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A comparison between maximum likelihood and Bayesian estimation of stochastic 
frontier production models 

 
Abstract 

In this paper, the finite sample properties of the maximum likelihood and Bayesian 
estimators of the half-normal stochastic frontier production function are analysed and 
compared, through a Monte Carlo study. The results show that the Bayesian estimator 
should be used in preference to the maximum likelihood owing to the fact that the mean 
square error performance is substantially better in the Bayesian framework. 
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1. INTRODUCTION 

The origin of the analysis of frontier production models in econometrics and the 

calculation of efficiency measures can be set in the pioneering work of Farrell (1957), 

where the original idea of analysing the efficiency of a productive process in terms of the 

observed deviations between actual production and an ideal output frontier was 

established. In econometric terms, such deviations can be identified with the random 

perturbations of a regression model.    

Following on from Farrell’s idea, Aigner and Chu (1968) propose a model where a 

certain output is expressed as a function of several inputs and unknown parameters 

together with a negative random perturbation; the deterministic part of the model 

represents the production frontier or maximum attainable output value for a given level of 

inputs, while the random perturbation (the difference between the actual production and 

the maximum attainable) is the degree of inefficiency of the productive process. 

This framework, usually called the deterministic frontier production model, presents 

some difficulties due to the fact that the unilateral perturbation fails to verify the standard 

hypothesis of regularity needed to obtain the asymptotic properties of the maximum 

likelihood estimator (ML) (Ortega and Basulto, 2009; Ortega et al. 2009). Furthermore, 

this modelling takes no account of possible sources of error measures and other kinds of 

random variations due to the inefficiency of the production process. 

In order to provide an answer to latter problem, Aigner et al. (1977), Battese and Corra 

(1977), and Meusen and Van der Broeck (1977) formulated econometric models with a 

composite error term; currently known as stochastic frontier production models. In this 

framework, two random perturbations are considered; one is a measure of inefficiency, 

and the other represents all the possible sources of random variations. 

In these kinds of models, the standard regularity conditions are verified. As a 

consequence, the asymptotic properties of the ML estimator can be used to carry out 

inferences. Moreover, the specific software developed, (such as FRONTIER and 

LIMPDEP), has propagated the use of this type of models. 
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As an alternative, the Bayesian approach can be used to estimate the parameters of the 

model and the inefficiency (or efficiency) of each firm considered. Bayesian methodology 

presents some advantages, as for example its simplicity in incorporating parameter 

constraints. Above all, the use of Monte Carlo methods and Markov Chains together with 

Gibbs’ algorithm (Gelfand and Smith, 1990) provides a very suitable tool in this 

framework due to the complexity of stochastic frontier models. In fact, a major part of  

recent literature uses the Bayesian approach (Griffin and Steel 2007, Dorfman and Koop 

2005). 

One of the main drawbacks of the Bayesian approach, especially for practical purposes, 

is the lack of easy-to-use software which is sufficiently versatile to accommodate the 

different situations and sets of data. In Griffin and Steel (2007), free software, WinBUGS, 

is used to estimate the numerous variations of stochastic frontier production models. It is 

proved that this software is a powerful and flexible tool in this context, can be used easily 

by the practitioners, and that it estimates the models in a reasonable time. Obviously, a 

specific implementation of a particular model could be more efficient than WinBUGS, 

since this is a generic tool that can be used in a large variety of situations. However, the 

ease of use and the possibility of performing a Bayesian analysis without programming are 

clear advantages. 

The main goal of this article is to carry out a simulation analysis to compare the results 

of the ML method (using the software FRONTIER) with those obtained through the 

Bayesian approach (using the software WinBUGS).  To this end, since either method can 

be integrated into the free software R, the comparison of the results obtained with either of 

the two methods is more reliable, since they can be applied to the same simulated samples. 

Our design of the Monte Carlo experiment is similar to that of Coelli (1995), where the 

ML and corrected least-squares estimators are compared. Zhang (1999) also compares 

Bayesian and ML estimation, although this is performed by fixing the values of the 

parametric space and by placing the stress on analysing the effect of using different prior 

distributions. In Ortega et al. (2009) a comparison between the two methods is carried out 

on a deterministic frontier model. 
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Although the bias of the estimators is also analysed in this paper, the mean squared 

error (MSE) is taken as the main comparison criterion, laying special emphasis on the 

parameter that represents the proportion of variance of the composite error that is due to 

inefficiency, and on the estimation of the individual inefficiencies (or efficiencies). 

From here on, the article is organised as follows: In Section 2 the production model is 

present, upon which the analysis is performed, the likelihood function under the assumed 

hypothesis for the perturbation term, and the parameterisation used to carry out the 

estimation process; In Section 3, a way to obtain the ML and Bayesian estimators using 

FRONTIER and WinBUGS respectively is explained, always in the setting of the software 

R. Section 4 is devoted to describing the design of the Monte Carlo experiment. In Section 

5, the results obtained and an interpretation of the most interesting points are presented.  

Finally, the main conclusions of this work are laid out in Section 6. 

 

2. THE MODEL 

The basic formulation of the stochastic frontier production model is: 

�
( , ) , 1,...,

i

i i i iy f x v u i n
ε

β= + − = , 

where iy  is the production of the i-th firm, ix  is the vector of all its inputs, β  is a vector 

of parameters to be estimated, and ( )f i  is the production function. 

The random perturbation iε  consists of two parts (composite error), iv ∈ℝ , which 

represents the sources of random variations and 0iu > , which is the inefficiency of the 

production process. It is commonly supposed that iv  follows a Normal distribution, 

specifically 2(0, )i vv N σ∼ , although with regard to iu , a positive probability distribution 

must be chosen. In this work, since the most usual hypothesis is supposed, that is *
i iu u= , 

where * 2(0, )i uu N σ∼ , then it is said that the perturbations iu  follow a Half-Normal 

distribution and is written 2(0, ).i uu HN σ∼  Moreover, it is supposed that all perturbations 

( iv  and  iu ) are independent. Other kinds of probability densities for the perturbations iu , 

such as Exponential and Gamma distributions, have been frequently and widely used, 
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mainly when the Bayesian approach is considered,  (Koop et al. 1995, Osiewalski and 

Steel 1998, Koop and Stell 2003). 

 

With regard to the production function, the most usual situation is considered: 

'( , )i if x xβ β= , where β  is an unknown vector of parameters with an intercept. It should 

be observed that if ix  and iy  are measured on a logarithmic scale, then a Cobb-Douglas 

production function is obtained. In this case, the most common one, instead of being 

interested on iu  as an inefficiency measure, ( )exp iu−  is usually estimated, which is an 

efficiency measure bounded between 0 and 1. 

 

In order to obtain the ML estimator, the parameterization 2 2 2
v uσ σ σ= +  and 

2 2
uγ σ σ=  is considered in the frontier package. Hence, the parameter γ  takes values 

between 0 and 1 and shows the proportion of the variance due to inefficiency. In fact, γ  is 

not exactly such a proportion of variance, since 2var[ ] uu pσ=  with ( )2 /p π π= − .  To be 

more precise, if *γ  denotes the proportion of the total variance owing to the inefficiency, 

(that is ( )* var[ ] var[ ] var[ ]u u vγ = + ), then it is straightforward to verify that 

( )( )* 11 pγ γ γ γ −= + − . 

With this parameterization, the logarithm of the likelihood for the i-th observation is 

given by: 

( )( )( )21 1
log( ) log log( ) log 1

2 2 2i i iL z z
π σ γ γ = − − − + Φ − − 
 

, 

where 
'

i i
i

y x
z

β
σ
−= . 

 

3. PROGRAMMING THE ESTIMATION METHODS. 
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As pointed out before, ML estimation is carried out by using FRONTIER software and 

Bayesian estimation through the program WinBUGS, both integrated in the environment 

of the software R. 

To be more specific, to obtain the ML estimator, the version 0.996-6 of the frontier 

package, which uses the FORTRAN source code of the software FRONTIER 4.1 (Coelli, 

1996), is used. For the Bayesian inference, the package R2WinBUGS is employed, which 

opens the WinBUGS v1.4 program, passes it the data, picks up the results and delivers 

them to the R environment. The WinBUGS software can be downloaded from the Web 

site http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml and the R software can 

be obtained from http://www.r-project.org, both at no cost. After installing R, the 

packages frontier and R2WinBUGS must be installed and loaded. For details and options 

of these packages, the help included within them can be consulted. A detailed explanation 

of how the package R2WinBUGS works, together with some examples, can be found in 

Sturtz et al. (2005). 

For the sake of simplicity, a single explanatory variable plus an intercept are considered 

in the design of the simulation experiment. That is to say, the simulations are made on the 

basis of the model: 

0 1 , 1,...,i i i iy x v u i nβ β= + + − = . 

The actual instructions used in R together with a short explanation are presented in 

Appendix 1A. 

In order to obtain the Bayesian estimations (of the parameters and of the efficiencies), 

the prior distributions used in Griffin and Steel (2007) are considered, except for the 

hyperparameter for the variance of the Half-Normal distribution. Specifically, for the 

parameters ,0 1β β , and 2
vσ − , the non-informative distributions ( , )6

0 N 0 10β ∼ ,  

( , )6
1 N 0 10β ∼  and ( , )2 3 3

v Ga 10 10σ − − −
∼  are taken, with ( , )2N µ δ  representing a Normal 

distribution with mean µ  and variance 2δ , and where ( , )0 1Ga a a  is a Gamma distribution 

with mean 0 1a a , and shape parameter 0a .  
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The prior distribution of the parameter 2uσ −  is commonly chosen as that belonging to 

the Gamma family, setting the hyperparameters such that the prior median takes into 

consideration our beliefs about the median efficiency of the production process under 

analysis (Van den Broeck et al. 1994, Zhang, X. 1999). Griffin and Steel (2007), in their 

example, which was applied to the USA electricity market, take the prior distribution 

( , . )2
u Ga 1 0 0267σ −
∼ , which implies median efficiency in the sector of 0.875 is assumed. In 

this work, taking into account that a simulation process is carried out, a benchmark value 

of 0.5 for the prior median efficiency is chosen, which is achieved with a distribution 

( , . )2
u Ga 1 0 7216σ −
∼  (Van de Broeck et al. 1994). 

With regard to the implementation of the model in WinBUGS, three Markov chains of 

1500 iterations each are generated, the first 500 of each of which are dismissed; this 

implies a total of 3000 simulated samples. As starting points, the Corrected Least-Squares 

estimators are taken for the parameters 0β  and 1β  (Green, 1980). For the rest of the 

parameters, random values are generated. 

The text file with the necessary instructions for the definition of the model in 

WingBUGS, and the code implemented in R to carry out the Bayesian estimation, are 

given in Appendix 1B. 

 

4. DESIGN OF THE MONTE CARLO EXPERIMENT. 

As stated in the former Section, the simulations are made on a model with one 

explanatory variable plus an intercept. The sample space of the experiment is initially 

given by the different values of the parameters 0β , 1β , 2σ  and  γ , the sample size n  and 

the values of the vector of observations of the covariable x. The main goal is to analyse the 

behaviour of the estimations of both the parameter γ  and of the individual efficiencies. 

Without any loss of generality, the values of 0β , 1β  and 2σ  can be chosen (Zhang 

1999, Coelli, 1995). Hence, in this work 2
0 1 1β β σ= = =  is selected. With respect to the 

values of the covariable x, these are generated uniformly on the interval [ , ]0 10 . Since the 

intention is to analyse the behaviour of both methods in small and large sample sizes, 
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{ }, , , ,n 10 20 50 100 500∈  is taken. With regard to the parameter γ , following Coelli (1995), 

the values of the parameter *γ  are set instead. Specifically values ranging from 0 to 1 with 

increments of 0.1 have been chosen. From the equation ( )( )* 11 pγ γ γ γ −= + −  the 

following relation between γ  and *γ  is obtained: 

*γ  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

γ  0.00 0.24 0.41 0.54 0.65 0.73 0.80 0.87 0.92 0.96 1.00 

As a consequence, a total of 11 values of γ  and 5 values of n are simulated, which 

yields 55 combinations. For each one of such combinations, a total of m 1000=  

replications of the model are carried out. In order to obtain pseudorandom numbers, the 

default generator implemented in the software R is used. The ML and Bayesian estimators 

are calculated as explained in the section above. 

For each parameter, the mean bias (MB) and the mean squared error (MSE) of each of 

the m replications with each of the methods are obtained. In order to analyse the 

efficiencies, the study is not limited to estimating only the mean efficiency but the MB 

and MSE of each individual efficiency are also calculated. Therefore, as an overall 

indicator, the average of the MB and the MSE for each firm are given, that is, if iE  is the 

efficiency of the i-th firm and ̂ ijE  its corresponding estimated value, (by either of the  

methods), in the j-th replication, then ( )ˆ
m

1
i ij i

j 1

MB m E E−

=
= −  and ( )ˆ

m 21
i ij i

j 1

MSE m E E−

=
= − , 

for ,...,i 1 n= . Hence, the MB and the MSE of the efficiencies are obtained by 

n
1

i
i 1

MB n SM−

=
=   and 

n
1

i
i 1

MSE n ECM−

=
=  .  

Before analysing the results, the main differences between our Monte Carlo experiment 

and that carried out by Zhang (1999) should be pointed out. Firstly, this author uses a 

specific algorithm for the Bayesian estimation, whereas in this work, general but very 

easy-to-use Bayesian software is employed, which makes it more appealing for 

practitioners (even though more processing time is possibly required to obtain the 

estimates in each replication). Secondly, in Zhang (1999) only one single value of the 

parametric space is considered, and the main interest is the analysis of the influence of the 

choice of various hyperparameters in the prior distribution of 2
uσ  exerted on the bias and 
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on the mean squared error of the parameters of the model. However, in this work only one 

prior distribution is considered for all cases and the behaviour of the two methods for 

various values of parameter γ  is analysed, with special attention paid to the individual 

efficiencies estimated.   

 

5. RESULTS OF THE MONTE CARLO EXPERIMENT. 

The complete results of the Monte Carlo experiment, that is to say, the bias and the 

MSE of all the parameters and the individual efficiencies in the 55 cases considered, are 

offered in Appendix 2. Here, the most relevant results are presented, while attention is 

focused on the MSE criterion, which indicates which methodology better replicates the 

true values of the considered model. The behaviour of the estimations of parameter γ and 

the individual efficiencies are our main concern. As already pointed out, parameter γ 

captures the structure of the composite error. It is common knowledge that one of the main 

drawbacks of this kind of model is the difficulty in identifying what proportion of the total 

error is due to inefficiency and what proportion is due to random effects. Moreover, the 

correct estimation of γ is crucial for the attainment of the individual efficiencies of each 

firm, which constitutes one of the main objectives when using this kind of model. 

In Figure 1, the MSE of parameter γ, in accordance with the values of γ*, is shown for 

various sample sizes and for the two methods of estimation, (the case n 10=  has been 

omitted in order to prevent complications in the interpretation for the rest of the sample 

sizes, since otherwise the ordinate axis would have to be increased). With respect to the 

ML method, the graph is in accordance with Figure 2 in Coelli (1995). In fact, the results 

are virtually coincident for the sizes n 50=  and n 100= , while for n 500= , it is very 

similar to that presented by Coelli (1995) for .n 400=   
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Fig. 1:  MSE of parameter γ for the two estimation methods. 

  

As can be clearly seen, the behaviour of the MSE in the Bayesian methodology is 

totally different from that of the ML estimator; the former being better than the latter. 

Indeed, although for the extreme case * 0γ = , the Bayesian MSE is greater than the ML 

MSE, from * .0 2γ =  the Bayesian MSE quickly falls, and is lower than that for the 

respective ML except for the values * .0 9γ =  and * 1γ =  in which the MSE tend to be equal 

(in the case n 500= , the values of MSE tend to be equal from * .0 5γ = ). Therefore, the 

Bayesian approach shows better behaviour in most of the parametric space of *γ . It is also 

interesting to observe that the MSE in the Bayesian case always decreases as the values of 

*γ increase, which is not always true for the ML estimator. 

Let us also observe that, as expected, the MSE of the two estimation methods decreases 

with the sample size. This behaviour is shown by all the parameters analysed. 

 

In Figure 2, the results are given of a similar analysis but this time as applied to the 

individual efficiencies. In all cases, the MSE of the individual efficiencies is first obtained, 

and their overall mean is calculated. This average is given in the results and depicted in 

Figure 2. The observations made for Figure 1 remain valid for Figure 2, since the pattern 

of behaviour displayed is the same, although in the case of the efficiencies, the scale of the 

MSE is smaller in the two approaches. 
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Fig. 2:  Average MSE of the individual efficiencies for the two estimation methods. 

 

The similarity between Figures 1 and 2 reveals the direct influence that the estimation 

of the parameter γ  has on the estimation of the efficiencies of the firms. 

In order to quantify the difference in the behaviour of the two estimation methods, in 

Figure 3 the ratio between the MSE of maximum likelihood and the Bayesian MSE for γ 

and for the efficiencies have been depicted. Values of these ratios above 1 are identified 

with a better behaviour of the Bayesian estimator, while on the other hand, a value below 

1 indicates a better performance of the ML estimator. The sample size  n 20=  has been 

omitted from the graph in order to maintain the scale within the axis of ordinates. 

   
Fig. 3:  Ratios of the MSE for γ and for the efficiencies. 

   

As shown in Figures 1 and 2, the behaviour of the Bayesian estimator is consistently 

better except for the extreme case * 0γ = . Moreover, Figure 3 reveals that the differences 

in the results for the two methods are highly significant. For instance, for the parameter γ  

and with a sample size n 50= , around the value * .0 6γ =  the MSE of the ML estimator is 
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the order of 12 times greater than that of the Bayesian counterpart. Such differences 

remain significant for the case n 100=  and even when n 500= , since ratios of the order 

from 3 to 6 are observed when *γ ranges between 0.2 and 0.4. With regard to the 

efficiencies, a similar behaviour to that of parameter γ  is shown, although on a much 

smaller scale. In this case, the greatest observed ratios are in the region of 2.5, all of which 

(except * 0γ = ) remain favourable to the Bayesian estimator.  

An indication of the significance of the differences in the MSE’s is provided if it is 

assumed that these MSE ratios have approximate F-distributions (Coelli, 1995), and 

hence, of the 55 ratios considered for parameterγ , 33 indicate that the MSE of the 

Bayesian estimator is significantly smaller than the MSE of ML (at the 1% level), while in 

only one case (* 0γ =  and n 500= ) do we observe the MSE of ML to be significantly 

smaller than the Bayesian MSE. 

It is worth bearing in mind that for * .0 1γ = , the ratio corresponding to γ  is nearly 1 for 

all sample sizes, while the MSE ratio of the efficiencies is around 1.5 for all the values of 

n . It is also important to mention that in the graph, the ratios for * 1γ =  and n 500=  have 

been omitted, since the values of the MSE are both so close to 0 that their quotients are 

meaningless (specifically, the ratios obtained in this case are 12.3 for the parameter γ and 

3.08 for the efficiency). 

According to the comparison criterion used, the results show a clear difference in 

favour of the Bayesian methodology, which is why we recommend its practical use for the 

estimation of the stochastic frontier production model considered in this work. 

In order to complete the analysis, certain general observations about the MSE and MB 

on the other parameters should be mentioned. 

With regard to the slope, 1β , the main conclusion is that both methods estimate it 

correctly, since the biases and the MSE are nearly 0 in all cases. With respect to the 

intercept, 0β , this exhibits a smaller MSE for the Bayesian methodology except for the 

case * 0γ = . The MSE of the parameter 2σ  displays a more diverse behaviour, since for 

the sample sizes n 10=  and n 20= , it almost always remains lower for the ML estimator, 
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whereas for n 50= , n 100=  and n 500= , the Bayesian MSE is lower than the ML 

estimator from  * .0 3γ =  upwards. 

With respect to the behaviour of the biases (considered in absolute values), the most 

noteworthy conclusion is that the differences between the two methods depend to a greater 

extent on the values of *γ  (except for the case of the slope 1β  in which the biases are 

always similar). For the parameters 0β  and γ , and for the efficiency, the bias of the ML 

estimator tends to be smaller when * .0 4γ ≤  and the opposite is obtained from * .0 5γ =  

upwards. However, the ML bias of the parameter 2σ  is in general lower than the Bayesian 

bias for  * .0 8γ ≤ . Therefore, according to the absolute value of the bias criterion, no 

method is clearly better than the other. As for the sign of the biases, the most outstanding 

conclusion is that in general the same pattern is followed by both methods, although the 

change of the sign does not occur in the same values of *γ . For example, the biases of the 

parameter γ  begin as positive for both methods for the first values of *γ , and they all end 

up as negative; however the change in the sign for the ML estimator occurs in the region 

of * .0 2γ =  whereas in the Bayesian case this occurs in the region of * .0 6γ = . 

 

6. CONCLUSIONS. 

The main conclusion of this work is that the Bayesian estimation is in general 

preferable to the ML estimation in the analysed stochastic frontier production model. This 

conclusion has been reached on the basis that the MSE of the parameter γ  and the 

estimated efficiencies are lower in the Bayesian approach except for the extreme case in 

which the sample comes from a model where the whole error is due to random effects 

(that is, in the case of a lack of inefficiency). 

It is also important to point out that the Bayesian estimation has been carried out using 

the general purpose Bayesian software WinBUGS, utilised inside the R environment, 

which make its use feasible and appealing to practitioners with only a basic knowledge of 

the Bayesian statistics. It is with this purpose in mind that the code necessary for the 

estimation of the model is presented in Appendix 1. 
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The results of the simulation have been obtained using the same prior distribution in all 

cases; for the parameters ,0 1β β  and 2
vσ −  non-informative distributions have been utilised 

and for the parameter 2
uσ − , a distribution has been chosen that assumes a prior median 

efficiency equal to 0.5. When developing specific applications, researchers can include 

their previous knowledge about the sector, for example adjusting the prior distribution of 

2
uσ −  in order to adapt it to their beliefs about the median efficiency. This additional 

information may well improve the accuracy of the Bayesian estimation. In the case in 

which the researcher does not have this information, it has been proved with the 

distribution used, that the Bayesian methodology displays a better behaviour than that for 

the ML methodology in practically the whole parametric space. 

To conclude, let us observe that the analysis has been focused on a model with cross-

sectional data and perturbations iu  following a Half-Normal model. Therefore, natural 

extensions of this work would be obtained by supposing other kinds of models for the 

perturbations iu , and by considering panel data. 
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APPENDIX 1.   
 

In this appendix, the code used in R to obtain the ML and Bayes estimations of the model 

0 1 , 1,...,i i i iy x v u i nβ β= + + − =  is presented. The packages frontier and R2WinBUGS 

must first be installed and loaded. 

A)  ML estimation. 

Firstly, two vectors x and y containing the data are created. In order to obtain the 

estimations of the parameters of the stochastic frontier production model and its individual 

efficiencies through the LM method, the following instructions can be used: 

estml<-sfa(y~x) 
 

parml<-estml$mleParam 
 

effml<-efficiencies(estml) 

The first line estimates the model with the default options, putting all the results in the 

object estml. The second line extracts the vector containing the estimations of the 

parameters from the object estml, which is then saved as the vector parml. Finally, in 

the last line the individual efficiencies are estimated and saved as effml. It is important to 

point out that the function efficiencies, since it is used with the default options, 

estimates ( )exp iu− , following the formula in Jondrow et al. (1982). 

B)  Bayesian estimation. 

The text file, which we have called SFA_HalfNormal.txt and saved in directory C: , and 

which includes the code necessary for the estimation of the Half-Normal stochastic 

frontier production model with WinBUGS, contains the following: 

model 
{  

for (i in 1:N) { 
  u[i] ~ djl.dnorm.trunc(0,lambda,0,1000) 
  eff[i] <- exp(- u[i]) 
  mu[i] <- beta0 - u[i] + beta1*x[i] 
  y[i] ~ dnorm(mu[i], prec)  
 } 
 
 lambda0 <- 0.7216 
 lambda ~ dgamma(1, lambda0) 
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 beta0 ~ dnorm(0.0, 1.0E-06) 
 beta1 ~ dnorm(0.0, 1.0E-06) 
 prec ~ dgamma(0.001, 0.001) 
 ssqv <- 1 / prec 
 ssqu<- 1/lambda 
 ssqt<- ssqu+ssqv 
 gamma<- ssqu/ssqt 
} 

The vector containing the term of inefficiencies is u ; in order to define a Half-Normal 

distribution, a particular case of the truncated normal distribution through the command 

djl.dnorm.trunc(0,lambda,0,1000) is used. It is important to observe that this distribution is 

not in WinBUGS by default; to be able to use it, an additional component from the web 

site http://www.winbugs-development.org.uk/shared.html must be downloaded. In 

addition to the parameters and vectors needed for the definition of the model, the vector 

eff is also considered, which contains the efficiencies, and the scalars ssqt and gamma 

for the parameters 2σ  and γ  respectively.  

The R code employed to carry out the Bayesian estimation process is: 

model.file<-"C:\\SFA_HalfNormal.txt" 
 
leastsq<-lm(y~x);beta1in<-leastsq$coefficients[2];beta0in<-max(y-beta1in*x) 
 
data<-list("N","y","x") 
 
inits<-
function(){list(u=runif(N,min=0.01,max=.99),lambda=runif(1,min=0.01,max=5),prec=runif(1,mi
n=0.01,max=5),beta0=beta0in,beta1=beta1in)} 
 
estbayes<-
bugs(data,inits,model.file,parameters=c("beta0","beta1","ssqt","gamma","eff[]"),n.chains=3
,n.burnin=500,n.iter=1500,bugs.directory="C:/Program Files/WinBUGS14/") 
 
parbayes[1]=estbayes$mean$beta0; parbayes[2]=estbayes$mean$beta1; 
 
parbayes[3]=estbayes$mean$ssqt; parbayes[4]=estbayes$mean$gamma; 
 
effbayes=estbayes$mean$eff; 

In the first instruction, the text file with the instructions for WinBUGS is loaded; in the 

second, initial values for 0β  and 1β  are obtained; in the third instruction, the list of data is 

generated (N is the sample size); in the fourth, initial values for the Markov chains are 

created. In the fifth instruction, the program WinBUGS is called, and data and options are 

transferred. Let us point out that the option parameters contains the list of parameters of 
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interest and the option bugs.directory indicates the directory where the program 

WinBUGS is installed. The result of the estimation is saved in the object estbayes. In 

instructions 6 and 7, the vector parbayes is created, which contains the estimations of 

the parameters. Finally, in instruction 8, the estimated efficiencies are saved in the vector 

effbayes. 

 

APPENDIX 2 

In this appendix, the complete results of the Monte Carlo experiment are presented. 

γ*=0.0; γ=0.00 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML 0.460316 0.001538 0.304622 0.442111 -0.241944 1.095965 0.018602 0.904161 0.422713 0.160148 

BAYES 1.039865 0.002232 1.739138 0.750284 -0.537731 1.682946 0.017666 4.149937 0.577400 0.318342 

n=20 
  

ML 0.497024 -0.001287 0.436261 0.388461 -0.254438 0.806155 0.007587 0.940891 0.342617 0.161744 

BAYES 0.968929 -0.002185 1.269163 0.686136 -0.514087 1.209809 0.007057 2.026965 0.488756 0.292255 

n=50 
  

ML 0.420578 0.003411 0.365169 0.328390 -0.250596 0.480322 0.002379 0.502558 0.235317 0.135682 

BAYES 0.786363 0.003522 0.823664 0.579058 -0.467004 0.718427 0.002363 0.837826 0.346931 0.238606 

n=100 
  

ML 0.366073 -0.000783 0.280470 0.264158 -0.216970 0.339789 0.001169 0.278405 0.168681 0.108651 

BAYES 0.728022 -0.000852 0.632287 0.516651 -0.440352 0.580619 0.001169 0.473235 0.276436 0.210570 

n=500 
  

ML 0.278536 -0.000119 0.163888 0.182490 -0.189336 0.171413 0.000258 0.076512 0.080105 0.075600 

BAYES 0.612548 -0.000140 0.415967 0.422717 -0.401127 0.388879 0.000260 0.188271 0.183716 0.172209 

 

γ*=0.1;  γ=0.24 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML 0.033027 0.002959 0.103056 0.190801 0.067439 0.706344 0.015347 0.619401 0.263034 0.122353 

BAYES 0.622824 0.001070 1.414098 0.535366 -0.232812 0.892007 0.014611 2.855151 0.297952 0.102940 

n=20 
  

ML 0.048254 0.000254 0.193983 0.140366 0.058942 0.467562 0.006561 0.522318 0.211663 0.117180 

BAYES 0.530200 0.000145 0.997256 0.472865 -0.208886 0.505335 0.006320 1.311918 0.239596 0.089044 

n=50 
  

ML 0.030483 -0.000358 0.177003 0.106435 0.050934 0.256170 0.002253 0.288238 0.150086 0.098844 

BAYES 0.391646 -0.000679 0.606337 0.373651 -0.164460 0.243955 0.002256 0.480360 0.153205 0.067517 

n=100 
  

ML -0.005603 0.000899 0.114576 0.070146 0.055666 0.173121 0.001002 0.162043 0.106672 0.086151 

BAYES 0.307044 0.001135 0.423534 0.313796 -0.137716 0.140081 0.001004 0.237005 0.107808 0.055879 

n=500 
  

ML -0.063708 -0.000221 0.026711 -0.000495 0.071073 0.087876 0.000225 0.042515 0.051449 0.069970 

BAYES 0.205772 -0.000222 0.234200 0.219245 -0.098546 0.054220 0.000224 0.067131 0.053252 0.043221 

 

γ*=0.2;  γ=0.41 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 
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n=10 
  

ML -0.064881 -0.000333 0.026015 0.044630 0.127873 0.621337 0.012769 0.596732 0.232498 0.134820 

BAYES 0.473357 0.000858 1.210748 0.384517 -0.160607 0.619603 0.011936 2.152052 0.158025 0.074946 

n=20 
  

ML -0.057729 0.000390 0.084538 0.006350 0.109221 0.401716 0.005903 0.404479 0.191903 0.125196 

BAYES 0.391411 -0.000732 0.822208 0.329797 -0.137886 0.346992 0.005690 0.931648 0.122358 0.065018 

n=50 
  

ML -0.073231 0.001305 0.087553 -0.019995 0.095381 0.249557 0.002138 0.251139 0.144965 0.107439 

BAYES 0.248183 0.001141 0.465756 0.237435 -0.098188 0.144575 0.002113 0.316484 0.069506 0.052311 

n=100 
  

ML -0.098602 -0.000742 0.014755 -0.051413 0.099774 0.167571 0.000967 0.117752 0.111059 0.095812 

BAYES 0.177449 -0.000884 0.286611 0.179436 -0.070002 0.072614 0.000970 0.125296 0.042206 0.044574 

n=500 
  

ML -0.069421 0.000609 -0.003710 -0.044252 0.059834 0.071615 0.000180 0.042176 0.056864 0.067144 

BAYES 0.093729 0.000618 0.135371 0.103056 -0.039638 0.019800 0.000180 0.032455 0.017515 0.039265 

 

γ*=0.3;  γ=0.54 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.138256 -0.004889 -0.093072 -0.058197 0.155990 0.583339 0.010847 0.467448 0.233567 0.138848 

BAYES 0.368010 -0.004386 0.980352 0.279095 -0.117852 0.488476 0.010050 1.539726 0.085404 0.060910 

n=20 
  

ML -0.097869 -0.002888 0.010197 -0.078533 0.128034 0.372794 0.004462 0.387906 0.201034 0.125953 

BAYES 0.293787 -0.002419 0.654796 0.227626 -0.095259 0.248469 0.004268 0.664077 0.064620 0.053683 

n=50 
  

ML -0.114209 0.001122 0.018593 -0.093072 0.107896 0.230887 0.001643 0.207311 0.154050 0.107336 

BAYES 0.160826 0.001079 0.350711 0.138829 -0.058433 0.095123 0.001614 0.206490 0.032381 0.044495 

n=100 
  

ML -0.091160 0.000601 0.006099 -0.075114 0.081289 0.148949 0.000788 0.120923 0.113785 0.086413 

BAYES 0.106113 0.000458 0.217835 0.097600 -0.038083 0.049831 0.000781 0.097233 0.020941 0.041052 

n=500 
  

ML -0.050270 -0.000051 -0.028491 -0.054892 0.035948 0.044942 0.000151 0.031059 0.041990 0.051907 

BAYES 0.032426 -0.000058 0.057798 0.026421 -0.010772 0.011563 0.000152 0.014969 0.006851 0.037397 

 

γ*=0.4;  γ=0.65 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.256760 0.003806 -0.172657 -0.169840 0.188754 0.579197 0.009913 0.416047 0.258666 0.145008 

BAYES 0.250495 0.003602 0.866352 0.179641 -0.086590 0.379069 0.009321 1.270008 0.039325 0.051314 

n=20 
  

ML -0.158417 -0.000124 -0.055584 -0.139446 0.136292 0.334925 0.004083 0.303548 0.220042 0.126045 

BAYES 0.201383 -0.001101 0.522056 0.144710 -0.067973 0.182925 0.003910 0.447077 0.032177 0.046069 

n=50 
  

ML -0.113356 -0.000296 0.010719 -0.125242 0.098079 0.196505 0.001426 0.218763 0.158572 0.098084 

BAYES 0.105434 -0.000310 0.285433 0.066883 -0.034477 0.069765 0.001361 0.173734 0.016636 0.039778 

n=100 
  

ML -0.095833 -0.000176 -0.035920 -0.101124 0.073517 0.123092 0.000714 0.103578 0.110158 0.075657 

BAYES 0.046939 -0.000087 0.127373 0.028997 -0.013871 0.036356 0.000714 0.058665 0.011576 0.036614 

n=500 
  

ML -0.033248 0.000973 -0.018570 -0.036911 0.018112 0.025224 0.000135 0.025644 0.025964 0.040954 

BAYES -0.002137 0.000953 0.024850 -0.008925 0.001845 0.009883 0.000134 0.014709 0.007159 0.035083 

 

γ*=0.5;  γ=0.73 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.232003 -0.001063 -0.193776 -0.178594 0.174795 0.485236 0.008914 0.373728 0.258971 0.133548 

BAYES 0.201981 -0.000542 0.716190 0.114660 -0.064801 0.307361 0.007804 0.921227 0.018986 0.043855 
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n=20 
  

ML -0.178417 0.002649 -0.091816 -0.172730 0.133880 0.324076 0.004084 0.298974 0.226045 0.119118 

BAYES 0.148460 0.001535 0.440077 0.088660 -0.051018 0.154261 0.003731 0.369117 0.017827 0.040914 

n=50 
  

ML -0.106487 0.001149 -0.048464 -0.126769 0.079176 0.160459 0.001326 0.163476 0.137811 0.079640 

BAYES 0.063486 0.000611 0.187754 0.023129 -0.018980 0.058683 0.001262 0.106925 0.011788 0.035236 

n=100 
  

ML -0.063836 0.000034 -0.027487 -0.084055 0.047090 0.087812 0.000607 0.092142 0.083762 0.057891 

BAYES 0.023777 0.000027 0.093461 -0.007140 -0.004531 0.029751 0.000602 0.053079 0.009982 0.033408 

n=500 
  

ML -0.013236 0.000115 -0.009649 -0.018598 0.007296 0.011290 0.000119 0.018346 0.009855 0.032626 

BAYES -0.008112 0.000103 0.009164 -0.020269 0.005402 0.008310 0.000119 0.014129 0.005843 0.031680 

 

γ*=0.6;  γ=0.80 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.268241 -0.001001 -0.242067 -0.231232 0.187983 0.440581 0.007999 0.379683 0.280939 0.130762 

BAYES 0.147366 -0.000862 0.598856 0.058175 -0.043713 0.242554 0.006923 0.713394 0.007875 0.037019 

n=20 
  

ML -0.163962 -0.000557 -0.121026 -0.189657 0.125883 0.298516 0.003955 0.274649 0.218975 0.104603 

BAYES 0.112294 -0.000615 0.356862 0.039957 -0.033493 0.138085 0.003498 0.291989 0.009448 0.034060 

n=50 
  

ML -0.089085 0.001353 -0.045735 -0.107241 0.064013 0.134752 0.001174 0.147685 0.119580 0.067462 

BAYES 0.031640 0.000917 0.138513 -0.006276 -0.007030 0.051547 0.001099 0.092413 0.009743 0.030573 

n=100 
  

ML -0.038772 -0.002546 -0.032997 -0.068107 0.032781 0.062344 0.000543 0.082008 0.058609 0.044153 

BAYES 0.010742 -0.002537 0.054066 -0.029513 0.004189 0.028077 0.000535 0.049070 0.010155 0.029640 

n=500 
  

ML -0.007987 0.000184 -0.010258 -0.008705 0.004014 0.007885 0.000103 0.013171 0.004257 0.027473 

BAYES -0.008740 0.000198 0.000089 -0.016863 0.004650 0.007402 0.000103 0.011777 0.003954 0.027383 

 

γ*=0.7;  γ=0.87 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.289966 0.002613 -0.290080 -0.231932 0.179554 0.432253 0.007113 0.373750 0.267437 0.117906 

BAYES 0.075153 0.001699 0.467128 0.005810 -0.023232 0.208007 0.005800 0.568275 0.003668 0.030694 

n=20 
  

ML -0.157605 -0.002028 -0.133245 -0.176553 0.111326 0.242424 0.003273 0.246001 0.195681 0.088299 

BAYES 0.061265 -0.002368 0.266732 -0.001553 -0.015433 0.098930 0.002856 0.218836 0.005972 0.027244 

n=50 
  

ML -0.063142 0.000672 -0.046131 -0.082789 0.040255 0.097917 0.001140 0.122154 0.078256 0.046503 

BAYES 0.008118 0.000615 0.097628 -0.030576 -0.000686 0.045556 0.001047 0.078084 0.009049 0.025177 

n=100 
  

ML -0.020354 0.000400 -0.011385 -0.027081 0.010892 0.036037 0.000480 0.059958 0.021433 0.027433 

BAYES -0.004932 0.000240 0.043871 -0.030317 0.003384 0.024478 0.000474 0.044666 0.007402 0.023581 

n=500 
  

ML -0.007849 0.000308 -0.006858 -0.004360 0.002928 0.005181 0.000094 0.010184 0.001720 0.021122 

BAYES -0.008986 0.000304 0.000252 -0.011297 0.003469 0.005106 0.000094 0.009694 0.001828 0.021128 

 

γ*=0.8; γ=0.92 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.332012 0.003221 -0.300147 -0.263047 0.187871 0.432689 0.006656 0.361155 0.273858 0.113713 

BAYES 0.012059 0.002277 0.407870 -0.037582 -0.004696 0.179612 0.005422 0.448990 0.004270 0.025304 

n=20 
  

ML -0.155127 0.000148 -0.139493 -0.150360 0.093837 0.186687 0.002507 0.224959 0.154430 0.067722 

BAYES 0.010898 -0.000151 0.204089 -0.030152 -0.001861 0.071123 0.002025 0.175164 0.005399 0.020870 
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n=50 
  

ML -0.037513 -0.000391 -0.036609 -0.052147 0.026765 0.065707 0.000873 0.102198 0.048751 0.032163 

BAYES -0.001754 -0.000308 0.063953 -0.036266 0.004917 0.034229 0.000791 0.065456 0.007193 0.019044 

n=100 
  

ML -0.019291 0.000491 -0.013429 -0.016434 0.008941 0.025392 0.000410 0.048776 0.010324 0.019448 

BAYES -0.013366 0.000263 0.026105 -0.029760 0.006102 0.020257 0.000403 0.038798 0.005126 0.017610 

n=500 
  

ML -0.001571 0.000356 0.001291 -0.000112 0.000437 0.003888 0.000073 0.009096 0.000601 0.015290 

BAYES -0.002357 0.000348 0.007200 -0.005157 0.000697 0.003927 0.000074 0.009055 0.000683 0.015314 

 

γ*=0.9; γ=0.96 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.339529 0.006469 -0.327006 -0.253693 0.180769 0.411072 0.006232 0.345574 0.255082 0.102091 

BAYES -0.031354 0.004306 0.315298 -0.065314 0.009474 0.174089 0.005114 0.343293 0.006258 0.020070 

n=20 
  

ML -0.148386 0.000993 -0.188094 -0.107143 0.081019 0.152793 0.002281 0.175109 0.105980 0.047921 

BAYES -0.024569 0.000154 0.099687 -0.040284 0.010687 0.061427 0.001799 0.113461 0.003923 0.014894 

n=50 
  

ML -0.028254 -0.000553 -0.036719 -0.024783 0.017568 0.043741 0.000715 0.080887 0.021434 0.018484 

BAYES -0.013296 -0.000856 0.039246 -0.031289 0.008464 0.027120 0.000633 0.058756 0.004086 0.012394 

n=100 
  

ML -0.006404 0.000203 -0.008026 -0.004253 0.002749 0.015459 0.000297 0.037055 0.003207 0.011478 

BAYES -0.006279 0.000166 0.021503 -0.017664 0.002218 0.013532 0.000282 0.033131 0.002114 0.010869 

n=500 
  

ML -0.002673 0.000135 -0.006085 -0.000715 0.001379 0.002544 0.000057 0.006834 0.000171 0.009144 

BAYES -0.002875 0.000126 -0.000504 -0.003847 0.001345 0.002561 0.000057 0.006773 0.000207 0.009161 

 

  γ*=1.0; γ=1.00 MB(β0) MB(β1) MB(σ2) MB(γ) MB(EFF) MSE(β0) MSE(β1) MSE(σ2) MSE(γ) MSE(EFF) 

n=10 
  

ML -0.318590 -0.000347 -0.381823 -0.227595 0.180902 0.328816 0.004986 0.345836 0.217523 0.084885 

BAYES -0.057441 -0.000812 0.191646 -0.087222 0.029120 0.131636 0.004066 0.244643 0.008754 0.014502 

n=20 
  

ML -0.149859 -0.000018 -0.228914 -0.075779 0.080140 0.088843 0.001279 0.169849 0.062168 0.026357 

BAYES -0.059906 -0.000929 0.013559 -0.054062 0.028846 0.039460 0.001133 0.100420 0.003982 0.006831 

n=50 
  

ML -0.052380 -0.000404 -0.103566 -0.011430 0.027144 0.018198 0.000296 0.060019 0.005817 0.004055 

BAYES -0.040969 -0.000194 -0.015539 -0.019688 0.019488 0.011374 0.000255 0.043836 0.000742 0.002154 

n=100 
  

ML -0.026989 -0.000295 -0.065746 -0.002621 0.014044 0.004267 0.000097 0.028172 0.000084 0.000889 

BAYES -0.021880 -0.000146 -0.006122 -0.006438 0.010758 0.003421 0.000076 0.022102 0.000102 0.000699 

n=500 
  

ML -0.008971 -0.000557 -0.039006 -0.001134 0.005657 0.000588 0.000015 0.008849 0.000012 0.000220 

BAYES -0.009364 -0.000059 -0.013143 -0.000902 0.004851 0.000297 0.000006 0.004167 0.000001 0.000071 
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