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Comparison of EM and SEM Algorithms in Poisson Regression Models: a 

simulation study  

Susana Faria1 ,Gilda Soromenho2 

1 Department of Mathematics and Applications , University of Minho, 4800-058 Guimarães, Portu-

gal, sfaria@math.uminho.pt 

2 Institute of Education, University of Lisbon, Portugal ,  gspereira@ie.ul.pt 

 

Abstract: In this work, we propose to compare two algorithms to compute maximum likelihood es-

timates for the parameters of a mixture Poisson regression model: the EM algorithm and the Sto-

chastic EM algorithm. The comparison of the two procedures was done through a simulation study 

of the performance of these approaches on simulated data sets and real data sets. Simulation results 

show that the choice of the approach depends essentially on the overlap of the regression lines. In 

the real data case, we show that the Stochastic EM algorithm resulted in model estimates that best fit 

the regression model. 

 

Keywords: Maximum likelihood estimation, EM algorithm, Stochastic EM algorithm, Mixture 

Poisson regression models, Simulation study 

 

1 Introduction 

Finite mixture models are a well-known method for modelling data that arise from a heterogene-

ous population (see e.g. McLachlan et al., 2000 and Fruhwirth-Schnatter, 2006 for a review). The 
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study of these models is a well-established and active area of statistical research and mixtures of re-

gressions have also been studied fairly extensively. In particular, Poisson mixture regression models 

are commonly used to analyze heterogeneous count data.  Wedel et al. (1993) proposed a class Pois-

son regression model and an EM algorithm for estimation was described. Wang et al. (1996) studied 

mixed Poisson regression models and maximum likelihood estimates of the parameters were ob-

tained by combining EM and quasi-Newton algorithms. 

In this work, we study the procedure for fitting Poisson mixture regression models by means of 

maximum likelihood (ML). We apply two maximization algorithms to obtain the maximum likeli-

hood estimates: the Expectation Maximization (EM) algorithm (Dempster et al., 1977) and the Sto-

chastic Expectation Maximization (SEM) algorithm (Celeux and Diebolt, 1985).  

The comparison of EM and SEM approaches in a mixture of distributions is well known. Celeux et 

al. (1996) have investigated the practical behaviour of these algorithms through intensive Monte 

Carlo numerical simulations and a real data study. Dias and Wedel (2004) have compared EM and 

SEM algorithms to estimate the parameters of Gaussian mixture model. Faria and Soromenho (2010)  

have performed a simulation study to compare the performance of these two approaches on Gaussian 

mixtures of linear regressions. 

This paper is organized as follows: Section 2 describes the model. Parameter estimation based 

on the EM algorithm and the Stochastic EM algorithm is discussed in Section 3. Section 4 provides a 

simulation study investigating the performance of these algorithms for fitting two and three compo-

nent mixtures of Poisson regression models. We also study the performance of algorithms in real 

data sets in section 5.  In Section 6 the conclusions of our study are drawn. 
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 3  

2 Poisson mixture regression models 

Let the random variable iY  denote the ith response variable, and let niixyi ,,1),,( K=  denote 

observations where iy  is the observed value of  iY   and ix  is a (p+1)-dimensional covariate vector. 

It is assumed that the marginal distribution of  iY  follows a mixture of Poisson distributions, 

( )∑
=

=
J

j
iijjii xyfxyh

1
|),|( πθ                       (1) 

 where  

              ( )
( )

Jjni
y

xyf
i

y
ijij

iij

i
,...,1,,...,1,

!
)exp(

| ==
−

=
λλ

         (2) 

and )exp( i
T
jij xβλ = , with T

jpjjj ),...,,( 10 ββββ = denoting the (p+1)-dimensional vector of re-

gression coefficients for jth component and ( )JJ ββππθ ,...,,,..., 11=  denotes the vector of all pa-

rameters. The proportions jπ are the mixing probabilities (0< jπ <1, Jj ,...,1= and ∑
=

=
J

j
j

1
1π ) and 

can be interpreted as the unconditional probabilities that an individual belongs to component j of the 

mixture. 

To be able to reliably estimate the parameters of mixture models we require identifiability. That 

is, two sets of parameters do not yield the same mixture distribution. Finite mixtures of Poisson dis-

tributions are identifiable (see Teicher, 1960 for details). Fruhwirth-Schnatter (2006) shows that if 

the covariate matrix is of full rank and the mixing proportions, jπ , are all different, then the Poisson 

mixture regression model is identifiable. 
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3 Parameter Estimation 

Among the various estimation methods considered in the literature for finite mixture models, 

the maximum likelihood (ML) has dominated the field.  

For a given number of J components, the task is to estimate the vector of parameters 

( )JJ ββππθ ,...,,,..., 11=  that maximizes the log-likelihood 

( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=
∑
=

J

j
iijj

n

i
nn xyfyyxxL

11
11 |log,...,,,...,| πθ   (3) 

The standard tool for finding maximum likelihood solution is the Expectation Maximization (EM) 

algorithm. However, it suffers from slow convergence and may converge to local maxima or saddle 

points.  The Stochastic Expectation Maximization (SEM) algorithm is a viable alternative to find the 

ML estimates of the parameters of a mixture model.  The SEM algorithm by using random drawing 

at each iteration, prevents from being trapped in local optima.  It has some advantages over the EM 

algorithm: it does not get stuck; it often provides more information about the data (see Diebolt and 

Ip, 1996), for instance when parameters cannot be estimated; and in certain conditions behaves better 

than EM algorithm (see Celeux et al., 1996). 

 

3.1  The EM algorithm  

The EM algorithm is a broadly applicable approach to the iterative computation of maximum-

likelihood estimates when the observations can be viewed as incomplete data. The idea here is to 

think of the data as consisting of triples nizixy ii ,,1),,,( K=  where 

Jjnizzz T
ijii KKK ,1,,,1,),,( 1 ===  is the unobserved indicator that specifies the mixture compo-
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 5  

nent from which the observation ( )ii xy ,  is drawn, i.e., ijz equals 1 if observation i  comes from 

component j  and 0 otherwise. 

The log likelihood for the complete data is  

( ) ( ) ( )( )∑
=

∑
=
∑
=

∑
=

+=
n

i

n

i

J

j
iijij

J

j
jijnn xyfzzyyxxL

1 11
11 |loglog,...,,,...,| πθ    (4) 

The EM algorithm is easy to program and proceeds iteratively in two steps, E (for expectation) 

and M (for maximization). At the E-step, it replaces the missing data by its expectation conditional 

on the observed data. At the M-step, it finds the parameter estimates which maximize the expected 

log likelihood for the complete data, conditional on the expected values of the missing data.  

This procedure can be stated as follows. 

E-step: Given the current parameter estimates ( )rθ   in the rth iteration, replace the missing data 

ijz by the estimated probabilities that the i  observation belongs to the jth component of the mixture,  

( )
( ) ( )( )
( ) ( )( )∑

=

=
J

j

r
ijiij

r
j

r
ijiij

r
jr

ij
xyf

xyf
w

1
,|

,|

βπ

βπ
                             (5) 

M-step: Given the estimates for the probabilities ( )r
ijw  (which are functions of ( )rθ ), obtain new 

estimates ( )1+rθ  of the parameters by maximizing 

( ) ( )( ) 21
1 | QQQ rr +=+ θθ                    (6) 

under the restriction for the component weights and where 

( )( )∑ ∑
= =

+=
n

i

J

j

r
jijwQ

1 1

1
1 log π              (7) 
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and  

( )
∑
=
∑
=
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⎠
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⎛
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⎞
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+n
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jiijij
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xyfwQ
1

2
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The maximization of  1Q  under the restriction for the component weights, ∑
=

=
J

j
j

1
1π ,  is equivalent 

to maximizing the function  

( )( ) ( )∑∑ ∑
= = =

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

n

i

J

j

J

j

r
j

r
jijwQ

1 1 1

11*
1 1log πμπ  

where μ is the Lagrangian multiplier. Setting the derivative of function *
1Q  with respect to  ( )1+r

jπ  

equal to zero yields 

 ( )
( )

Jj
n

w
n

i

r
ij

r
j ,,1,ˆ 11 K==

∑
=+π                         (9) 

and 2Q  is maximized separately for each  Jj ,,1K= using weighted ML estimation of generalized 

linear models (GLM). 

 

3.2 The  Stochastic EM algorithm  

We also apply a procedure for fitting Poisson mixture regression models using a stochastic ver-

sion of the EM algorithm, the so-called SEM algorithm. The SEM algorithm is an improvement of 

the EM algorithm that incorporates a stochastic step (S-step) between the E- and M-steps of EM. 

Starting from an initial parameter 0θ , an iteration of SEM algorithm consists of three steps.  
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 7  

E-step: The estimated probabilities that the i  observation belongs to the jth component of the 

mixture, ( ) Jjniw r
ij ,,1,,,1, KK == , are computed for the current value of θ  as done in the stan-

dard EM. 

S-step: A partition ( ) ( ) ( ) ),,( 11
1

1 +++ = r
J

rr PPP L of ),(,),1,( 1 nxyxy nK  is designed by assigning 

each observation at random to one of the mixture components according to the multinomial distribu-

tion with parameter ( ) Jjniw r
ij ,,1,,,1, KK ==  , given by (5). If one of the P(r+1) is empty or has 

only one observation, it must be considered that the mixture has J−1 components instead of J and the 

estimation process begins with J − 1 components. Yet, in this case, it provides a bias towards uni-

form jπ parameters. 

M-step: The ML estimate of θ  is updated using the sub-samples ( )1+r
JP . It follows that on the 

M-step of the (r+1)th iteration, the parameter estimates ( )1+r
jπ  are given by 

 ( ) Jj
n

n jr
j ,,1,ˆ 1 K==+π                         (10) 

where jn  is the total number of observations arising from component j and the maximization of  

( )
∑
=

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

+J

j zi
jiij

ij

r
xyfQ

1 }1|{

*
2

1
,|log β    (11) 

where { }1| =ijzi  is the set of observations arising from the jth mixture component, gives 
( )1+r
jβ . 
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4 Simulation study of algorithm performance 

4.1 Design of the study 

To investigate the statistical behaviour of the proposed methods in fitting Poisson mixture re-

gression models, a simulation study was performed. The simulation is designed to evaluate the 

model performance considering the effects of sample sizes and the initialization of the algorithms as 

well as the configuration of the regression lines. The scope was limited to the study of two and three 

components. We used the freeware R  to develop the simulation program.  

Initial Conditions 

Two different approaches for choosing initial values are compared in the study. In the first 

strategy, we use the true parameter values of the model by generating the observations as initial val-

ues in order to determine the performance of the algorithm in the best case. In the other strategy we 

ran the algorithm 20 times from random initial position and we selected the solution out of 20 runs 

which provided the best value of the optimized criterion (Celeux et al., 1993). 

Stopping Rules 

For the EM algorithm, iterations were stopped when the relative change in log-likelihood be-

tween two successive iterations were less than 2010− . However, since SEM does not converge 

pointwise and it generates a Markov chain whose stationary distribution is more or less concentrated 

around the ML parameter estimate, we used as stopping rule for the SEM algorithm the total number 

of iterations required for convergence by the EM algorithm.  

Number of Samples 

For each type of simulated data set, we generated 500 samples of size n. 

Data set  
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 9  

Each datum ( )ii xy , was generated by the following scheme. First, a uniform [0,1] random 

number ic  was generated and its value is used to select a particular component j  from mixture of 

regressions model. Next, ix was randomly generated from a uniform [ ]UL xx ;  distribution and then 

we have ( )ijjij x10exp ββλ += . Finally, we simulate the value ( )iji Py λ~ . 

Measure of Algorithm Performance 

In order to examine the performance of two algorithms, we report the Euclidean distance be-

tween estimated parameters and true parameter values.  

Quality of the fit 

In order to compare the quality of the fit of two algorithms, we report the root mean squared er-

ror of prediction (MRSEP): 

( )∑
=

=
200

1200
1

m

mRMSEPMRSEP  

where ( )mRMSEP  is the root mean squared error of prediction of the mth replication based on K-fold 

cross validation, which is given by: 

( )
( )

∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=

n

i i

iim

V
y

n
RMSEP

1

2

ˆ
ˆ1
μ
μ

 

where  

∑
=

=
J

j
ijji

1
ˆˆˆ λπμ and ( )

2

11

2

1
ˆˆˆˆˆˆˆ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= ∑∑∑

===

J

j
ijj

J

j
ijj

J

j
ijjiV λπλπλπμ  

For the K-fold cross validation, we have chosen K = 5 and K = 10 ( Hastie el al., 2001, p.214). 
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4.2 Simulation results: two component mixture of Poisson regressions 

For two-component models, samples of four different sizes  ( )1000,500,100,50=nn  were gen-

erated for each set of true parameter values ( )βπ , shown on Table 1 (Yang and Lai, 2005 and Leisch, 

2004). For instance, we present in Figure 1 typical scatter plots for samples with size 500. Note that 

the cases considered correspond to varying degrees of overlapping. Case A3 has the highest overlap-

ping and data from A1 show the lowest overlapping. 

Figure 2 shows boxplots of the Euclidean distance between estimated and true parameters over 

the 500 replications using the EM and SEM algorithm for fitting two component mixtures of Poisson 

regression models. 

Figure 2 shows that the three algorithms have practically the same behaviour. However, when 

the overlap is high (A3) EM outperforms SEM by producing estimates of the parameters that have 

smaller estimation error. As expected, estimation error decreases when the sample size increases. 

The resulting values of MRSEP based on 10-fold cross validation, for each of the configurations 

of the true regression lines are plotted in Figure 3 and Figure 4. Similar results were obtained calcu-

lating MRSEP based on 5-fold cross validation. Figure 3 and Figure 4 show that, in generality, the 

SEM algorithm performs better than the EM algorithm.                                                                   

4.3 Simulation results: three component mixture of Poisson regressions 

For three-component models, samples of three different sizes  ( )1000,500,100=nn  were gener-

ated for each set of true parameter values ( )βπ , shown on Table 2. Also, the cases considered corre-

spond to varying degrees of overlapping. Cases B2, B3 and B4 have the highest overlapping and 

data from B1 show the lowest overlapping. 
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 11  

Figure 5 shows boxplots of the Euclidean distance between estimated and true parameters over 

the 500 replications using the EM and SEM algorithm for fitting three component mixtures of Pois-

son regression models. Figure 5 shows that EM outperforms SEM by producing estimates of the pa-

rameters that have lower estimation error, especially when the overlap is higher (B4). Also, as ex-

pected, estimation error tends to decrease as the sample size increases. 

The resulting values of MRSEP based on 10-fold cross validation, for each of the configurations 

of the true regression lines are shown in Table 3 and Table 4. Similar results were obtained calculat-

ing MRSEP based on 5-fold cross validation. Table 3 and Table 4 show that, in generality, the SEM 

algorithm performs better than the EM algorithm.  

 

5 Real Data Sets 

We now compare the performance of the EM algorithm and the SEM algorithm for fitting Pois-

son mixture regression models in two real data sets.  

5.1 Fabric faults 

The “Fabric Faults’’ data set consists of 32 observations of number of faults in rolls of fabric of 

different length. The dataset is analysed using a finite mixture of Poisson regression models in Ait-

kin (1996). The response variable is the number of faults and the covariate is the length of role in 

meters. The data set can be loaded into R with the command data (“fabricfault”, pack-

age=’’flexmix’’).  

We fitted a component Poisson mixture regression model using EM algorithm and SEM algo-

rithm where the logarithm of lengths is used as independent variable. The algorithms were initiated 

by random numbers (second strategy) and the stopping criterion was the same used in the simulation 
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study. For each algorithm, the optimal number of components was selected using the proposed pro-

cedure: 

Step 1: Set j=2 and calculate the value of the MRSEP based on k-fold cross validation for a two 

component model. Let this value be denoted by MIN. 

Step 2: Set j=j+1 and calculate the value of the MRSEP based on k-fold cross validation for a j 

component model. 

Step 3: If the new value of the MRSEP is lower than MIN then set MIN equal to the new value 

of the MRSEP and go to Step 2, else deduce that the optimal number of components is j-1 and stop. 

Table 5 presents the MRSEP based on 10-fold cross validation computed for each algorithm and 

the results show that the mixture with 2 components is selected. We can also observe that the SEM 

algorithm performs always better in fitting Poisson mixture regression model to the “Fabric Faults’’ 

data. 

5.2 Patent  

The patent data given in Wang et. al (1996) consist of 70 observations on patent applications, re-

search-and-development (R&D) spending and sales in millions of dollar from pharmaceutical and 

biomedical companies in 1976 taken from the National Bureau of Economic Research R&D Master 

file. To model this data, Wang et. al (1996) used several covariates including logarithm of R&D 

spending and/or squared logarithm of R&D spending for different models. The data set can be 

loaded into R with the command data (“patent”, package=’’flexmix’’).  

We fitted a Poisson mixture regression model using EM algorithm and SEM algorithm where 

the logarithm of R&D spending is used as independent variable. The algorithms were initiated by 
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random numbers (second strategy), the stopping criterion was the same used in the simulation study 

and the optimal number of components was selected using the proposed procedure described in sec-

tion 5.1. 

Table 6 presents the MRSEP based on 10- fold cross validation computed for each algorithm 

and the results show that the mixture with 3 components is selected. We can also observe that the 

SEM algorithm performs always better in fitting Poisson mixture regression model to the patent 

data. 

6 Conclusion 

In this paper, we compare the performance of  two algorithms to compute maximum likelihood 

estimates of a mixture Poisson regression models, the EM algorithm and the Stochastic EM algo-

rithm (SEM).  

The results of simulation show that the choice of approach depends essentially on the overlap of 

the regression lines. For some severely overlapping mixtures, the EM algorithm outperforms the 

SEM algorithm by producing estimates of the parameters that have smaller estimation error. How-

ever, simulation results indicated that the Stochastic EM Algorithm provides in general best esti-

mates for those parameters in the sense of the best fit for the regression model. 

In the real data case, we also show that the SEM algorithm resulted in model estimates that best 

fit the regression model. As we expected, the SEM algorithm and the EM algorithm can converge to 

the different estimates. EM convergence is very dependent upon the type of starting values and the 

stopping rule used, so the EM algorithm may converge to local maxima or saddle points. The SEM 
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algorithm exhibits more reliable convergence because the stochastic step enables this algorithm to 

escape from saddle points in the likelihood. 
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Table 1. True parameter values for the essays with a 2 component mixtures of Poisson regression  

Cases 10β  11β
10β

 20β  21β  1π  

A1 4 -1 4 1 0.5 

A2 4 -0.5 2 0.5 0.7 

A3 2 -0.2 1 0.1 0.5 

A4 3 -0.5 4 0.5 0.2 

Table 2. True parameter values for the essays with a 3 component mixtures of Poisson regression 

Cases 10β  11β
10β

 20β  21β  30β  31β  1π  2π  

B1 3 -0.5 4 0.5 3 0.5 0.4 0.4 

B2 6 -0.5 4 -0.5 2 0.5 0.3 0.3 

B3 4 -0.5 4 0.5 2 0.8 0.3 0.2 

B4 2.8 -2.9 2.6 0.4 3.6 0.2 0.3 0.2 

 

Table 3. MRSEP by 10-fold cross-validation for 3 component models when the algorithms were 

initiated by random numbers 

    B 1     B 2   

  n= 100 n= 500 n= 1000 n= 100 n= 500 n= 1000 

 

1π  
2π  EM SEM EM SEM EM SEM EM SEM EM SEM EM SEM 

0.2 0.2 1.091 1.057 1.050 1.027 0.903 0.889 1.379 1.307 1.121 1.134 1.047 1.036 

0.2 0.3 1.067 1.052 1.024 1.015 0.900 0.889 1.554 1.450 1.160 1.127 0.996 0.989 

0.2 0.4 1.050 1.040 1.000 0.999 0.912 0.896 1.211 1.179 1.081 1.042 0.933 0.940 

0.2 0.5 1.045 1.020 1.012 0.997 0.899 0.894 1.150 1.117 1.151 1.064 0.920 0.930 

0.2 0.6 1.052 1.030 1.032 0.995 0.904 0.907 1.123 1.064 1.060 0.971 0.922 0.868 

0.3 0.2 1.045 1.027 1.022 1.010 0.905 0.893 1.631 1.583 1.228 1.229 0.960 0.951 

0.3 0.3 1.040 1.026 1.020 1.003 0.902 0.899 1.566 1.513 1.187 1.185 0.990 0.988 

0.3 0.4 1.039 1.038 0.990 0.995 0.910 0.902 1.208 1.188 1.119 1.062 0.977 0.950 

0.3 0.5 1.047 1.040 1.026 0.997 0.896 0.900 1.089 1.073 1.018 1.005 0.920 0.959 

0.4 0.2 1.058 1.061 1.012 1.010 0.914 0.900 1.219 1.217 1.176 1.214 0.960 0.950 

0.4 0.3 1.045 1.033 1.020 0.990 0.899 0.899 1.294 1.296 1.208 1.120 0.964 0.976 

0.4 0.4 1.002 1.014 0.989 0.980 0.896 0.898 1.107 1.124 1.210 1.152 0.975 1.002 

0.5 0.2 1.025 1.057 1.017 0.992 0.899 0.883 1.547 1.235 1.269 1.190 1.026 1.040 

0.5 0.3 1.001 1.005 1.002 1.000 0.907 0.911 1.257 1.426 1.194 1.151 0.959 0.953 

0.6 0.2 1.149 1.065 1.017 1.010 0.911 0.913 1.461 1.365 1.304 1.269 0.961 0.980 
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Table 4. MRSEP by 10-fold cross-validation for 3 component models when the algorithms were 

initiated by random numbers 

 

Table 5. MRSEP based on 10-fold cross validation for  “fabric faults’’ dataset 

 

    B 3     B 4   

  n= 100 n= 500 n= 1000 n= 100 n= 500 n= 1000 

 

1π  
2π  EM SEM EM SEM EM SEM EM SEM EM SEM EM SEM 

0.2 0.2 1.077 1.140 1.003 0.984 0.970 1.026 1.091 1.057 1.019 1.000 0.982 0.951 

0.2 0.3 1.055 1.028 1.059 1.017 0.949 0.925 1.067 1.052 1.013 0.985 0.960 0.947 

0.2 0.4 1.040 1.009 1.023 1.003 0.936 0.908 0.995 0.962 1.008 0.967 0.896 0.880 

0.2 0.5 0.965 1.016 1.056 1.027 0.920 0.914 1.045 0.966 1.006 0.939 0.940 0.869 

0.2 0.6 1.243 1.230 1.040 1.007 1.119 1.107 1.009 0.900 1.019 0.921 0.908 0.860 

0.3 0.2 1.068 1.064 1.030 1.007 0.961 0.958 1.084 1.067 1.019 1.018 0.976 0.961 

0.3 0.3 1.051 1.010 1.022 1.019 0.946 0.909 1.037 1.016 1.006 1.005 0.933 0.914 

0.3 0.4 1.103 1.107 1.027 1.015 0.993 0.996 1.042 1.045 1.002 1.016 0.938 0.940 

0.3 0.5 1.192 1.169 1.031 1.011 1.073 1.052 1.080 1.066 1.032 0.979 0.972 0.959 

0.4 0.2 1.030 0.980 1.011 1.010 0.927 0.882 1.074 1.107 1.032 1.036 1.000 0.996 

0.4 0.3 1.040 1.031 0.991 0.985 0.936 0.928 1.135 1.105 1.049 1.035 1.022 0.994 

0.4 0.4 1.290 1.227 1.030 1.021 1.161 1.105 1.135 1.085 1.062 1.051 0.980 0.977 

0.5 0.2 1.052 0.985 1.017 0.994 0.947 0.887 1.172 1.134 1.075 1.064 0.970 1.021 

0.5 0.3 1.176 1.173 1.115 1.072 1.059 1.056 1.190 1.151 1.100 1.090 1.050 1.036 

0.6 0.2 1.287 1.173 1.173 1.089 1.159 1.056 1.067 1.116 1.066 1.088 1.070 1.034 

 EM 

Algorithm 

SEM
10β

 

Algorithm 

2 components 1.4503 1.020 

3 components 1.4660 1.271 
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Table 6. MRSEP based on 10-fold cross validation for  “Patent’’ dataset 

 EM 

Algorithm 

SEM
10β

 

Algorithm 

2 components 1.1072 0.9453 

3components 1.0213 0.9156 

4 components  1.0558 0.9203 
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Figure 1. Scatter plot of samples from 2 component models with n = 500 (A1, A2 and A3) 
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                                     A1                                                                       A2 

                            

A3                                                                           A4 

 

Figure 2. Distance between estimated and true parameter values for two-component Poisson mixture 

regression models. (EM.1 and SEM.1 - the algorithms are initiated with the true parameter values; 

EM.2 and SEM.2 – the algorithms are initiated by random numbers) 
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A1 

 

A2 

 

Figure 3. MRSEP by 10-fold cross-validation for 2 component models when the algorithms were 

initiated by random numbers. 

                                                                       

 

 

    

π1 

π1 
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A3 

 

A4 

_  

Figure 4. MRSEP by 10-fold cross-validation for 2 component models when the algorithms were 

initiated by random numbers. 

 

 

π1 

π1 
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B1                                                                           B2 

 

 

                               B3                                                                             B4 

    

Figure 5. Distance between estimated and true parameter values for three-component Poisson mix-

ture regression models. (EM.1 and SEM.1 - the algorithms are initiated with the true parameter val-

ues; EM.2 and SEM.2 – the algorithms are initiated by random numbers) 

Page 24 of 25

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Communication in Statistics – Simulation and Computation 
LSSP 2010 - 0452 
Comparison of EM and SEM Algorithms in Poisson Regression Models: a  
simulation study  
Susana Faria and Gilda Soromenho  
 
Comments to the issues raised by the referees: 
 
1. Page 3, 5 lines from below: Text should read “… identifiability. 

That is, two sets of parameters do not yield the same…” 
 

We rewrite the text in page 3. The changes we make in the manuscript 
are in coloured text. 
 
 
2. Page 4: First paragraph of Section 3: This material needs to be 
very carefully rewritten. Most of the statements made here are just 
not true. It is not clear what is intended. Does the SEM algorithm 
always converge? Does it converge if MLE’s and/or EM estimates can not 
be obtained? 
 
Page 4. Line 3, sentence beginning “Given a set of independent…” I 
don’t believe that this statement is true at all. The exact conditions 
for existence of maximum likelihood estimates is a very difficult 
statement to make. Perhaps you can say that MLE’s can sometimes be 
estimated from this likelihood function provided such estimates exist. 
 
We rewrite the text in Section 3. The changes we make in the 
manuscript are in coloured text. 
 
 
3. Page 4, Equation (4): Conditional on the lambda parameters, only 
the pi’s are estimated. The real condition is y given x, but not 
lambda here. 
 
We rewrite the equation (4) and also equation (1), (2) and (3). 
 
 
4. Page 5, equation (8): This is confusing. I thought that the 
parameters we were estimating were the beta’s, not the lambda’s. 
 
We rewrite the equation (8) and also equation (5) and (11). 
 
 
5. Page 7, top paragraph: Please make a comment that this provides a 
bias towards uniform pi parameters. 
 
We make a comment. The changes we make in the manuscript are in 
coloured text. 
 
 
6. Page 9: Refer to page number in books such as Hastie, 2001. 
 
We refer the page number.  
 
 
7. Page 12: End Section 5.1 by explaining which method is better. What 
do you conclude from this example? The two methods converge to 
different estimates. Which is do you prefer? 
 

Page 25 of 25

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

We eliminate the end of Section 5.1 and  5.2 (and Figure 6 and Figure 
7). The results in Table 5 and Table 6 show that the SEM algorithm 
perform always better in fitting Poisson mixture regression model to 
the data.   
 
8. References: These are in different styles. Some are all capitals in 
titles, others are not. Please refer to the style requirements for 
this journal. 
 
We rewrite some references. The changes we make in the manuscript are 
in coloured text. 
 

Page 26 of 25

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


