n
i (where

F ∗n
i is the n-th power of Fi in the sense of convolution) as in eq. (4.1.1) in Willmot and Lin (2001);

moreover {Y (1)
n : n ≥ 1} and {Y (2)

n : n ≥ 1} are independent sequences.
Let i ∈ E be arbitrarily fixed. Let Λi be the cumulant function concerning random variables

with distribution function Fi, i.e.

Λi(γ) := log
∫ ∞

0
eγxFi(dx),

and let D(Λi) be the domain of Λi, i.e.

D(Λi) := {γ ∈ R : Λi(γ) < ∞}.

We remark that Λi is a strictly increasing function. We also consider the (common) cumulant of
the random variables {Y (i)

n : n ≥ 1}, i.e.

κi(γ) := logE[eγY
(i)
n ];

then we have eκi(γ) =
∑∞

k=1(e
Λi(γ))k(1 − pi)k−1pi, whence we obtain (we have to distinguish the

cases pi ∈ (0, 1) and pi = 1, but each one leads to the same formula)

κi(γ) =

{
log pie

Λi(γ)

1−eΛi(γ)(1−pi)
if γ ∈ D(κi)

∞ otherwise,

where D(κi) is the domain of κi, i.e.

D(κi) := {γ ∈ R : κi(γ) < ∞} =
{ {γ ∈ R : eΛi(γ)(1− pi) < 1} if pi ∈ (0, 1)
{γ ∈ R : Λi(γ) < ∞} if pi = 1.

Finally note that we have κi = Λi if pi = 1.

3.2 Application of the results in section 2

Now we specialize the results in section 2 to the wave governed random motions driven by semi-
Markov processes presented above. We start by considering the sequence {ξn : n ≥ 1} defined
by

ξ1 := c1Y
(1)
1 1J0=1 + (−c2Y

(2)
1 + c1Y

(1)
1 )1J0=2 = c1Y

(1)
1 − c2Y

(2)
1 1J0=2

and, for n ≥ 2,

ξn := (−c2Y
(2)
n−1 + c1Y

(1)
n )1J0=1 + (−c2Y

(2)
n + c1Y

(1)
n )1J0=2 = c1Y

(1)
n − c2(Y

(2)
n−11J0=1 + Y (2)

n 1J0=2).
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Then the functions κ and κ̃ are defined by
{

κ(γ) := κ1(c1γ) + κ2(−c2γ)
κ̃(γ) := log(eκ1(c1γ)P (J0 = 1) + eκ(γ)P (J0 = 2));

in particular, since the domain of κ is

D(κ) := {γ ∈ R : κ(γ) < ∞} = {γ ∈ R : c1γ ∈ D(κ1),−c2γ ∈ D(κ2)},

we have

κ(γ) =

{
log p1eΛ1(c1γ)

1−eΛ1(c1γ)(1−p1)
+ log p2eΛ2(−c2γ)

1−eΛ2(−c2γ)(1−p2)
if c1γ ∈ D(κ1) and − c2γ ∈ D(κ2)

∞ otherwise

=

{
log p1eΛ1(c1γ)p2eΛ2(−c2γ)

(1−eΛ1(c1γ)(1−p1))(1−eΛ2(−c2γ)(1−p2))
if c1γ ∈ D(κ1) and − c2γ ∈ D(κ2)

∞ otherwise.
(12)

Note that D(κ) coincides with D(κ̃); thus D(κ) ⊂ D(κ̃) trivially holds. Moreover we have
supD(κ) = +∞ if and only if supD(κ1) = +∞, or equivalently p1 = 1 and supD(Λ1) = +∞.
Similarly we have inf D(κ) = −∞ if and only if supD(κ2) = +∞, or equivalently p2 = 1 and
supD(Λ2) = +∞. We also have κ′(0) = c1

∫∞
0 xF1(dx)

p1
− c2

∫∞
0 xF2(dx)

p2
(this value appears in Remarks

2.4-2.6 when we talk about the net profit condition).
We conclude with some remarks on the laws {Pγ : γ ∈ D(κ)} defined by the densities {`Pγ ,P

n :
n ≥ 1} in (3) with respect to the σ-algebras {Fn : n ≥ 1}. Firstly Fn is the σ-algebra generated by
{J0, (Y

(1)
1 , Y

(2)
1 ), . . . , (Y (1)

n , Y
(2)
n )}. Moreover `

Pγ ,P
n consists of a conditional exponential change of

measures given J0; this is quite different from what happens in other papers on large deviations for
models in a Markovian environment as, for instance, Lehtonen and Nyrhinen (1992b) (see also Iscoe
et al. (1985) and Ney and Nummelin (1987a-b) which concern the case with a general environment
state space) where one has a unique exponential change of measure.

Finally we can provide a qualitative description of each one of the laws {Pγ : γ ∈ D(κ)} in
terms of the random variables {Y (1)

n : n ≥ 1} and {Y (2)
n : n ≥ 1}. This is useful for the simulations

presented in the next subsection.

Lemma 3.1 For each γ ∈ D(κ), under Pγ we have: {Y (1)
n : n ≥ 1} and {Y (2)

n : n ≥ 1} are
independent; furthermore, for each fixed i ∈ E, {Y (i)

n : n ≥ 1} are i.i.d. p
(γ)
i -geometric compound

sums of i.i.d. random variables with distribution Q
(γ)
i , where p

(γ)
i := 1− eκi((−1)i+1ciγ)(1− pi) and

Q
(γ)
i is absolutely continuous with respect to the original law Qi of {Y (i)

n : n ≥ 1} with density
dQ

(γ)
i

dQi
(x) = e(−1)i+1ciγx−κi((−1)i+1ciγ).

A generalization where E has at least three points. One can wonder if it is possible to
consider a generalization of the framework above where E = {1, . . . , s} for some s ≥ 3. Given
c1, . . . , cs > 0, a possible way is the following: pi,i+1 ∈ (0, 1] and pii = 1 − pi,i+1 for each i ∈
{1, . . . , s − 1}; ps1 ∈ (0, 1] and pss = 1 − ps1; A is linear (and increasing) with slope c1 when
Z occupies the state 1; A is linear (and decreasing) with slope −ci when Z occupies any state
i ∈ {2, . . . , s}. In such a case, if we set qi := pi,i+1 for each i ∈ {1, . . . , s − 1} and qs := ps1, the
function κ is defined by

κ(γ) := κ1(c1γ) +
s∑

i=2

κi(−ciγ)

where, in general, κi is the logarithm of the moment generating function of a suitable qi-geometric
compound sums of i.i.d. random variables.

9

Page 10 of 18

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3.3 Simulations

In this subsection F1 and F2 are distribution functions of exponential random variables. So we
start with some preliminaries concerning this framework. Let i ∈ {1, 2} be arbitrarily fixed. We
set Fi(x) := 1 − e−λix (for x ≥ 0) for some λi > 0; thus Fi is the distribution function of any
exponential random variable with failure rate λi. Then Λi and κi become

Λi(γ) =
{

log λi
λi−γ if γ < λi

∞ otherwise

and

κi(γ) =





log
pi

λi
λi−γ

1− λi
λi−γ

(1−pi)
if λi

λi−γ (1− pi) < 1

∞ otherwise
=

{
log λipi

λipi−γ if γ < λipi

∞ otherwise.

Note that, as already remarked, κi = Λi if pi = 1. Finally, by (12), we have

κ(γ) =

{
log λ1p1λ2p2

(λ1p1−c1γ)(λ2p2+c2γ) if − λ2p2

c2
< γ < λ1p1

c1

∞ otherwise.
(13)

We consider the following choice of the parameters:

P (J0 = 1) = 1/3 = 1− P (J0 = 2); p1 = 1/4; p2 = 1/2; λ1 = 2; λ2 = 1; c1 = 3; c2 = 6.

The net profit condition holds since κ′(0) = c1
λ1p1

− c2
λ2p2

= −6 < 0. Moreover we have w =
λ1p1

c1
− λ2p2

c2
= 1

12 , κ′(w) = c2
λ2p2

− c1
λ1p1

= 6 and, for T < 1/κ′(w), we have

w(T ) =
1
2


λ1p1

c1
− λ2p2

c2
− 2T +

√(
λ1p1

c1
+

λ2p2

c2

)2

+ 4T 2


 .

It is interesting to give a brief description of the distributions {Pγ : γ ∈ D(κ)} in Lemma 3.1,

where D(κ) =
(
−λ2p2

c2
, λ1p1

c1

)
=

(− 1
12 , 1

6

)
. We have p

(γ)
1 = 1 − λ1

λ1−c1γ (1 − p1) = 0.5−3γ
2−3γ , p

(γ)
2 =

1− λ2
λ2+c2γ (1− p2) = 0.5+6γ

1+6γ , Q
(γ)
1 is the exponential distribution with failure rate λ1− c1γ = 2− 3γ

and Q
(γ)
2 is the exponential distribution with failure rate λ2+c2γ = 1+6γ (note that 2−3γ, 1+6γ > 0

for all γ ∈ D(κ)).
We present different estimates of P (Nx ≤ xT ) by Monte Carlo simulations with two methods:

the crude Monte Carlo (CMC) under the original law, and the Importance Sampling (IS) under
the asymptotically efficient simulation law Pw(T ) (according to Proposition 2.5). We also present
numerical values for the variance of the estimators. We consider x = 30 and two choices of T :
T = 0.1 and T = 1. Each estimate is based on K = 100 simulations.

CMC CMC IS IS
probability variance probability variance

T = 0.1 estimate estimate estimate estimate
(T < 1/κ′(w)) 0.03 2.91 · 10−4 0.0328 5.2813 · 10−5

0.04 3.84 · 10−4 0.0253 3.4258 · 10−5

0.02 1.96 · 10−4 0.0323 4.4088 · 10−5

CMC CMC IS IS
probability variance probability variance

T = 1 estimate estimate estimate estimate
(T ≥ 1/κ′(w)) 0.07 6.51 · 10−4 0.0454 1.0562 · 10−5

0.03 2.91 · 10−4 0.0514 1.2477 · 10−5

0.04 3.84 · 10−4 0.0608 1.5319 · 10−5
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4 Results for the standard wave governed random motion

In this section we consider the standard wave governed random motion, i.e. the case presented
in subsection 3.3 (i.e. F1 and F2 are distribution functions of exponential random variables) with
p1 = p2 = 1.

In what follows Propositions 4.1 and 4.2 provide an expression for the functions κ∗ and R
defined by (1) and (2), respectively (and the function κ is defined by (13)). As we shall see we have
D(κ∗) = R and therefore the condition 1/T ∈ D(κ∗)◦ in Propositions 2.2 and 2.5 always holds.

Proposition 4.1 Let us consider γ±(x) := 1
2

(
λ1
c1
− λ2

c2
− 2

x ±
√(

λ1
c1

+ λ2
c2

)2
+ 4

x2

)
. Then we have

κ∗(x) =





xγ+(x)− log λ1λ2
(λ1−c1γ+(x))(λ2+c2γ+(x)) if x > 0

2 log(λ2c1 + λ1c2)− log(4λ1λ2c1c2) if x = 0
xγ−(x)− log λ1λ2

(λ1−c1γ−(x))(λ2+c2γ−(x)) if x < 0.

Proof. Firstly, for each fixed x ∈ R, we have κ∗(x) = xγ(x)−κ(γ(x)), where γ = γ(x) ∈
(
−λ2

c2
, λ1

c1

)

is the unique solution of the equation κ′(γ) = x or, equivalently, γ(·) is the inverse of κ′ (which is
strictly increasing). Note that

κ′(γ) =
c1

λ1 − c1γ
− c2

λ2 + c2γ
=

2c1c2γ + λ2c1 − λ1c2

(λ1 − c1γ)(λ2 + c2γ)
(14)

and we distinguish two cases.
Case x = 0. We have the equation κ′(γ) = 0 which admits the solution γ = λ1c2−λ2c1

2c1c2
=: γ(0); then

we obtain

κ∗(0) =0γ(0)− κ(γ(0)) = − log
λ1λ2

(λ1 − c1γ(0))(λ2 + c2γ(0))

= log

(
λ1 − λ1c2−λ2c1

2c2

)(
λ2 + λ1c2−λ2c1

2c1

)

λ1λ2
= log

(
2λ1c2−λ1c2+λ2c1

2c2

) (
2λ2c1+λ1c2−λ2c1

2c1

)

λ1λ2

= log
(

(λ2c1 + λ1c2)2

4λ1λ2c1c2

)
= 2 log(λ2c1 + λ1c2)− log(4λ1λ2c1c2).

Case x 6= 0. The equation κ′(γ) = x becomes

2c1c2γ + λ2c1 − λ1c2 = (λ1 − c1γ)(λ2 + c2γ)x;

thus we have the equation

c1c2xγ2 − ((λ1c2 − λ2c1)x− 2c1c2)γ + λ2c1 − λ1c2 − λ1λ2x = 0

with solutions γ = γ±(x) as in the statement of the proposition. Now we note that we have the
following inequalities:

γ+(x) >
1
2

(
λ1

c1
− λ2

c2
− 2

x
+

λ1

c1
+

λ2

c2

)
=

λ1

c1
− 1

x
>

λ1

c1
if x < 0;

γ−(x) <
1
2

(
λ1

c1
− λ2

c2
− 2

x
−

(
λ1

c1
+

λ2

c2

))
= −λ2

c2
− 1

x
< −λ2

c2
if x > 0.

Then, since γ(x) ∈
(
−λ2

c2
, λ1

c1

)
, we obtain the equality

γ(x) =
{

γ+(x) if x > 0
γ−(x) if x < 0

and we complete the proof plugging γ(x) into κ∗(x) = xγ(x)− κ(γ(x)). ¤
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Proposition 4.2 Let R be defined by (2) where κ∗ is as in Proposition 4.1. Then have w =
max{λ1c2−λ2c1,0}

c1c2
and 1

κ′(w) = λ1λ2
|λ1c2−λ2c1| . Thus: w = λ1c2−λ2c1

c1c2
> 0 and 1

κ′(w) = λ1λ2
λ1c2−λ2c1

if λ1c2 −
λ2c1 > 0; w = 0 and 1

κ′(w) = λ1λ2
λ2c1−λ1c2

if λ1c2 − λ2c1 ≤ 0.

Proof. Note that the equation κ(γ) = 0 is equivalent to λ1λ2
(λ1−c1γ)(λ2+c2γ) = 1 and we have two

solutions: γ = 0 and γ = λ1c2−λ2c1
c1c2

. Thus we have the two cases in the statement of the proposition
for w = sup{γ ≥ 0 : κ(γ) ≤ 0}. Finally the value 1/κ′(w) can be computed by (14). ¤

4.1 On some different level crossing probabilities

In this subsection we consider the level crossing probabilities P (τA
x ≤ xT ) and P (τA

x < ∞) (for
x > 0) where τA

x is defined by
τA
x := inf{t ≥ 0 : A(t) ≥ x}.

We start recalling some known formulas and we refer to Macci (2009) where we have the same
notation. Let us consider the functions κA, κ∗A and RA defined as follows:

κA(γ) :=
−[(λ1 + λ2) + γ(c2 − c1)] +

√
∆(γ)

2

where
∆(γ) := (λ1 + λ2)2 + γ2(c1 + c2)2 + 2γ(c1 + c2)(λ2 − λ1);

κ∗A(x) := sup
γ∈R

{γx− κA(γ)}, i.e. κ∗A(x) =

{ (√
λ1

x+c2
c1+c2

−
√

λ2
c1−x
c1+c2

)2
if x ∈ [−c2, c1]

∞ otherwise;

RA(T ) :=





∞ if 0 < T < 1
c1

κ∗A(c1)/c1 = λ1/c1 if T = 1
c1

Tκ∗A(1/T ) if 1
c1

< T < 1
κ′A(wA)

wA if T ≥ 1
κ′(wA) ,

where: wA = λ1c2−λ2c1
c1c2

> 0 and 1
κ′A(wA)

= λ1c22+λ2c21
c1c2(λ1c2−λ2c1) if the net profit condition λ2c1 − λ1c2 < 0

holds; wA = 0 and 1
κ′A(wA)

= λ1+λ2
λ2c1−λ1c2

if the net profit condition fails (i.e. if λ2c1 − λ1c2 ≥ 0).
We also recall that

lim
x→∞

1
x

log P (τA
x ≤ xT ) =

{ −∞ if T = 1/c1 and P (J0 = 1) = 0
−RA(T ) otherwise

by Proposition 3.1 in Macci (2009) (note that RA(1/c1) = λ1/c1) and, following the lines of Remark
2.3 to obtain the analogous infinite horizon results, we have limx→∞ 1

x log P (τA
x < ∞) = −wA; this

limit agrees with Theorem 4.1 in Baldi and Piccioni (1999), which provides a more general result
under the net profit condition, or equivalently under the condition wA > 0.

We conclude noting that RA(T ) above and R(T ) in Proposition 4.2 do not coincide; this is not
surprising since P (τA

x ≤ xT ) and P (Nx ≤ xT ) do not coincide as well. On the contrary we have
wA = w which meets the equality P (τA

x < ∞) = P (Nx < ∞).

4.2 A convergence for the large deviation rates κ∗A(·) and RA(·)
Convergence results of large deviation rates based on a scaling in the paper of Mazza and Rullière
(2004) are presented in Macci (2009). Here we consider the same kind of convergence of large
deviation rates based on a different scaling presented in Orsingher (1990, section 4); see also Kac
(1974) cited therein. In these papers they consider c1 = c2 = c (say) and λ1 = λ2 = λ (say), with
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λ →∞ and c2/λ → σ2; thus, if we consider a moving particle with position A(t) at time t, the first
limit means that the velocity changes occur continuously (i.e. they let go to infinity the velocity
changes), and the second limit implies that also the speed of the moving particle goes to infinity.
Therefore the limit behavior becomes similar to the one of a Brownian motion with null drift and
variance parameter σ2.

We remark that the convergence of large deviation rates in this paper concerns a general choice
of c1, c2, λ1, λ2 > 0 and we can have a non-null drift as in Beghin et al. (2001). More precisely for the
drift and the variance parameter we have to consider κ′A(0) = λ2c1−λ1c2

λ1+λ2
and κ′′A(0) = 2λ1λ2(c1+c2)2

(λ1+λ2)3
;

they meet the above quantities in the papers of Kac (1974) and Orsingher (1990) if c1 = c2 = c
(say) and λ1 = λ2 = λ (say), indeed we have κ′A(0) = 0 and κ′′A(0) = c2/λ. We remark that κ′A(0)
and κ′′A(0) can be expressed in terms of β, c′, λ′ in equations (3.6), (3.8) and (3.9) in Beghin et al.
(2001); more precisely we have κ′A(0) = −β and κ′′A(0) = (c′)2

λ′ .
The results presented below are obtained by taking the limit under the following condition for

some µ ∈ R and σ > 0:

(∗) :





λ1, λ2 →∞;

c1 = c1(λ1, λ2) := +µ + σ√
2

√
λ1 + λ2

√
λ1
λ2

;

c2 = c2(λ1, λ2) := −µ + σ√
2

√
λ1 + λ2

√
λ2
λ1

.

Note that c1(λ1, λ2), c2(λ1, λ2) →∞ as λ1, λ2 →∞ and, moreover, we have the following equalities
for the first two derivatives of κ at the origin with c1 = c1(λ1, λ2) and c2 = c2(λ1, λ2):

κ′A(0) =
λ2c1(λ1, λ2)− λ1c2(λ1, λ2)

λ1 + λ2
= µ and κ′′A(0) =

2λ1λ2(c1(λ1, λ2) + c2(λ1, λ2))2

(λ1 + λ2)3
= σ2.

The corresponding items concerning the Brownian motion are well known (for instance one can
adapt Proposition 2.1 in Macci (2009) to Brownian motion). Let us consider κ̃A(γ) := µγ + σ2

2 γ2

and

κ̃∗A(x) := sup
γ∈R

{γx− κ̃A(γ)}, i.e. κ̃∗A(x) :=
(x− µ)2

2σ2
.

Moreover the level crossing probability decay rate is

R̃A(T ) =

{
T κ̃∗A(1/T ) if 0 < T < 1

κ̃′A(w̃A)

w̃A if T ≥ 1
κ̃′A(w̃A)

,

where: w̃A = −2µ
σ2 > 0 and 1

κ̃′A(w̃A)
= − 1

µ if the net profit condition µ < 0 holds; w̃A = 0 and
1

κ̃′A(w̃A)
= 1

µ if the net profit condition fails (i.e. if µ ≥ 0).

Proposition 4.3 Under condition (∗) we have lim κ∗A(x) = κ̃∗A(x) for all x ∈ R.

Proof. Let us consider the values of c1 and c2 in (∗). Then, at least eventually, i.e. for λ1, λ2 large
enough, for all x we have

κ∗A(x) =
(√

λ1
x + c2

c1 + c2
−

√
λ2

c1 − x

c1 + c2

)2

=

(√
λ1(x + c2)−

√
λ2(c1 − x)

)2

c1 + c2

=
(λ1(x + c2)− λ2(c1 − x))2

(c1 + c2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2 =

((λ1 + λ2)x− (λ2c1 − λ1c2))
2

(c1 + c2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2

=
(λ1 + λ2)2 (x− µ)2

(c1 + c2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2 = κ̃∗A(x)

2σ2(λ1 + λ2)2

(c1 + c2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2 .
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Thus, for all x ∈ R, one has to check

2σ2(λ1 + λ2)2

(c1 + c2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2 =

4λ1λ2(c1 + c2)

(λ1 + λ2)
(√

λ1(x + c2) +
√

λ2(c1 − x)
)2 → 1, (15)

where the equality in (15) is a consequence of σ2 = 2λ1λ2(c1+c2)2

(λ1+λ2)3
. The limit (15) holds noting

that c1 + c2 = σ√
2

√
λ1 + λ2

λ1+λ2√
λ1λ2

and, for all x ∈ R,
√

λ1(x + c2) +
√

λ2(c1 − x) behaves like

2
√

σ√
2

√
λ1 + λ2

√
λ1λ2. ¤

Proposition 4.4 Under condition (∗) we have lim RA(T ) = R̃A(T ) for all T ∈ (0,∞).

Proof. Firstly note that, putting c1 = c1(λ1, λ2) and c2 = c2(λ1, λ2), we have λ2c1 − λ1c2 =
(λ1 + λ2)µ. The limit Tκ∗A(1/T ) → T κ̃∗A(1/T ) is a consequence of Proposition 4.3. Thus we have
to check the limits

wA → w̃A and
1

κ′A(wA)
→ 1

κ̃′A(w̃A)
.

The limits hold trivially as equalities if λ2c1−λ1c2 = (λ1 +λ2)µ ≥ 0, or equivalently µ ≥ 0, indeed
we have

wA = 0 = w̃A and
1

κ′A(wA)
=

λ1 + λ2

λ2c1 − λ1c2
=

1
µ

=
1

κ̃′A(w̃A)
.

The limits also hold if λ2c1 − λ1c2 = (λ1 + λ2)µ < 0, or equivalently µ < 0, indeed we have

wA =
λ1c2 − λ2c1

c1c2
=

−(λ1 + λ2)µ
−µ2 + µ σ√

2

√
λ1 + λ2

λ2−λ1√
λ1λ2

+ σ2

2 (λ1 + λ2)
→ −2µ

σ2
= w̃A

and

1
κ′A(wA)

=
λ1c

2
2 + λ2c

2
1

c1c2(λ1c2 − λ2c1)

=
(λ1 + λ2)

(
µ2 + σ2

2 (λ1 + λ2)
)

(
−µ2 + µ σ√

2

√
λ1 + λ2

λ2−λ1√
λ1λ2

+ σ2

2 (λ1 + λ2)
)

(−(λ1 + λ2)µ)
→ − 1

µ
=

1
κ̃′A(w̃A)

. ¤

Appendix: A case where D(κ) is not a subset of D(κ̃)

Assume that ξ1 is exponentially distributed with mean 1/λ1 and {ξn : n ≥ 2} are exponentially
distributed with mean 1/λ2. Then we have

κ̃(γ) =
{

log λ1
λ1−γ if γ < λ1

∞ if γ ≥ λ1
and κ(γ) =

{
log λ2

λ2−γ if γ < λ2

∞ if γ ≥ λ2;

thus the domains are D(κ̃) = (−∞, λ1) and D(κ) = (−∞, λ2).
Here we assume that λ2 > λ1 and therefore the inclusion D(κ) ⊂ D(κ̃) fails. In this case we

have

Λ(γ) := lim
n→∞

1
n

logE[enγξ̄n ] =
{

log λ2
λ2−γ if γ < λ1

∞ if γ ≥ λ1

(thus Λ coincides with κ on D(Λ) = D(κ̃) = (−∞, λ1) which is a subset of D(κ) = (−∞, λ2)). Note
that Λ is not essentially smooth because limγ↑λ1 Λ′(γ) = 1/(λ2 − λ1) ∈ (0,∞) and therefore Λ is
not steep.
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Now let us see in details the bounds provided by Gärtner Ellis Theorem. Then, if we consider
the function Λ∗ defined by Λ∗(x) := supγ∈R{γx−Λ(γ)} and the set of exposed points of Λ∗ denoted
by F (see e.g. Definition 2.3.3 in Dembo and Zeitouni, 1998), we have have the following bounds:

lim sup
n→∞

1
n

log P (ξ̄n ∈ C) ≤ − inf
x∈C

Λ∗(x) for all closed sets C ⊂ R;

lim inf
n→∞

1
n

log P (ξ̄n ∈ G) ≥ − inf
x∈G∩F

Λ∗(x) for all open sets G ⊂ R.

We recall that, roughly speaking, x is an exposed point of Λ∗ if Λ∗(x) < ∞ and Λ∗ is strictly convex
at x. Then, since we have

Λ∗(x) =




∞ if x < 0
λ2x− 1− log(λ2x) if 0 < x < 1/(λ2 − λ1)
λ1x− log λ2

λ2−λ1
if x ≥ 1/(λ2 − λ1),

the set of exposed points is F = (0, 1/(λ2 − λ1)).
Thus we have to prove the lower bound for open sets. By the condition with eq. (1.2.8) in

Dembo and Zeitouni (1998) it is enough to check that, for each fixed x, ε > 0, we have

lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− ε, x + ε)) ≥ −Λ∗(x). (16)

We distinguish two cases: x ∈ F and x ∈ (0,∞) \ F . In the first case, for η ∈ (0, ε) small enough
such that (x− η, x + η) ⊂ F , we have

lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− ε, x + ε)) ≥ lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− η, x + η))

≥ − inf
y∈(x−η,x+η)∩F

Λ∗(y) = − inf
y∈(x−η,x+η)

Λ∗(y);

therefore we obtain (16) letting η go to zero because the function Λ∗ is continuous on (0,∞). Thus,
from now on, we consider the second case x ∈ [1/(λ2−λ1),∞). We start noting that, for η ∈ (0, ε)
and α ∈ (0, 1), we have

P (ξ̄n ∈ (x− η, x + η)) =P

(
n(x− η) <

n∑

i=1

ξi < n(x + η)

)

≥P (αn(x− η) < ξ1 < αn(x + η))P
(

(1− α)n(x− η)
n− 1

<

∑n
i=2 ξi

n− 1
<

(1− α)n(x + η)
n− 1

)

=e−λ1αn(x+η)(eλ1αn2η − 1)P
(

(1− α)n(x− η)
n− 1

<

∑n
i=2 ξi

n− 1
<

(1− α)n(x + η)
n− 1

)
.

Now, for any δ > 0 small enough, we can find n̄δ such that for all n ≥ n̄δ we have

P

(
(1− α)n(x− η)

n− 1
<

∑n
i=2 ξi

n− 1
<

(1− α)n(x + η)
n− 1

)
≥ P

(
(1− α)(x− η)− δ <

∑n
i=2 ξi

n− 1
< (1− α)(x + η)

)
;

moreover, by Cramér Theorem (see e.g. Theorem 2.2.3 in Dembo and Zeitouni, 1998), we have

lim inf
n→∞

1
n

log P

(
(1− α)(x− η)− δ <

∑n
i=2 ξi

n− 1
< (1− α)(x + η)

)
≥ − inf

y∈((1−α)(x−η)−δ,(1−α)(x+η))
κ∗(y)

where κ∗ is defined by (1), and therefore we have κ∗(y) = λ2y − 1 − log(λ2y) for y > 0. Now we
remark that

inf
y∈((1−α)(x−η)−δ,(1−α)(x+η))

κ∗(y) ≤ κ∗((1− α)(x + η))
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since x ≥ 1/(λ2 − λ1). Thus we get the inequality

lim inf
n→∞

1
n

log P

(
(1− α)n(x− η)

n− 1
<

∑n
i=2 ξi

n− 1
<

(1− α)n(x + η)
n− 1

)
≥ −κ∗((1− α)(x + η)),

whence we obtain

lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− η, x + η)) ≥− λ1α(x + η) + 2λ1αη − κ∗((1− α)(x + η))

≥− λ1α(x + η) + 2λ1αη − {(1− α)(x + η)− 1− log((1− α)(x + η))}.

Moreover, by taking the minimum of the latter right hand side with respect to α, we have

lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− η, x + η)) ≥ −λ1(x− η) + log
(

λ2(x + η)
λ2(x + η)− λ1(x− η)

)

(actually the minimum is achieved by taking α = 1− 1
λ2(x+η)−λ1(x−η)), and therefore

lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− ε, x + ε)) ≥ lim inf
n→∞

1
n

log P (ξ̄n ∈ (x− η, x + η))

≥ −λ1(x− η) + log
(

λ2(x + η)
λ2(x + η)− λ1(x− η)

)
.

In conclusion we obtain (16) letting η go to zero because we have Λ∗(x) = λ1x − log λ2
λ2−λ1

for
x ≥ 1/(λ2 − λ1).
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Comments on the revised version

The author thanks the reviewers for their useful comments which led to an improvement of the
presentation of the paper. Here it is the list of the main changes.

New structure of the paper (as a consequence of the comments of Referee 1). I
presented the results (large deviation estimates for level crossing probabilities and importance
sampling) in section 2 by referring to the general model close to the random walk proposed by
Referee 1. The results were specialized to wave governed random motions driven by semi-Markov
processes in section 3, where I also presented the simulations. Some parts of the Introduction of the
previous version were postponed in section 3. The final section 4 of this revised version coincides
with section 5 of the previous version (in that section I did only some minor changes). I also
inserted an Appendix at the end of the paper with an interesting large deviation principle.

Changes requested by Referee 1. I corrected the definition of w. I omitted the proof of
Lemma 2.1 in the previous version, which is Lemma 3.1 in this revised version (I do not know if I
understood well the comment on this point). I removed the symbols ΨN (. . .) and ΥA(. . .) used in
the previous version for the level crossing probabilities.

Changes requested by Referee 2. I tried to take into account all the comments of Referee 2.
I rewrote the abstract by taking into account the changes in the presentation suggested by Referee
1. One could perform simulations by considering distribution functions F1 and F2 different from
the ones concerning exponentially distributed random variables. However I prefer to avoid this
because I guess that one can have closed formulas for w(T ) and w only if F1 and F2 concern the
case of exponentially distributed random variables.

Question of the Associate Editor. I presented a possible extension (of the framework of wave
governed random motions driven by semi-Markov processes) in section 3, where the state space of
J is E = {1, . . . , s} for some s ≥ 3.
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