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Abstract
A distribution-free method to generate high-dimensional sequences of dependent variables with an
autoregressive structure is presented. The quantile or fractile correlation (i.e., the moment
correlation of the quantiles) is used as measure of dependence among a set of contiguous
variables. The proposed algorithm breaks the sequence in small parts and avoids having to define
one large correlation matrix for the entire high-dimensional sequence of variables. Simulations
based on proteomics data are presented. Results suggest that negligible or no loss of fractile
correlation occurs by splitting the generation of a sequence into small parts.
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1. Introduction
High-dimensional data, i.e. datasets whose dimensions or number of variables are in the tens
or hundreds of thousands, are inherent in many modern applications such as biologic and
biomedical data (Li and Ronghui, 2008), telecommunications (Emdad, 2008), the world-
wide-web (Kogan, 2007), consumer behavior data (Naik et al., 2008), and consumer
financial history (Diwakar and Vaidya, 2009), among others.

Advances in knowledge and technology in the last 20 years have brought applications with
radically larger numbers of variables. For instance, in genetics, a “Genome-wide
Association Study (GWAS)” aims to detect associations between a medical condition and
more than a million genetic markers (Pearson and Manolio, 2008). In addition, the advent of
high-throughput technology for next-generation sequencing will produce unprecedented size
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of marker data ranging from 10s to 100s of millions of genetic variants. Not only is dealing
with such large numbers of variables a complex task, but also the number of observations or
cases is radically smaller than the number of variables, precluding the use of traditional
statistical methods, such as regression models, in order to make inferences on the whole set
of variables simultaneously. For biological data, such as those arising from genomics or
proteomics, an additional complication is that contiguous variables might not be nicely
normally distributed or even continuous, and are expected to be correlated or in some form
of dependency. Multiple testing of correlated variables may result in correlated test
statistics, which may affect the experiment-wise error rates, if corrections for multiple
testing that assume independence are used (Kim and van de Wiel, 2008).

The purpose of this article is to present a distribution-free, simple, and easily implementable
algorithm, to generate high-dimensional simulated correlated data without having to define a
single correlation matrix for the entire dataset. Although high-dimensional data can be
obtained from public databases, such data might not be practical for use in developing
statistical methods, since the “truth” (e.g., the set of biological markers truly associated with
a medical condition) is not known. Obviously, the advantage of simulated data is that the
“truth” is known a-priori and can be compared to the results of a proposed statistical
method. The algorithm proposed in this article is based on a series of methods developed to
simulate non-Gaussian processes using Spearman’s rank correlations (Phoon et al., 2004)
and quantile or fractile correlations (Iman and Conover, 1982; Fackler, 1991) as measures of
dependence. Rank and fractile correlations are invariant to monotonic transformations of the
data. In contrast, the more common Pearson product-moment correlation is only invariant to
location and scale transformations.

2. Methods
A common method to generate a relatively small number k of correlated random standard
normal variables, with n observations or cases for each variable, given a symmetric moment
correlation matrix Ck×k, consists of finding a matrix Dk×k such that DTD = C, where D is
calculated by a singular value decomposition or a Cholesky decomposition (for positive
definite C). Then, after generating a matrix of uncorrelated random standard normal
variables Rn×k, the matrix (RD)n×k yields a matrix of k standard normal variables with n
observations, having the specified moment correlation structure among its k columns. Early
references for this method date back to Moonan (1957) and Scheuer and Stoller (1962).

In order to extend this method to non-normal variables, we consider the fact that for
Uniform(0,1) variables the moment correlation is equal to the rank correlation as well as to
the fractile correlation. In this approach the initial step is to select a fractile correlation
matrix Fk×k and then transform this matrix to a moment correlation matrix Ck×k by

 . This transformation, derived by Karl Pearson in 1907, applies only to
normally distributed variables (Pearson, 1907; Hotelling and Pabst, 1936). Next, the matrix
D is calculated using a singular value or a Cholesky decomposition. Then, after generating a
matrix of uncorrelated random normal standard variables Rn×k and calculating the matrix of
correlated standard normal variables (RD)n×k, a matrix Un×k of Uniform(0,1) variables is
obtained by applying a probability integral transformation to RD, i.e., applying the standard
normal cumulative distribution function (cdf) to each of the elements of RD. This matrix U
has the specified fractile correlation structure among its k columns. Next, the rows of U can
be transformed from Uniform(0,1) into different distributions by inverse cdf
transformations. Since the fractile correlation is invariant to monotone transformations, as
long as the inverse cdf transformation is monotone, the fractile correlation is not affected
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and therefore the new variables will retain the initial quantile correlation structure Fk×k,
regardless of their final distribution function.

The aforementioned Choleski decomposition is a matrix factorization for symmetric positive
definite matrices (Bock, 1998). It results in an upper triangular matrix and lower triangular
matrix, which is the transpose of the upper triangular matrix. Consider the Cholesky
decomposition C = DTD, where Ck×k is a symmetric positive definite matrix, DT is the
lower triangular matrix, and D is the upper triangular matrix. Since DT and D are triangular
matrices, one of the features of this decomposition is that the element in row 1 column 1 of
C, c11, is factored into , that is:

and since c11 = d11 × d11 + 0 × 0 + … + 0 × 0 = (d11)2, then .

If C is a symmetric positive definite correlation matrix then all the diagonal elements of C
are equal to 1 and since c11 = 1 then . Thus the first column of D is made of d11 =
1 and the remaining elements of this column are equal to zero. The consequence of this
feature when generating random variables is that if C = DTD is a Cholesky decomposition
then after generating a matrix of uncorrelated random normal standard variables Rn×k, the
matrix (RD)n×k yields a matrix of k standard normal variables with n observations, having
the specified moment correlation structure among its k columns, and the first column of
(RD)n×k is equal to the first column of Rn×k. Based on this consideration, we propose an
algorithm that generates a long sequence of random Uniform(0,1) variables with an
approximate autoregressive structure (ρ > 0). The proposed algorithm breaks the sequence in
small parts and avoids having to define one large fractile correlation matrix F for the whole
sequence. Then, this sequence of correlated Uniform(0,1) variables may be used to generate
variables with different distributions by means of inverse CDF transformations. In short, the
objective is to generate a matrix of K columns and n rows of Uniform(0,1) variables (K ⪢
n), where the K columns have approximately an autoregressive AR(1) structure. The
proposed algorithm is as follows:

1. For a small k such that k is a divisor of K, generate a matrix Rn×k of k random
standard normal variables (columns) with n rows. Each column will be independent of
the other columns.

2. Input the desired k by k autoregressive fractile correlation matrix Fk×k (must be
symmetric, positive, definite).

3. Transform the fractile correlation matrix Fk×k into a moment correlation matrix Ck×k

by .

4. Calculate Dk×k, the upper triangular Choleski decomposition matrix of the moment
correlation matrix C, where C = DTD.

5. Post-multiply the matrix of independent standard normal variables Rn×k by the upper

triangular Cholesky decomposition matrix D, i.e., . The transformed set of
standard normal variables will have the desired moment correlation structure, yet the

first column remains unchanged, i.e., column 1 of  is equal to column 1 of Rn×k.
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To generate the next set:

6. Generate another matrix of k independent random standard normal variables
(columns) with n rows.

7. Take the last column (column k) of the previous set  and make it the first column
of the new set, resulting in a matrix of n rows by j = k + 1 columns, Sn×j.

8. Input the j by j autoregressive fractile correlation matrix Fj×j.

9. Transform the fractile correlation matrix Fj×j into a moment correlation matrix Cj×j.

10. Calculate the upper triangular Choleski decomposition matrix Dj×j of the moment
correlation matrix C.

11. Post-multiply the matrix of independent standard normal variables Sn×j by the upper
triangular Cholesky decomposition matrix D, i.e., SDn×j The transformed set of
standard normal variables will have the desired moment correlation structure, yet the
first column remains unchanged, which is the last column (column k) of the previous set

.

12. Remove the first column of the new correlated set (SD)n×j (which is the same last

column of the previous set ), resulting in a second n by k matrix .

13. Join both n by k correlated sets, resulting in a n by 2k matrix of correlated standard

normal variables  having an approximate autoregressive correlation
structure.

To generate a long sequence of dimension K:

14. Repeat steps 6–13 as needed in order to generate the desired number of correlated

standard normal variables , where m × k = K.

15. Transform the correlated standard normal variables Q into correlated Uniform(0,1)
columns using the probability integral transformation, i.e., U = ϕQ , where ϕ is the
standard normal cdf.

16. The Uniform(0,1) columns of U will have approximately the desired autoregressive
fractile correlation structure, and may be used to generate variables with different
distributions by means of inverse cdf transformations. As long as the inverse cdf
transformations are monotone, the fractile correlation structure is maintained.

3. Simulations
Data collected from a small pilot project in proteomics were used to design the first of two
simulation experiments presented here. The data consist of mass spectra generated from
urine samples collected from 251 women using a complex laboratory technique called
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass
spectrometry (MS). The mass spectra data were collected over a mass-to-charge ratio (m/z)
range of 2,000 Daltons to 20,000 Daltons using a Bruker Ultraflex III (Bruker Daltonics,
Billerica, MA) MALDI TOF mass spectrometer and preprocessed with SpecAlign (Wong et
al., 2005) Preprocessing of the MALDI spectra consisted of baseline subtraction, total ion
current normalization, de-noising, peak-picking, and alignment as described in Norris et al.
(2007), and generated a total of 171 peaks. Thus, at 171 different m/z values, relative peak
intensities were measured on each participant’s urine sample. The final dataset was
composed of 171 variables, corresponding to the neighboring m/z peaks, and 251
observations or cases, corresponding to the study participants. The average distance between
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the neighboring m/z peaks used was 107 Daltons (SD 474 Daltons). A feature of protein
intensity data, measured in normalized total ion current (TIC), is that intensity values are
non-negative. Further, descriptive statistics revealed that the observed intensity data were
right skewed. The average skewness coefficient computed over each of the 171 m/z peaks
was estimated at 3.05 (SD = 2.28; Range = [0.13, 11.6]). In addition, the intensity data
appeared to be non-normally distributed. In 165m/z peaks, the null hypothesis of normality
for the intensity data, using Lilliefor’s or Kolmogorov-Smirnov tests (Gibbons and
Chakraborti, 2003), was rejected at the 0.001 significance level. Although several theoretical
distributions can be used to model non-negative right-skewed data, a Dagum distribution
appeared to provide one of the best fits for the observed intensity data, according to the
results from a distribution-fitting routine implemented in the software package EasyFit v5.0
(MathWave Technologies, 2008). Using the parameterization for the Dagum distribution
implemented in the R package VGAM (The R Foundation for Statistical Computing, 2009),
the maximum likelihood estimates for the Dagum parameters were a = 1.713, b = 620.28,
and p.arg = 0.73012. Figure 1 shows a histogram of the observed intensity data and fitted
Dagum density function. Maximum likelihood estimates of Dagum parameters were also
computed for the intensity observations within each of the 171 m/z peaks separately.
Alternatively, since the more common Gamma distribution can also be used to model right-
skewed data, Gamma distribution parameters were also estimated for each of the 171 m/z
peaks, resulting in 171 sets of Dagum and Gamma parameters to be used later in the
simulations. Finally, the intensity data appeared to be correlated. The average rank
correlation for intensity values between two subsequent m/z peaks was 0.38 (SD = 0.27,
IQR = [0.18, 0.54], Range = [−0.34, 0.99]). With these preliminary parameters, we used our
proposed algorithm to generate two simulated datasets of n = 100 rows by K = 100,000
correlated columns of right-skewed data, starting from the same dataset of correlated
Uniform(0,1) variables, which results from step 15 of our proposed algorithm. In the first
dataset, the data were generated under a Dagum (a = 1.713, b = 620.28, and p.arg =
0.73012) distribution; in the second dataset each column had 0.5 probability of being
generated under a Dagum or alternatively under a Gamma distribution, with parameters
selected randomly from the set of 171 parameters computed from the sample data. The
purpose of generating the right-skewed data under different distributional assumptions was
to examine if distributional assumptions made any difference in terms of the resulting rank
correlation structure. The initial correlated Uniform(0,1) columns were generated under a
fractile autoregressive structure with correlation between contiguous columns ρ = 0 4. Thus,
the desired fractile correlation matrix for any randomly selected set of, say, five contiguous
variables in the dataset is as follows:

Note that there is no restriction on the size of the matrix chosen to evaluate the correlation
values, such as the above 5 × 5 matrix, and the number columns used to generate data. To
show that correlation is preserved when the number of columns used to generate data is less
than the number of columns of the matrix chosen to evaluate the correlation values, we
chose the number of columns to be generated at each step, k, to be 4. So in this simulation
experiment, the total number of small sequences to generate and then join was equal to K/k =
25,000 for a total of K = 100,000 columns. We then randomly selected 10,000 sequences of
five contiguous columns and tabulated the observed fractile correlations among the columns
in the selected sequences. The fractile correlation structure was evaluated on the
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Uniform(0,1) variables resulting from step 15 of the algorithm. Then, for comparison we
also evaluated the rank correlation structure among the simulated Dagum and Dagum/
Gamma variables. The simple R code written for this simulation is available from the
authors upon request.

Also, in order to determine whether a relevant decrease in observed fractile correlation, if
any, was caused by splitting the generation of a sequence of variables, we conducted a
second simulation experiment where, beginning with the same set of five random standard
normal variables (each with 100 observations), a sequence of five correlated Uniform(0,1)
variables, with a fractile autoregressive structure (ρ = 0.8), was generated by two methods.
In the first method, correlation on the five variables was induced by a single correlation
matrix factored by a singular value decomposition. In the second method, the sequence of
five variables was split into two sequences. First, correlation was induced on the first three
contiguous variables. Then, similar to our proposed algorithm, the third and last column of
this initial sequence is used as the first column of a second correlated sequence of three
columns. As in our proposed algorithm, the correlation structure was induced by a Cholesky
decomposition of a correlation matrix, so that the first column of the second sequence
remains unaltered. Next, the initial three-column sequence was joined to the last two
columns of the second sequence. We conducted the experiment 10,000 times and tabulated
the observed correlations among the columns, for the sets of Uniform(0,1) variables
generated by each of these two methods.

Table 1 shows the results from the first simulation experiment. The table provides
descriptive statistics for the cells in fractile and rank correlation matrices of 10,000
randomly selected sets of five contiguous variables taken from: (1) the initial generated
dataset of 100,000 Uniform(0,1) variables and used to evaluate the observed fractile
correlations; (2) right-skewed data generated under a Dagum (a = 1.713, b = 620.28, and
p.arg = 0.73012) distribution; and (3) right-skewed data where each column had 0.5
probability of being generated under Dagum or alternatively Gamma distributions. The
distribution for the observed fractile correlations appeared unbiased with respect to and
symmetric around the target values. The conclusions are similar for the rank correlations,
except for a minimal decrease in correlation value, compared to the fractile correlation. The
rank correlations were identical, regardless of distributional assumptions.

Table 2 shows the results from the second simulation experiment. The table provides
descriptive statistics for the cells in correlation matrices of 10,000 sets of five correlated
Uniform(0,1) variables generated by two methods. Method 1: a single fractile correlation
was used to induce correlation on the set. Method 2: the sequence was split in two parts,
similar to our proposed algorithm. In this case, the cells of interest are [1, 5], [2, 5], [1, 4],
and [2, 4], since with Method 2 correlation between the variables in these cells was not
induced directly but through the third variable in the sequence. For these four cells, the
distributions for the observed correlations are ostensibly similar between Methods 1 and 2.
These results suggest that minimal or negligible loss correlation, if any, may occur by
splitting the generation of a sequence in smaller parts.

4. Concluding Remarks
The simulations conducted for testing the proposed algorithm resulted, on the average, in the
targeted fractile correlation values. Also, our results suggest that there is no decrease in
correlation values when generating a sequence with our proposed algorithm, as long as each
of the parts used to build the long sequence are of small dimension (e.g., the number of
columns ≤5 for each part). In fact, in the results of our second simulation experiment, the
correlations resulting from simulating a short sequence of five variables with a single
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correlation matrix are, for all practical purposes, indistinguishable from the correlations
observed when the sequence was generated in two parts.

Limitations of the algorithm include the requirement of a positive definite (or semidefinite)
correlation matrix, since it is the type of matrix that can be factored with a Cholesky
decomposition. Further, the algorithm is restricted to autoregressive structures. Although in
the examples we used the same value of the autoregressive parameter for the entire
sequence, the value of the parameter need not be the same for the entire sequence. The value
of the parameter can be modified as needed for sections of the sequence, in order to improve
the simulation of real-life systems. Likewise, since one of the end-products of the algorithm
is a sequence of Uniform(0,1) variables, the algorithm can also be used to simulate binary or
multinomial data under dependency, by assigning ranges on the interval (0,1) to each
category. However, if binary or multinomial data with fewer than 5 categories are generated,
some attenuation of the observed correlations should be expected.
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Figure 1.
Histogram of the observed intensity data measured in total ion current (TIC) and fitted
Dagum.
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