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1. INTRODUCTION

The origin of the analysis of frontier productionodels in econometrics and the
calculation of efficiency measures can be set & floneering work of Farrell (1957),
where the original idea of analysing the efficierndya productive process in terms of the
observed deviations between actual production andidgal output frontier was
established. In econometric terms, such deviaticars be identified with the random

perturbations of a regression model.

Following on from Farrell's idea, Aigner and Chu9@B) propose a model where a
certain output is expressed as a function of séveputs and unknown parameters
together with a negative random perturbation; tleemninistic part of the model
represents the production frontier or maximum a#hie output value for a given level of
inputs, while the random perturbation (the diffeerbetween the actual production and

the maximum attainable) is the degree of inefficyeaf the productive process.

This framework, usually called the deterministiorftier production model, presents
some difficulties due to the fact that the unilatgrerturbation fails to verify the standard
hypothesis of regularity needed to obtain the aggtitp properties of the maximum
likelihood estimator (ML) (Ortega and Basulto, 20@tegaet al. 2009). Furthermore,
this modelling takes no account of possible souotesror measures and other kinds of
random variations due to the inefficiency of thedarction process.

In order to provide an answer to latter problengniiret al. (1977), Battese and Corra
(1977), and Meusen and Van der Broeck (1977) foatedl econometric models with a
composite error term; currently known as stochastiatier production models. In this
framework, two random perturbations are consideogs is a measure of inefficiency,

and the other represents all the possible soufaemdom variations.

In these kinds of models, the standard regularitpddions are verified. As a
consequence, the asymptotic properties of the Mimasor can be used to carry out
inferences. Moreover, the specific software dewetpp(such as FRONTIER and
LIMPDEP), has propagated the use of this type odem



As an alternative, the Bayesian approach can be tesestimate the parameters of the
model and the inefficiency (or efficiency) of edaim considered. Bayesian methodology
presents some advantages, as for example its sitypln incorporating parameter
constraints. Above all, the use of Monte Carlo mdthand Markov Chains together with
Gibbs’ algorithm (Gelfand and Smith, 1990) providasvery suitable tool in this
framework due to the complexity of stochastic frenimodels. In fact, a major part of
recent literature uses the Bayesian approach (@afid Steel 2007, Dorfman and Koop
2005).

One of the main drawbacks of the Bayesian apprazspecially for practical purposes,
is the lack of easy-to-use software which is sidhdy versatile to accommodate the
different situations and sets of data. In GriffmdeSteel (2007), free software, WinBUGS,
is used to estimate the numerous variations ohsfi@ frontier production models. It is
proved that this software is a powerful and flegitdol in this context, can be used easily
by the practitioners, and that it estimates the et®oth a reasonable time. Obviously, a
specific implementation of a particular model coblel more efficient than WinBUGS,
since this is a generic tool that can be usedlarge variety of situations. However, the
ease of use and the possibility of performing aeB&n analysis without programming are

clear advantages.

The main goal of this article is to carry out a siation analysis to compare the results
of the ML method (using the software FRONTIER) withose obtained through the
Bayesian approach (using the software WinBUGS).thl® end, since either method can
be integrated into the free software R, the consparpf the results obtained with either of
the two methods is more reliable, since they caagmied to the same simulated samples.
Our design of the Monte Carlo experiment is simitathat of Coelli (1995), where the
ML and corrected least-squares estimators are caup@hang (1999) also compares
Bayesian and ML estimation, although this is perfed by fixing the values of the
parametric space and by placing the stress on singlyhe effect of using different prior
distributions. In Ortegat al. (2009) a comparison between the two methods rsedaout

on a deterministic frontier model.



Although the bias of the estimators is also analyisethis paper, the mean squared
error (MSE) is taken as the main comparison caterlaying special emphasis on the
parameter that represents the proportion of vagiasidhe composite error that is due to

inefficiency, and on the estimation of the indivadlinefficiencies (or efficiencies).

From here on, the article is organised as folldwsSection 2 the production model is
present, upon which the analysis is performed]ikedihood function under the assumed
hypothesis for the perturbation term, and the patansation used to carry out the
estimation process; In Section 3, a way to obtaenNIL and Bayesian estimators using
FRONTIER and WIinBUGS respectively is explained,afw/in the setting of the software
R. Section 4 is devoted to describing the desigh®@Monte Carlo experiment. In Section
5, the results obtained and an interpretation efrtfost interesting points are presented.

Finally, the main conclusions of this work are laigt in Section 6.

2. THE MODEL

The basic formulation of the stochastic frontiesghrction model is:

=100 +y -y, i=L..n,

&
where y; is the production of theth firm, x is the vector of all its inputs is a vector

of parameters to be estimated, ah@) is the production function.

The random perturbatiow; consists of two parts (composite erroy)JR, which
represents the sources of random variations @0, which is the inefficiency of the

production process. It is commonly supposed thatfollows a Normal distribution,
specifically v; ~ N(O,O'VZ), although with regard ta;, a positive probability distribution
must be chosen. In this work, since the most usyabthesis is supposed, thats= ‘q‘

where ui* ~ N(O,aﬁ), then it is said that the perturbatioms follow a Half-Normal

distribution and is writtery; ~ HN(O,O'UZ). Moreover, it is supposed that all perturbations
(v and u;) are independent. Other kinds of probability deesifor the perturbations ,

such as Exponential and Gamma distributions, haen brequently and widely used,



mainly when the Bayesian approach is considerd¢horg et al. 1995, Osiewalski and
Steel 1998, Koop and Stell 2003).

With regard to the production function, the mosualssituation is considered:
f(x,0)= ){,[)’, where £ is an unknown vector of parameters with an infatrck should
be observed that ik and y, are measured on a logarithmic scale, then a CahigR2s

production function is obtained. In this case, thest common one, instead of being

interested onu, as an inefficiency measurexp(-u;) is usually estimated, which is an

efficiency measure bounded between 0 and 1.

In order to obtain the ML estimator, the paramestion o°=g2+0? and

y:af/a2 is considered in th&ontier package. Hence, the paramejertakes values

between 0 and 1 and shows the proportion of thiewvee due to inefficiency. In facy is
not exactly such a proportion of variance, sinveg[u] = poﬁ with p= (77— 2) /m. To be

more precise, ify’ denotes the proportion of the total variance ovimghe inefficiency,

(that is y =varfu]/(var[u]+var[V])), then it is straightforward to verify that
Y =y/(v+(a-y)p™).

With this parameterization, the logarithm of thieelihood for the i-th observation is

given by:

log(L;) = —% Iog(l—g - Iog(o*)——;zi2 + Iog(¢(— z.v/( y))) :

where z :y‘%w.

3. PROGRAMMING THE ESTIMATION METHODS.



As pointed out before, ML estimation is carried bytusing FRONTIER software and
Bayesian estimation through the program WinBUGSh iategrated in the environment

of the software R.

To be more specific, to obtain the ML estimatoe trersion 0.996-6 of th&ontier
package, which uses the FORTRAN source code afdftevare FRONTIER 4.1 (Coelli,
1996), is used. For the Bayesian inference, th&gmeR2WinBUGSs employed, which
opens the WinBUGS v1.4 program, passes it the gatlks up the results and delivers
them to the R environment. The WinBUGS software bardownloaded from the Web

site http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contshtsal and the R software can

be obtained fromhttp://www.r-project.org both at no cost. After installing R, the

packagedrontier andR2WinBUGSmust be installed and loaded. For details ancbogti
of these packages, the help included within thembsaconsulted. A detailed explanation
of how the packag®2WinBUGSworks, together with some examples, can be found i
Sturtzet al. (2005).

For the sake of simplicity, a single explanatoryiafale plus an intercept are considered
in the design of the simulation experiment. Thabisay, the simulations are made on the

basis of the model:
Vi =Bt Bxty -y, i=1..n

The actual instructions used in R together withhartsexplanation are presented in
Appendix 1A.

In order to obtain the Bayesian estimations (ofgheameters and of the efficiencies),
the prior distributions used in Griffin and Ste@0Q7) are considered, except for the

hyperparameter for the variance of the Half-Normatribution. Specifically, for the
parameters 3,,3,, and o,?, the non-informative distributions g, ~ N(0,1¢),

B, ~N(0,10) and o,? ~Ga(10°, 10°% are taken, withN(x,d°) representing a Normal
distribution with meanu and varianced®, and whereGa(a,, 8) is a Gamma distribution

with meana,/a, , and shape parametay.



The prior distribution of the parameter? is commonly chosen as that belonging to

the Gamma family, setting the hyperparameters ghah the prior median takes into
consideration our beliefs about the median efficjenf the production process under
analysis (Van den Broecalt al. 1994, Zhang, X. 1999). Griffin and Steel (2007)their

example, which was applied to the USA electricitprket, take the prior distribution
0.? ~Ga(1, 00267, which implies median efficiency in the sector0o875 is assumed. In

this work, taking into account that a simulatiologess is carried out, a benchmark value

of 0.5 for the prior median efficiency is choserhieh is achieved with a distribution

0.2 ~Ga(1,07216 (Van de Broeclet al. 1994).

With regard to the implementation of the model ImMBUGS, three Markov chains of
1500 iterations each are generated, the first 508aoh of which are dismissed; this
implies a total of 3000 simulated samples. As stgnpoints, the Corrected Least-Squares

estimators are taken for the parametgsand g, (Green, 1980). For the rest of the

parameters, random values are generated.

The text file with the necessary instructions fbwe tdefinition of the model in
WingBUGS, and the code implemented in R to carriyy tbe Bayesian estimation, are
given in Appendix 1B.

4. DESIGN OF THE MONTE CARLO EXPERIMENT.

As stated in the former Section, the simulations arade on a model with one

explanatory variable plus an intercept. The sangplace of the experiment is initially
given by the different values of the parametgys B,, o® and y, the sample size and

the values of the vector of observations of theacablex. The main goal is to analyse the

behaviour of the estimations of both the paramgtand of the individual efficiencies.

Without any loss of generality, the values Gf, B, and o® can be chosen (Zhang
1999, Coelli, 1995). Hence, in this wog = 8, =0® =1 is selected. With respect to the
values of the covariabbe these are generated uniformly on the intefoalQ . Since the

intention is to analyse the behaviour of both mdthm small and large sample sizes,



n0{ 10, 20 50 100 50¢ is taken. With regard to the paramejerfollowing Coelli (1995),
the values of the parametgr are set instead. Specifically values ranging fbta 1 with
increments of 0.1 have been chosen. From the equafi :y/(y+(1—y) p‘l) the
following relation betweery and y is obtained:
y ‘ 0.0 ‘ 0.1 ‘ 0.2‘ 0.3‘ 04 0.$ 0.% 0.‘7 0}8 4.9 1.0
¥ |0.00|0.24| 0.41| 0.54| 0.65| 0.73| 0.80 | 0.87| 0.92| 0.96| 1.00
As a consequence, a total of 11 valuesyoénd 5 values oh are simulated, which

yields 55 combinations. For each one of such coatlnns, a total of m= 1000
replications of the model are carried out. In orepbtain pseudorandom numbers, the
default generator implemented in the software &sed. The ML and Bayesian estimators

are calculated as explained in the section above.

For each parameter, the mean bias (MB) and the swpaared error (MSE) of each of
the m replications with each of the methods are obtainedorder to analyse the
efficiencies, the study is not limited to estimgtionly the mean efficiency but the MB
and MSE of each individual efficiency are also oldted. Therefore, as an overall
indicator, the average of the MB and the MSE farhefrm are given, that is, IiE is the

efficiency of the i-th firm andEij its corresponding estimated value, (by eitherhaf t
methods), in the j-th replication, theviB, = m‘lz(ﬁ - E) and MSE = m‘lz( E- E)Z,
j=1 j=1
for i=1,..n. Hence, the MB and the MSE of the efficiencies atgained by
MB=n"> SM andMSE=n") ECM.
i=1 i=1

Before analysing the results, the main differeraetsveen our Monte Carlo experiment
and that carried out by Zhang (1999) should be tpdirout. Firstly, this author uses a
specific algorithm for the Bayesian estimation, veas in this work, general but very
easy-to-use Bayesian software is employed, whictkemait more appealing for
practitioners (even though more processing timeoassibly required to obtain the
estimates in each replication). Secondly, in Zh&®P9) only one single value of the

parametric space is considered, and the main sitexr¢he analysis of the influence of the

choice of various hyperparameters in the priorritistion of o2 exerted on the bias and



on the mean squared error of the parameters ohttel. However, in this work only one
prior distribution is considered for all cases d@hd behaviour of the two methods for

various values of parametegr is analysed, with special attention paid to thdividual

efficiencies estimated.

5.RESULTSOF THE MONTE CARLO EXPERIMENT.

The complete results of the Monte Carlo experimérdt is to say, the bias and the
MSE of all the parameters and the individual edfigies in the 55 cases considered, are
offered in Appendix 2. Here, the most relevant itssare presented, while attention is
focused on the MSE criterion, which indicates whiohthodology better replicates the
true values of the considered model. The behawbtine estimations of parametgand
the individual efficiencies are our main concerrs &lready pointed out, parameter
captures the structure of the composite erros. ¢tbmmon knowledge that one of the main
drawbacks of this kind of model is the difficulty identifying what proportion of the total
error is due to inefficiency and what proportiondise to random effects. Moreover, the
correct estimation oy is crucial for the attainment of the individuafieiencies of each

firm, which constitutes one of the main objectivdgen using this kind of model.

In Figure 1, the MSE of parametgrin accordance with the values\yof is shown for
various sample sizes and for the two methods afmatibn, (the casen=10 has been
omitted in order to prevent complications in theerpretation for the rest of the sample
sizes, since otherwise the ordinate axis would havee increased). With respect to the
ML method, the graph is in accordance with Figuia Zoelli (1995). In fact, the results
are virtually coincident for the sizes=50 and n=100, while for n=500, it is very
similar to that presented by Coelli (1995) for 400

10
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Fig. 1: MSE of parametarfor the two estimation methods.

v

As can be clearly seen, the behaviour of the MSEherBayesian methodology is

totally different from that of the ML estimator;ehformer being better than the latter.

Indeed, although for the extreme case=0, the Bayesian MSE is greater than the ML
MSE, from y' =0.2 the Bayesian MSE quickly falls, and is lower thiwat for the
respective ML except for the valugs=0.9 and y’ =1 in which the MSE tend to be equal
(in the casen=500, the values of MSE tend to be equal frgm=0.5). Therefore, the
Bayesian approach shows better behaviour in masiegbarametric space ¢f. It is also

interesting to observe that the MSE in the Bayes&s® always decreases as the values of

y increase, which is not always true for the ML estion.

Let us also observe that, as expected, the MSkeafto estimation methods decreases

with the sample size. This behaviour is shown byhal parameters analysed.

In Figure 2, the results are given of a similarlgsia but this time as applied to the
individual efficiencies. In all cases, the MSE lo¢ individual efficiencies is first obtained,
and their overall mean is calculated. This avelaggiven in the results and depicted in
Figure 2. The observations made for Figure 1 remalid for Figure 2, since the pattern
of behaviour displayed is the same, although ircts®e of the efficiencies, the scale of the

MSE is smaller in the two approaches.

11
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Fig. 2: Average MSE of the individual efficiencifes the two estimation methods.

The similarity between Figures 1 and 2 revealsdinect influence that the estimation

of the parametey has on the estimation of the efficiencies of ihag.

In order to quantify the difference in the behaviofi the two estimation methods, in
Figure 3 the ratio between the MSE of maximum iik@bd and the Bayesian MSE for
and for the efficiencies have been depicted. Vabfabese ratios above 1 are identified
with a better behaviour of the Bayesian estimatdm]e on the other hand, a value below
1 indicates a better performance of the ML estimalbe sample sizen=20 has been

omitted from the graph in order to maintain theeed@thin the axis of ordinates.
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Fig. 3: Ratios of the MSE fgrand for the efficiencies.

As shown in Figures 1 and 2, the behaviour of thgeBian estimator is consistently
better except for the extreme cage=0. Moreover, Figure 3 reveals that the differences

in the results for the two methods are highly digant. For instance, for the parameter

and with a sample size=50, around the valug’ =0.6 the MSE of the ML estimator is

12



the order of 12 times greater than that of the Biaye counterpart. Such differences

remain significant for the case=100 and even whem =500, since ratios of the order
from 3 to 6 are observed whep ranges between 0.2 and 0.4. With regard to the
efficiencies, a similar behaviour to that of paréene/ is shown, although on a much
smaller scale. In this case, the greatest obseatexs are in the region of 2.5, all of which

(excepty’ =0) remain favourable to the Bayesian estimator.

An indication of the significance of the differescam the MSE's is provided if it is
assumed that these MSE ratios have approximatestibditions (Coelli, 1995), and

hence, of the 55 ratios considered for paramete33 indicate that the MSE of the
Bayesian estimator is significantly smaller thae MSE of ML (at the 1% level), while in
only one case ) =0 and n=500) do we observe the MSE of ML to be significantly

smaller than the Bayesian MSE.

It is worth bearing in mind that foy =0.1, the ratio corresponding tp is nearly 1 for
all sample sizes, while the MSE ratio of the effiwies is around 1.5 for all the values of
n. It is also important to mention that in the grafite ratios fory’ =1 and n=500 have

been omitted, since the values of the MSE are bothlose to O that their quotients are

meaningless (specifically, the ratios obtainechis tase are 12.3 for the paramegend
3.08 for the efficiency).
According to the comparison criterion used, theultesshow a clear difference in

favour of the Bayesian methodology, which is whyreeommend its practical use for the

estimation of the stochastic frontier productiond@loconsidered in this work.

In order to complete the analysis, certain genaloakrvations about the MSE and MB
on the other parameters should be mentioned.
With regard to the slopeg,, the main conclusion is that both methods estinitate

correctly, since the biases and the MSE are néaily all cases. With respect to the

intercept, 3,, this exhibits a smaller MSE for the Bayesian rmdtiogy except for the

casey =0. The MSE of the parameter? displays a more diverse behaviour, since for

the sample sizes =10 and n= 20, it almost always remains lower for the ML estiorat

13



whereas forn=50, n=100 and n=500, the Bayesian MSE is lower than the ML

estimator from ' =0.3 upwards.

With respect to the behaviour of the biases (camei in absolute values), the most

noteworthy conclusion is that the differences betwthe two methods depend to a greater
extent on the values of (except for the case of the slogk in which the biases are
always similar). For the parametegs and y, and for the efficiency, the bias of the ML
estimator tends to be smaller when<0.4 and the opposite is obtained from=0.5

upwards. However, the ML bias of the parametéiis in general lower than the Bayesian
bias for y <0.8. Therefore, according to the absolute value of bl criterion, no

method is clearly better than the other. As fordiym of the biases, the most outstanding
conclusion is that in general the same patterollsvied by both methods, although the

change of the sign does not occur in the same vaifig'. For example, the biases of the

parametery begin as positive for both methods for the firgiues of , and they all end
up as negative; however the change in the sigth®ML estimator occurs in the region

of y =0.2 whereas in the Bayesian case this occurs in tlien®f )’ =0.6.

6. CONCLUSIONS.

The main conclusion of this work is that the Bagasiestimation is in general
preferable to the ML estimation in the analysediséstic frontier production model. This

conclusion has been reached on the basis that thE bf the parametey and the

estimated efficiencies are lower in the Bayesiapr@gch except for the extreme case in
which the sample comes from a model where the whoiler is due to random effects

(that is, in the case of a lack of inefficiency).

It is also important to point out that the Bayesestimation has been carried out using
the general purpose Bayesian software WinBUGSiseitll inside the R environment,
which make its use feasible and appealing to gracérs with only a basic knowledge of
the Bayesian statistics. It is with this purposemimd that the code necessary for the

estimation of the model is presented in Appendix 1.

14



The results of the simulation have been obtain@tgute same prior distribution in all

cases; for the parameteg, 8, and o, non-informative distributions have been utilised

2

and for the parametes,”, a distribution has been chosen that assumesoa ipedian

efficiency equal to 0.5. When developing specifpplecations, researchers can include
their previous knowledge about the sector, for exanadjusting the prior distribution of

-2
au

in order to adapt it to their beliefs about thedmaa efficiency. This additional

information may well improve the accuracy of theyBsian estimation. In the case in
which the researcher does not have this informatiborhas been proved with the
distribution used, that the Bayesian methodologpldys a better behaviour than that for

the ML methodology in practically the whole pararntespace.

To conclude, let us observe that the analysis kas iocused on a model with cross-

sectional data and perturbations following a Half-Normal model. Therefore, natural

extensions of this work would be obtained by supmp®ther kinds of models for the

perturbationsy;, and by considering panel data.

15



APPENDIX 1.

In this appendix, the code used in R to obtainMiheand Bayes estimations of the model

Vi =6+ 4%+y -4y, i=1..,nis presented. The packageentier and R2ZWIinBUGS

must first be installed and loaded.
A) ML estimation.

Firstly, two vectorsx andy containing the data are created. In order to obthe
estimations of the parameters of the stochasti@igpoproduction model and its individual

efficiencies through the LM method, the followingsiructions can be used:

estm <-sfa(y~x)
parm <-estm $nl ePar am

effm <-efficiencies(estm)

The first line estimates the model with the defadtions, putting all the results in the
object estm . The second line extracts the vector containing éistimations of the
parameters from the objeett n , which is then saved as the vegbarmi . Finally, in
the last line the individual efficiencies are estied and saved asf i . It is important to
point out that the functiorfficiencies, since it is used with the default options,

estimatesexp(-v; ), following the formula in Jondrowt al. (1982).

B) Bayesian estimation.
The text file, which we have callesFA Hal f Nor mal . t xt and saved in directory C: , and
which includes the code necessary for the estimatib the Half-Normal stochastic

frontier production model with WinBUGS, containg ttollowing:

nodel
{
for (i in 1:N {
uf[i] ~ djl.dnormtrunc(O, | anbda, 0, 1000)
eff[i] <- exp(- u[i])
mu[i] <- betaO - u[i] + betal*x[i]
yl[i] ~ dnorm(nu[i], prec)

}

| anbda0 <- 0.7216
| anbda ~ dganma(1, | anbda0)

16



beta0 ~ dnorn{0.0, 1.0E-06)
betal ~ dnorn{0.0, 1.0E-06)
prec ~ dganma(0.001, 0.001)
ssqv <- 1/ prec

ssqu<- 1/l anmbda

ssqt <- ssqu+ssqv

ganma<- ssqu/ ssqt

}

The vector containing the term of inefficienciesuisin order to define a Half-Normal
distribution, a particular case of the truncatednmad distribution through the command
dj I . dnorm trunc(0, | anbda, 0, 1000) IS used. It is important to observe that this dsiion is

not in WinBUGS by default; to be able to use it,aditional component from the web

site http://www.winbugs-development.org.uk/shared.htrmust be downloaded. In

addition to the parameters and vectors neededchédefinition of the model, the vector

ef f is also considered, which contains the efficiesicand the scalassqt andgamm

for the parameterg? and y respectively.

The R code employed to carry out the Bayesian esitm process is:

nmodel . file<-"C \\SFA Hal f Normal .txt"

| east sg<-1 n(y~x); bet ali n<-1 east sq$coeffici ents[2]; betali n<- max(y-betali n*x)
data<-list("N',"y","x")

inits<-

function(){list(u=runif(N, m n=0.01, nax=. 99), | anbda=r uni f (1, m n=0. 01, nex=5), prec=runi f (1, m
n=0. 01, max=5), bet a0=bet a0i n, bet al=bet ali n)}

est bayes<-

bugs(data,inits, nodel.file, paraneters=c("betal0", "betal", "ssqt", "ganm","eff[]"), n. chai ns=3
, N. bur ni n=500, n. i ter=1500, bugs. directory="C:/Program Fi | es/ WnBUGS14/")

par bayes| 1] =est bayes$nean$bet a0; par bayes|[ 2] =est bayes$nean$bet al;

par bayes| 3] =est bayes$nean$ssqt; parbayes[ 4] =est bayes$nean$ganms;

ef f bayes=est bayes$nean$ef f;

In the first instruction, the text file with thestructions for WinBUGS is loaded; in the
second, initial values fof, and g, are obtained; in the third instruction, the litdata is
generated (N is the sample size); in the fourthialnvalues for the Markov chains are
created. In the fifth instruction, the program WWBS is called, and data and options are

transferred. Let us point out that the optpam anet er s contains the list of parameters of

17



interest and the optiobugs. di rectory indicates the directory where the program

WIinBUGS is installed. The result of the estimatisrsaved in the objeest bayes. In

instructions 6 and 7, the vectpar bayes is created, which contains the estimations of

the parameters. Finally, in instruction 8, theraated efficiencies are saved in the vector

ef f bayes.

APPENDIX 2
In this appendix, the complete results of the MdDéglo experiment are presented.

y'=0.0;y=0.00

MB(o)

MB(B1) | MB(a?)

MB(Y)

MB(EFF)

MSE(Bo)

MSE(Ba1)

MSE(@?)

MSE(y)

MSE(EFF

n=10

ML

0.460316

0.00153%.30462

D.44211

£0.2419441.09596

$.01860

D.90416

D.422713

0.16014

BAYES

1.03986

b

0.00223

’1.739138).750284

40.53773

1n

.68294

$.0176661.14993

0.577400

0.31834

n=20

ML

0.4970240.00128

00.43626

0.38846

£0.254438.80615

$.00758

10.94089

D.342617

0.161744

BAYES

0.96892

30.00218

5.26916

$.68613

50.51408

il

.20980%9.00705

2.02696

$.48875

b

0.29225

n=50

ML

0.420578

0.00341

0.36516%.32839

30.25059@).48032

D.00237%.502558®).23531

i

0.13568

BAYES

0.786363

0.00352

D.8236640.57905

30.467000

.7184210.00236

$.83782

$.346931

0.23860

n=10

ML

0.3660730.00078

$.28047(0.26415

30.21697(.33978%.00116%.27840

$.168681

0.10865

BAYES

0.72802

20.00085

D.63228

0.51665

£0.44035

D.58061D.00116®.47323

.27643

b

0.21057

n=50

ML

0.27853¢:0.000119.16388%.18249

30.189331.17141

D.00025®.07651

0.08010

b

0.07560

BAYES

0.61254

30.00014(D.41596

0.42271

F0.40112

0.38887.00026(D.18827

D.18371

p

O O A= Lo \"2J ™ T -— LA \>~J

0.17220

y'=0.1; y=0.24

MB(o)

MB(B2) | MB(a?)

MB(y)

MB(EFF)

MSE(Bo)IMSE(B1)

MSE(0?)| MSE(y)

MSE(EFF

n=10

ML

0.033027

(0.002959).10305

50.19080

10.06743%.7063440.01534

0.61940

D.263034 0.12235

BAYES

0.622824

10.00107(1.41409

30.53536

50.23281

0.8920010.01461

[?.8551510.29795

? 0.10294

n=20

ML

0.048254

10.0002540.19398

30.14036

50.05894

D.467561.00656

D.522318.21166

3 0.11718

BAYES

0.53020

D0.00014%).99725

50.47286

50.20888

$.505331.00632

1.311914}).23959

6 0.089044

n=50

ML

0.030483

30.000358.17700

30.10643

50.050934

D.25617(D.00225

D.28823{0.15008

b 0.098844

BAYES

0.39164

50.000674]).60633

¥0.37365

I:O.164460D.2439513).00225

D.48036J]D.15320

b 0.06751

n=10

ML

-0.005601

0.000894D.11457

50.07014

50.05566

$.1731210.00100

D.16204%.10667

? 0.08615

BAYES

0.307044

10.00113%.423531

10.31379

50.13771

$.1400810.00100

.237008.10780

3 0.05587

n=50

ML

+0.0637080.00022

0.02671

£0.00049

50.07107

$.08787¢.00022

$.042519.05144

D 0.06997

BAYES

0.20577

20.000221.23420

D0.21924

50.09854

D.05422(D.00022

0.067130.05325

PO O P < = OO W

P 0.04322

y'=0.2; y=0.41

MB(o)

MB(By) | MB(0?)

MB(y)

MB(EFF)

MSEBo)

MSE(R1)

MSE(0?)| MSE(y)

MSE(EFF
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n=10

ML

-0.064881-0.00033

30.02601

50.04463

D0.12787

$.62133

D.012764D.59673

D.23249

B 0.13482

BAYES

0.4733570.00085

81.21074

80.38451

F0.16060

10.61960

$.01193

.152051.15802

b 0.07494

n=20

ML

+0.0577290.00039

D0.08453

80.00635

D0.10922

0.40171

$.00590

0.404479.19190

3 0.12519

BAYES

0.391413%0.00073

20.82220

80.32979

F0.13788

$.34699

D.00569(D.931648.12235

B 0.06501

n=50

ML

+0.0732310.00130

50.08755

30.01999

50.09538

0.24955

0.0021343).25113JD.14496

b 0.10743

BAYES

0.2481880.00114

10.46575

50.23743

50.098188).14457

$.00211

$.316484.06950

b 0.05231

n=10

ML

-0.098602-0.00074

0.01475

50.05141

30.099774

D.16757

1D.00096

0.117751.11105

D 0.09581

BAYES

0.17744

30.000884

10.28661

10.17943

50.07000

D.072614

D.00097(D.12529

©.04220

b 0.044574

n=50

ML

-0.069421 0.00060

30.00371

30.04425

?0.059834

D.07161

9.00018(D.04217

1.056861

1 0.067144

BAYES

0.0937290.00061

80.13537

10.10305

50.039634}).01980@.00018410.03245

$.01751

b 0.03926

T -— -— LA Lol QO \>~J \"2J \"2J A=

y'=0.3; y=0.54

MB(Bo) | MB(B1)

MB(c?)

MB(y)

MB(EFF)

MSE o)

MSE(®,)

MSE(0?)| MSE(y)

MSE(EFF

n=10

ML

-0.13825¢-0.00488

30.09307

20.05819

70.15599(0.58333%.01084

0.467448.23356

/ 0.13884

BAYES

0.36801(30.00438

50.98035

0.27909

50.11785

D.48847

$.01005

1.53972.085404

1 0.06091

n=20

ML

-0.097869%-0.00288

30.01019

F0.07853

30.128034

D.372794

D.00446

D.38790®.20103;

4 0.12595

BAYES

0.29378F0.00241

D0.65479

50.22762

50.09525%.24846%.004268.66407

0.06462

D 0.05368

n=50

ML

+0.1142090.00112

0.01859

30.09307

0.10789

$.23088

0.00164

$.2073110.15405

D 0.10733

BAYES

0.1608260.00107

D0.35071

10.13882

30.05843

.09512

$.001614

D.20649[M.03238

L 0.04449

n=10

ML

+0.09116(0.00060

10.00609

30.075114

10.08128%.14894%.00078®.12092

$.11378

b 0.08641

BAYES

0.1061180.00045

30.21783

0.09760

30.03808

$.04983

0.00078

10.09723%.02094

L 0.04105

n=50

ML

+0.05027(-0.00005

£0.02849

£0.05489

20.035948).04494

0.00015

10.03105%.04199

D 0.05190

BAYES

0.032426:0.00005

80.05779

80.02642

£0.01077

D.01156

$.00015

D.014964D.00685

L 0.03739

~ ~ ™ O T \"2J \*.>} \*.>} O \>~J

y'=0.4; y=0.64

MB(Bo) | MB(B1)

MB(a?)

MB(y)

MB(EFF)

MSERo)

MSE(®,)

MSE(0?)| MSE(y)

MSE(EFF

n=10

ML

-0.25676(0.00380

50.17265

F0.16984

D0.188754

D.57919

0.00991

$.4160410.25866

b 0.14500

BAYES

0.25049%50.00360

?0.86635

0.17964

£0.08659(®.37906%9.00932

[1.270008.03932

b 0.051314

n=20

ML

-0.15841]

-0.000124

10.055584

10.13944

50.13629

D.33492

$.00408

D.303541.22004

P 0.12604

BAYES

0.2013830.00110

10.52205

50.14471

B0.06797

$.18292

$.00391(D.44707

0.03217

¥ 0.04606

n=50

ML

-0.11335¢-0.00029

50.01071

30.12524

20.09807%.19650

9.0014260.21876

$.15857

? 0.098084

BAYES

0.1054340.00031

00.28543

30.06688

30.03447

0.06976

$.00136

10.173734.01663

b 0.03977

n=10

ML

-0.09583%0.00017

50.03592

30.101124

10.07351

10.12309

1.000714

D.103578®.11015

B 0.07565

BAYES

0.04693$0.00008

0.12737

30.02899

F0.01387

0.03635

©.000714

D.05866®.01157

b 0.036614

n=50

ML

+0.0332480.00097

30.01857

30.03691

10.01811

D.025221

0.00013.02564

D.025964

1 0.040954

BAYES

-0.0021370.00095

30.02485

30.00892

0.00184

$.00988

$.000134

D.014709.00715

D 0.03508

\*.>} -— -— ~ \>~J -— & T -— \>~J

y'=0.5; y=0.73

MB(Bo) | MB(Ba)

MB(a?)

MB(y)

MB(EFF)

MSEBo)

MSE(B1)

MSE(0?)| MSE(y)

MSE(EFF

n=10

ML

-0.232003%0.00106

30.19377

50.178591

10.17479

$.48523

$.008914

D.373728.25897

L 0.13354

\>~J

BAYES

0.2019810.00054

0.71619

D0.11466

30.06480

0.30736

10.007801

D.9212210.01898

b 0.04385
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n=20

ML

-0.17841]

(0.0026490.09181

50.17273

)0.133884]0.32407

©.004084D.29897

D.22604

b 0.11911

BAYES

0.14846

D0.0015350.44007

0.08866

30.0510141).15426

0.0037310.36911

0.01782

/¥ 0.040914

n=50

ML

+0.10648]

(0.0011480.048464

10.12676

0.07917

$.160459.00132.16347

$.13781

L 0.07964

BAYES

0.06348

50.0006110.187754

10.02312

30.01898(D.05868

$.0012620.10692

$.01178

8 0.03523

n=10

ML

-0.06383¢

50.0000340.02748

F0.08405

50.04709JD.O8781

1.0006070.09214

D.08376

? 0.05789

BAYES

0.02377

70.0000270.09346

£0.00714

30.0045310.02975

0.00060

D.05307%.00998

? 0.03340

n=50

ML

-0.01323¢

50.00011%0.00964

30.01859

80.00729

$.01129(®.000119.01834

$.00985

b 0.03262

BAYES

-0.00811

20.0001080.009164

10.02026

D0.00540

D.00831(D.000118.01412.00584

A= \"2J \>~J Lo \" 2} O -— \>~J

3 0.03168

y'=0.6; y=0.80

MB(Bo)

MB(B1) | MB(c?)

MB(y)

MB(EFF)MSEBo)

MSE(B1)|MSE(0?)

MSE()

MSE(EFF

n=10

ML

-0.26824]

-0.00100%0.24206

F0.23123

20.18798%.44058

0.00799%.37968

9.28093

D 0.13076

BAYES

0.14736

50.0008620.59885

50.05817

50.043718.24255;

0.00692%.71339

.00787

b 0.03701

n=20

ML

-0.16396?

»0.00055F0.12102

50.18965

70.12588%.29851

D.00395%.274649.21897

b 0.10460

BAYES

0.112294

10.0006150.35686

?0.03995

F0.03349%.13808

D.003494D.29198JD.00944

3 0.03406

n=50

ML

-0.08908;

»0.0013580.04573

50.10724

10.064018.13475

D.001174.14768

$.11958

D 0.06746

BAYES

0.03164

D0.0009170.13851

30.00627

50.00703(.05154

0.001099.09241

$.00974

B 0.03057

n=10

ML

-0.038771

»-0.0025460.03299

F0.06810

¥0.0327810.06234+

0.00054

$.082008.05860

D 0.04415

BAYES

0.01074

20.0025370.05406

50.02951

30.00418%.02807

0.00053%.04907(.01015

b 0.02964

n=50

ML

-0.00798]

(0.0001840.01025

30.00870

50.004014D.00788

$.00010%.01317

1D.00425

/¥ 0.02747

BAYES

-0.00874

D0.0001980.00008

30.01686

30.00465(®.00740

0.00010¥.01177

10.003954

\*.>} O A= O \*.>} ™ O \*.>} QO ™

1 0.02738

y'=0.7; y=0.87

MB(o)

MB(B2) | MB(0?)

MB(y)

MB(EFF)|MSE o)

MSE(B1)|MSE(0?)

MSE(y)

MSE(EFF

n=10

ML

-0.28996¢

50.0026180.29008

30.23193

0.1795540.43225

$.00711

$.37375(0.26743

¥ 0.11790

BAYES

0.07515

30.0016990.46712

80.00581

30.02323%.20800

10.00580(D.56827

$.00366

B 0.030694

n=20

ML

-0.1576051

»0.0020280.13324

50.17655

30.11132.242424

D.00327%.24600

D.19568

1 0.08829

BAYES

0.06126

50.0023680.26673

20.00155

30.01543

$.09893(0.00285@).21883

$.00597

P 0.027244

n=50

ML

-0.06314

»0.0006720.04613

£0.08278

Y0.04025%.09791

0.00114(.12215

0.07825

b 0.04650

BAYES

0.00811

80.0006150.09762

30.03057

50.00068@®.04555

$.0010410.07808

0.00904

D 0.02517

n=10

ML

-0.020354

10.0004000.01138

50.02708

10.010891.03603

0.00048(D.059958%.02143

3 0.02743

BAYES

-0.00493

20.0002400.04387

£0.03031

70.003384

D.024478.00047;

D.04466

®.00740

P 0.02358

n=50

ML

-0.00784¢

Y 0.0003080.00685

30.00436

D0.00292%).00518

10.0000940.01018

0.00172

D 0.02112

BAYES

-0.00898

50.0003040.00025

20.01129

©.000094.00969

70.00346{.00510

0.00182

\>~J LA Lol \*.>} ~ \*.>} -— O -— \"2J

B 0.02112

y'=0.8;y=0.92

MB(o)

MB(By) | MB(0?)

MB(y)

MB(EFF)|MSE o)

MSE(B1)|MSE(0?)

MSE(y)

MSE(EFF

n=10

ML

+0.332017

»0.0032230.30014

F0.26304

0.18787

0.43268%.00665

$.36115

$).27385

3 0.11371

BAYES

0.01205

D0.0022770.40787

30.03758

20.00469(.17961

D.00542

D.44899M.00427

D 0.025304

n=20

ML

+0.15512]

(0.0001480.13949

30.15036

00.0938310.18668

0.00250

0.22495®.15443

D 0.06772

BAYES

0.01089

30.0001510.20408

30.03015

20.0018610.07112

$.00202%.175164

.00539

O A4 -— %)

D 0.02087
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n=50 ML +0.0375130.0003910.0366080.0521470.02676 D.06570J}0.00087 D.10219ﬁ).04875 L 0.03216
BAYES|-0.0017540.0003080.0639580.0362660.00491 D.03422JD.00079 D.06545®.007193 0.019044
ML +0.0192910.0004910.0134280.0164340.0089410.0253910.00041(D.04877®.010324 0.01944
BAYES|-0.0133660.0002630.02610%0.0297600.0061030.0202510.00040%.03879#.005126 0.01761
n=50gML +0.0015710.0003560.00129%0.0001120.0004370.00388%.000071.00909¢).000601 0.01529
BAYES|-0.0023570.0003480.0072000.0051570.0006910.0039210.0000749.00905%.000688 0.015314

n=10

y'=0.9;y=0.96 MB(Bo) | MB(B1) | MB(0?) | MB(y) |MB(EFF)MSE(Bo)|MSE(B1)|MSE(0?)| MSE(y) [MSE(EFF
ML  }0.3395290.0064690.3270060.2536980.18076%.41107{.00623.34557.255082 0.10209
BAYES]-0.0313540.0043060.3152980.0653140.009474.17408%.005114D.34329%).006258 0.02007
n=20 IML___ +0.1483860.0009930.1880940.1071430.08101%.15279%.0022810.17510%.105980 0.04792
BAYES]-0.0245690.0001540.09968F0.0402840.0106810.0614210.00179%.1134610.003928 0.014894
n=50 ML +0.0282540.0005530.0367180.0247830.01756®.0437410.00071%.0808810.021434 0.018481
BAYES]-0.0132960.0008560.0392460.0312890.008464.02712(D.00063%.05875®.004086 0.012394
n=10¢ML___ +0.0064040.0002030.0080260.00425 30.002749).01545433.00029 0.03705%.003207 0.01147
BAYES]-0.0062790.0001660.02150 30.0176640.00221@01353 D.0002810.033130.002114 0.01086
n=50dML___ 10.0026730.0001350.0060850.00071 50.00137@.00254@.00005 0.0068340.000171 0.00914
BAYES]-0.0028750.0001260.0005040.00384 70.00134%.00256 D.0000510.00677%.000207 0.00916

n=10

= 4= O W = &= = — O

y'=1.0;y=1.0C MB(Bo) | MB(B2) | MB(0?) | MB(y) [MB(EFF)MSEBo)|MSEB1)|MSE(0?)| MSE(y) [MSE(EFF
n=10 ML +0.31859(-0.00034F0.3818280.2275950.1809010.32881%.00498%).34583.217528 0.08488%
BAYES|-0.0574410.0008120.19164$0.0872220.02912(®.13163(.00406%.24464%.008754 0.014502
n=20 ML +0.14985%-0.0000180.2289140.07577 )0.0SOl4J[D.O8884 $.001279.16984%.062168 0.02635Y
BAYES|-0.0599060.0009290.0135590.0540620.02884®.03946(®.00113 D.100424D.00398 ? 0.006831
n=50 ML -0.05238(-0.0004040.1035660.01143 )0.027144).01819!}).00029 D.O60011D.00581 / 0.004055
BAYES|-0.0409680.0001940.0155380.0196880.01948%.0113740.00025%.04383.000742 0.002154
D

D

D

L

n=100ML +0.026989-0.0002950.0657460.0026210.0140440.0042610.0000910.028170.000084 0.00088
BAYES|-0.02188(30.0001460.0061220.0064380.01075%.0034210.00007(.02210%.000102 0.00069
n=500ML +0.008971-0.00055F0.0390060.0011340.0056510.00058%.000019.00884%.000012 0.00022
BAYES|-0.0093640.0000580.0131430.00090£0.0048510.00029710.00000().0041610.000001 0.00007
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