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Abstract

In this paper, we concentrate on new methodologies for copulas introduced and developed

by Joe, Cooke, Bedford, Kurowica, Daneshkhah and others on the new class of graphical

models called vines as a way of constructing higher dimensional distributions. We develop

the approximation method presented by Bedford et al (2012) at which they show that any

n-dimensional copula density can be approximated arbitrarily well pointwise using a finite

parameter set of 2-dimensional copulas in a vine or pair-copula construction. Our constructive

approach involves the use of minimum information copulas that can be specified to any required

degree of precision based on the available data or experts’ judgements. By using this method, we

are able to use a fixed finite dimensional family of copulas to be employed in a vine construction,

with the promise of a uniform level of approximation.

The basic idea behind this method is to use a two-dimensional ordinary polynomial series

to approximate any log-density of a bivariate copula function by truncating the series at an

appropriate point. We present an alternative approximation of the multivariate distribution of

interest by considering orthonormal polynomial and Legendre multiwavelets as the basis func-

tions. We show the derived approximations are more precise and computationally faster with

better properties than the one proposed by Bedford et al. (2012). We then apply our method

to modelling a dataset of Norwegian financial data that was previously analysed in the series

of papers, and finally compare our results by them.

Keyword: copula, entropy, expert judgement, information, Legendre multiwavelets, or-

thonormal polynomial series, pair-copula construction, uncertainty modelling, vine
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1 Introduction

Bedford and Cooke (2001, 2002) introduce a probabilistic construction of multivariate distributions

based on the simple graphical model called vine. This model represents an entirely new approach of

building complicated multivariate and highly dependent models which can be seen as the classical

hierarchical modelling. The principle behind the vine construction is to model dependency using

simple local building blocs based on conditional independence (e.g. cliques in random fields). Aas

et al (2009) called these building blocs, pair-copulae. They use the pair-copula decomposition of a

general multivariate distribution and propose a method to perform inference.

They investigate modelling complicated high-dimensional data by fitting different parametric

bivariate copulas to construct the corresponding pair-copula model. However, there is a huge

number of parametric bivariate copulas, but it is well known that building higher-dimensional

copulae is generally a difficult problem, and choosing a parametric family for the given higher-

dimensional copula is rather more difficult and limited (see Embrechts et al., 2003). As a result,

the problem of choosing a parametric copula for a higher-dimensional copula is reduced to fitting a

parametric bivariate copulas to data. Bedford et al. (2012) stated that the use of a copula to model

dependency is simply a translation of one difficult problem into another: instead of the difficulty

of specifying the full joint distribution we have the difficulty of specifying the copula. The main

advantage is the technical one that copulas are normalized to have support on the unit square and

uniform marginal distributions. Therefore, the potential flexibility of the copula, by restricting

them to a particular parametric class (e.g., Gaussian, multivariate t-student, etc) is not realized in

practice.

To overcome this difficulty, Bedford et al (2012) proposed an alternative approach at which a

vine structure can be used to approximate any given multivariate copula to any required degree of

approximation. This method can be easily implemented in practice. It is only required to assume

that the multivariate copula density of interest must be continuous and non-zero.

This method is constructive and involves the use of minimum information copulas that can be

determined to any required degree of precision based on the available data or expert judgements.

It can be shown that good approximation ‘locally’ guarantees good approximation globally. It

can be shown hat a vine structure imposes no restrictions on the underlying joint probability

distribution it represents (Bedford et al., 2012). Furthermore, Kurowicka and Joe (2011) reported

that this is essential to address this question that which vine structure is most appropriate where

some structures allow the use of less complex conditional copulas than others. Conversely, if we

only allow certain families of copulas then one vine structure might fit better than another. This

question is still open and under study, and is beyond the scope of this paper.

Thus, it is trivial to show that if there is any difficulty to fit a multivariate distribution by a pair-

copulae model, then the problem is not related to the vine structure but the copulae/conditional
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copulae. As a result, the question “does a vine structure fit” only makes sense in the context

of a given family of copulae. Therefore, we need to have a class of copulae with which we can

approximate any given copula to an arbitrary degree.

A natural way to build a minimum information copula or specifying dependency constraints is

through the use of moments (Bedford, 2006). These can be specified either on the copula or on the

underlying bivariate density. We follow Bedford et al. (2012) to consider the moment constraints in

which real-valued functions φ1, . . . , φk are required to take expected values e1, . . . , ek, respectively.

We then fit a minimum information copula that satisfies a set of constraints as above and which

has minimum information (with respect to the uniform copula c(u, v) = uv) amongst the class of all

copulas satisfying those constraints. It is trivial to show that this copula is the “most independent”

bivariate density that satisfies these constraints. In addition, a specification of minimum information

bivariate copulas naturally leads us to the minimum information vine distributions. Particularly,

it can be shown that if a minimal information copula satisfied each of the (local) constraints (on

moments, rank correlation, etc.), then the resulting joint distribution would also be minimally

informative given those constraints (see Kurowicka and Cooke, 2006).

In order to calculate the minimum information copula associated with the constraints mentioned

above, an iterative numerical method called D1AD2 algorithm is used by Bedford and Meeuwissen

(1997). The number and type of the real-valued functions φ1, . . . , φk can control the accuracy of

the approximation approach and the cost of computation. Bedford et al (2012) develop this method

by using the ordinary polynomial bases to approximate a multivariate distribution of interest.

The main objective of this paper is to improve the density approximation proposed by Bedford

et al (2012) by considering several other bases including orthonormal polynomial series and Legen-

dre multiwavelets, and examine their properties and possible applications. By using orthonormal

polynomial basis functions the accuracy of approximation will be increased and the computation

cost will be considerably decreased. We will show that orthonormal polynomial bases are more

convenient than the other natural bases (e.g. polynomial series) for the purpose of calculation.

In addition to the orthonormal polynomial bases which exhibits very nice properties and effi-

cient to implement in practice, we can improve the approximation of a multivariate density even

further using the wavelets which have been recently used for density estimation. The wavelets have

become popular due to their ability to approximate a large class of functions, including those with

localized, abrupt variations. However, a well-known attribute of wavelet bases is that they can

not be simultaneously symmetric, orthogonal, and compactly supported. Multiwavelets–a more

general, vector–valued, construction of wavelets-overcome this disadvantage, making them natural

choices for estimating density functions, many of which exhibit local symmetries around features

such as a mode. In particular, using Legender multiwavelets as basis functions will improve accu-

racy of approximation incredibly and the computation cost will be considerably decreased even in

comparison of the orthonormal polynomial bases. We show the efficiency of our method using the

3



mentioned bases as above by comparing them with the model developed by Bedford et al. (2012)

and the one proposed by Aas et al (2009) for modeling the Norwegian financial data which has been

also studied by these authors.

The paper is organised as follows. In Section 2, we introduce the pair-copula decomposition

associated with a multivariate distribution of interest. As an example for better understanding, we

also present a vine structure regarding the Norwegian financial data in this section. We briefly study

the minimum information copula and the approximation approach presented by Bedford et al (2012)

in Section 3. In section 4, we develop the minimum information copula based approximation method

to estimate corresponding multivariate distribution. We develop this method using orthonormal

polynomial series (obtained based on Graham-Schmidt method) and Legender multiwavelets as the

basis functions in Section 5. In section 5, we also illustrate how to construct Legender multiwavelets

basis. In Section 6, we apply our method based on these new bases to modelling Norwegian Financial

returns data. We also exhibit the potential flexibility of our approach by comparing it with the

other methods. The future directions of this work and some other conclusions will be given in

Section 7.

2 Vine Constructions of multiple dependence

Kurowicka and Cooke (2006) highlighted the point that however, the copula families, such as the

exchangeable multivariate Archimedean copula or the nested Archimedean constructions, constitute

a huge improvement, but they are still not rich enough to model all possible mutual dependencies

amongst the n variables. This is also illustrated by Aas et al (2009) and Bedford et al (2012).

Therefore, a more flexible structure called pair-copula construction or vine proposed by them which

allows for the free specification of n(n− 1)/2 copulae and is hierarchical in nature. This modelling

structure is based on a decomposition of a multivariate density into a cascade of bivariate copulae.

In other words, a vine associated with n variables is a nested set of trees, where the edges of the

tree j are the nodes of the tree j + 1; j = 1, . . . , n− 2, and each tree has the maximum number of

edges. A regular vine on n variables is a vine in which two edges in tree j are joined by an edge in

tree j + 1 only if these edges share a common node, j = 1, . . . , n− 2. There are n(n − 1)/2 edges

in a regular vine on n variables. The formal definition of vine and regular vine can be found in

Kurowicka and Cooke (2006). The following theorem expresses a regular vine distribution in terms

of its density.

Theorem 1 Let V = (T1, . . . , Tn−1) be a regular vine on n elements, where T1 is a connected

tree with nodes N1 = {1, . . . , n} and edges E1; for i = 2, . . . , n − 1, Ti is a connected tree with

nodes Ni = Ei−1. For each edge e(j, k) ∈ Ti, i = 1, . . . , n − 1 with conditioned set {j, k} and

conditioning set De, let the conditional copula and copula density be Cjk|De and cjk|De respectively.
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Figure 1: A regular vine with 4 elements

Let the marginal distributions Fi with densities fi, i = 1, . . . , n be given. Then, the vine-dependent

distribution is uniquely determined and has a density given by

f(x1, . . . , xn) =
n
∏

i=1

f(xi)
n−1
∏

j=1

∏

e(j,k)∈Ei

cjk|De
(Fj|De

, Fk|De
) (1)

Proof. See Bedford and Cooke (2001).

The density decomposition associated with 4 random variables X = (X1, . . . , X4) with a joint

density function f(x1, . . . , x4) satisfying a copula-vine structure (this structure is called D -vine, see

Kurowicka and Cooke, 2006, pp. 93) shown in Figure 1 with the marginal densities f1, . . . , f4 is

illustrated as follows

f(x1, . . . , x4) =

4
∏

i=1

f(xi)× c12{F (x1), F (x2)}c23{F (x2), F (x3)}c34{F (x3), F (x4)}×

c13|2{F (x1 | x2), F (x3 | x2)}c24|3{F (x2 | x3), F (x4 | x3)} × c14|23{F (x1 | x2, x3), F (x4 | x2, x3)}
(2)

It is trivial to show that if f(x1, . . . , xn) is absolutely continuous to product f1, . . . , fn, it then

can be represented by any vine-dependent distribution. The existence of regular vine distributions

in details is discussed in Bedford and Cooke (2002). We illustrate briefly how such a distribution

is determined using the regular vine in Figure 1 as an example. We make use of the expression

f(x1, . . . , x4) = f(x1)f(x2, | x1)f(x3 | x1, x2)f(x4 | x1, . . . , x3)
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The marginal distribution of X1 is known, so we have f1. The marginals of X1 and X2 are known,

and the copula of X1, X2 is also known, so we can get f(x1, x2), and hence f(x2 | x1). In order to

get f(x3 | x1, x2) we can determine f(x3 | x2) in the similar way as f(x2 | x1). Next we calculate

f(x1 | x2) from f(x1, x2). With f(x1 | x2), f(x3 | x2), and the conditional copula of X1, X3 given

X2 we can determine the conditional joint distribution f(x1, x3 | x2), and hence the conditional

marginal f(x3 | x1, x2). Progressing in this way we obtain f(x4 | x1, . . . , x3). As a result, we can

state the following theorem.

Theorem 2 Given a distribution with density function f(x1, . . . , xn) and a vine V on n elements,

there are copulae cjk|De
such that (1) is satisfied, that means

f(x1, . . . , xn) =

n
∏

i=1

f(xi)

n−1
∏

j=1

∏

e(j,k)∈Ei

cjk|De
(Fj|De

, Fk|De
)

Proof: It is trivial, one should follow the explanation given above to build a 4-dimensional multi-

variate distribution to prove this theorem. See also Bedford et al. (2012) and references therein.

The above theorem gives us a constructive approach to build a multivariate distribution given

a vine structure: If we make choices of marginal densities and copulae then the above formula will

give us a multivariate density. Hence vines can be used to model general multivariate densities.

However, in practice we have to use copulae from a convenient class, and this class should ideally be

one that allows us to approximate any given copula to an arbitrary degree. In the following sections,

we address this issue in more detail. By having this class of copulae, we then can approximate any

multivariate distribution using any vine structure.

Unlike the situation with Bayesian networks, where not all structures can be used to model a

given distribution, the theorem shows that - in principle - any vine structure may be used to model

a given distribution. However, in practice it seems that some vine structures do work better than

others, and so this must be a result of restricting to a particular family of copulas. That is, given a

family of copulae, some vine structures may give a better degree of approximation than others. In

fact, we could say that the question “does a vine structure fit” only makes sense in the context of

a given family of copulae.

3 Building bivariate minimum information copulae

This section sets out to show that we can use the minimum information techniques originated

from Bedford and Meeuwissen (1997) in conjunction with the observed data or expert elicitation

of observables, to define a copula that can be used to build the joint distribution of two random

variables. The method that will be described below is based on using the D1AD2 algorithm to

determine the copula in terms of potentially asymmetric information about two variables of interests.

6



3.1 The D1AD2 algorithm and minimum information copula

Bedford and Meeuwissen (1997) applied a so-called DAD algorithm to produce discretized mini-

mally informative copula between two variables with given rank correlation. This approach relies

on the fact that the correlation is determined by the mean of the symmetric function UV . The

same approach can be used whenever we wish to specify the expectation of any symmetric function

of U and V (see Bedford, 2006; Lewandowski, 2008).

This method can be developed further using the idea stated in Borwein et al. (1994) which

enables us to have asymmetric specifications. In the revised method, we first determine a positive

square matrix A, also called a kernel, and two diagonal matrices D1 and D2 should be then found

in such a way that the following product, D1AD2 is doubly stochastic. The theory can be easily

generalised for continuous functions (see Bedford et al, 2012).

Now, suppose there are two random variables X and Y , with cumulative distribution functions

FX and FY , respectively. These are the variables of interest that we would like to correlate by

introducing constraints based on some knowledge about functions of these variables. Suppose

there are k of these functions, namely h′1(X,Y ), h′2(X,Y ), . . . , h′k(X,Y ), and that we wish either

to calculate their mean values in terms of the observed data, or the expert wishes to specify mean

values α1, . . . , αk for all these functions, respectively. We can simply specify corresponding functions

of the copula variables U and V , defined by hi(U, V ) = h′i(F
−1
1 (U);F−1

2 (V )), i = 1, 2, . . . , k, where

hi : [0, 1]
2 → R, at which we can specify the mean values α1, . . . , αk that these functions should

simultaneously take. Further suppose that hi, hj are linearly independent for i 6= j. We seek a

copula that has these mean values, a problem which is usually either infeasible or under determined.

Hence, assuming feasibility for the moment, we also ask that the copula be minimally informative

(with respect to the uniform distribution), which guarantees a unique and reasonable solution. We

form the kernel

A(u, v) = exp(λ1h1(u, v) + . . .+ λkhk(u, v)) (3)

where u denote the realization of U and v the realization of V .

For practical implementations, we use the same method as proposed by Bedford et al (2012) to

discretize the set of (u, v) values such that the whole domain of the copula is covered. Thus, the

aforementioned kernel A becomes a 2-dimensional matrix, and two matrices D1 and D2 should be

then determined. As a result, the following product denoted by P over [0, 1]2 becomes a doubly

stochastic matrix which represents a discretized copula density.

P = D1AD2 (4)

The D1AD2 algorithm can be used to generate a unique joint density with uniform marginals

for each vector (λ1, . . . , λk). The set of all possible expectation vectors (α1, . . . , αk) that could

be taken by (h1, h2, . . . , hk) under some probability distribution is convex, and that for every
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(α1, . . . , αk) in the interior of that convex set there is a density with parameters (λ1, . . . , λk) for

which (h1, h2, . . . , hk) take these values (see Borwein et al., 1994; and Bedford et al., 2012).

We now explain the iterative algorithm required to approximate the mentioned copula density

by this algorithm. Suppose that both (u, v) are discretized into n points, respectively as ui, and

vj , i, j = 1, . . . , n. Then, we write A = (aij), D1 = diag(d
(1)
1 , . . . , d

(1)
n ), D2 = diag(d

(2)
1 , . . . , d

(2)
n ),

where aij = A(ui, vj), d
(1)
i = D1(ui), d

(2)
j = D2(vj). We define the doubly stochastic matrix,

D1AD2 with the uniform marginals as follows

∀i = 1, . . . n
∑

j

d
(1)
i d

(2)
j aij = 1/n, and

∀j = 1, . . . n
∑

1

d
(1)
i d

(2)
j aij = 1/n,

The idea behind of D1AD2 algorithm is very simple which starts with arbitrary positive initial

matrices for D1 and D2, and the new vectors will then be successively defined by iterating the

following maps

d
(1)
i 7→ 1

n
∑

j d
(2)
j aij

(i = 1, . . . , n), d
(2)
j 7→ 1

n
∑

i d
(1)
i aij

, (j = 1, . . . , n)

It can be shown that this iteration scheme converges geometrically to the requested vectors (see

Borwein et al., 1994).

Note that to compare different discretizations (for different n) we should multiply each cell weight

di(1)dj(2)aij by n
2 as this quantity approximates the continuous copula density with respect to the

uniform distributions.

The mapping from the set of vectors of λ’s onto the set of vectors of resulting expectations of

functions (h1, . . . , hk) has to be found numerically. Bedford and Daneshkhah (2010) and Bedford

et al (2012) proposed the optimization techniques to determine the λi’s and corresponding copula.

The expectations αi of k functions of variables X and Y are given by

E[h′i(X,Y )] = E[hi(U, V )] = αi, i = 1, . . . , k.

We now wish to determine the appropriate set of λ’s for given expectations αi, where the expec-

tations have been calculated using the discrete copula density D1AD2 given in (4). Hence, to

determine λi’s satisfying the constraints, the following set of equations has to be solved

Ll(λ1, . . . , λk) =
1

n2

n
∑

i=1

n
∑

j=1

P (ui, vj)hl(ui, vj)− αl, l = 1, 2, . . . , k. (5)

The left hand sides of the above equations are just functions of λ’s and with optimization algorithms

their roots can be found. One of the possible solvers for this task would be FSOLVE - MATLAB’s

optimization routine. An alternative method is to use another MATLAB’s optimization procedure
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called FMINSEARCH, which implements the Nelder-Mead simplex method (see Lagarias et al.,

1998). The minimized function is then

Lsum(λ1, . . . , λk) =

k
∑

l=1

L2
l (λ1, . . . , λk).

We refer the interested reader to Lewandowski (2008) and Bedford et al (2012) to show how an

expert could specify a copula though defining expected values.

4 Approximating Multivariate Density by Vine

In this section, we use techniques from approximation theory to show that any n-dimensional

multivariate density which is C2 (that is, twice differentiable, with continuous second derivatives)

can be approximated arbitrarily well pointwise using a finite parameter set of 2-dimensional copulas

in a vine construction. The basic idea is that we can use a series expansion, like a two-dimensional

Polynomial series, orthonormal Polynomial series or Legender multiwavelets, to approximate any

log-density function by truncating the series at an appropriate point. What is non-trivial, however,

about this method, is that the same truncation can be used everywhere in a vine construction and

gives overall uniform pointwise approximation. Hence our method allows the use of a fixed finite

dimensional family of copulas to be used in a vine construction, with the promise of a uniform level

of approximation. Since the approximations we make of copula densities might not be quite copula

densities themselves, we need to transform them to make them copulas.

To demonstrate this, we first should show that the family of bivariate (conditional) copula den-

sities contained in a given multivariate distribution forms a compact set in the space of continuous

functions on [0, 1]2. Then, it can be shown that the same finite parameter family of copulae can be

used to derive a given level of approximation to all conditional copulae simultaneously.

Here, we develop the approximation method used by Bedford et al. (2012) to approximate

any log-density function at the desired level of approximation which is more accurate and exhibits

better properties. We first introduce some notations. The basic assumption is that all densities are

continuous. We denote C(Z) as the space of continuous real valued functions on a space Z, where

Z = [0, 1]r for some r, and the corresponding norm on C(Z) is given by

||f1...r|| = sup |f1...r(x1, . . . , xr)|.

The set of all possible 2-dimensional (conditional) copulae is denoted by

C(f) = {cij|i1...ir : 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir}

where cij|i1...ir is the copula of the conditional density of Xi, Xj given Xi1 , . . . , Xir .
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The famous Arzela-Ascoli theorem can be used to check the compactness of the following function

space, K ⊂ C([0, 1]2). This space is relatively compact if the functions in K are equicontinuous

and pointwise bounded.

It can be shown that the following two spaces are relatively compact (Bedford et al. (2012),

Theorem 3).

M(f) = {fi|i1...ir : 1 ≤ i, i1, . . . , ir ≤ n, i 6= i1, . . . , ir},

and

B(f) = {fij|i1...ir : 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir}

where fi|i1...ir is the conditional density of Xi given Xi1 , . . . , Xir , and fij|i1...ir is the conditional

density of Xi, Xj given Xi1 , . . . , Xir .

It is then straightforward to show that the set C(f) ⊂ C([0, 1]2) is relatively compact. In

addition, since all the functions in C(f) are positive and uniformly bounded away from 0, the set

LNC(f) = {ln(g) : g ∈ C(f)} ⊂ C([0, 1]2) is also relatively compact (see Bedford et al. (2012) for

details and proofs).

As a result, the set C([0, 1]2) can be considered as a vector space, and in this context a base is

simply a sequence of functions h1, h2, . . . ∈ C([0, 1]2) such that any function g ∈ C([0, 1]2) can be

written as g =
∑∞

i=1 λihi. In other words, it can be shown that given ǫ > 0, there is a k such that

any member of LNC(f) (or C(f)) can be approximated to within error ǫ > 0 by a linear combination

of h1, h2, . . . , hk. There are lots of possible bases, for example, the following polynomial series

u, v, uv, u2, v2, u2vuv2, . . . .

which was mainly used in Bedford et al. (2012).

In the next section, we will improve this density approximation based on the minimum informa-

tion techniques considerably using the orthonormal polynomial series and Legender multiwavelets

instead the ordinary polynomial series as the basis functions. We also exhibit other nice properties

of these approximations.

It should be noticed that the approximated copula density by the method described above might

not be a copula density itself. Therefore, the resulting approximation needs to be transformed in

such a way to obtain a copula. This can be done by weighting the approximated density. One of the

most effective weighting schemes is the D1AD2 algorithm mentioned in the previous section. If we

have a continuous positive real valued function A(u, v) on [0, 1]2 then there are continuous positive

functions d1(u) and d2(v), such that d1.d2.A is a copula density, that is, it has uniform marginal

distributions. This density is called C-Projection of A and denoted by C(A). Bedford et al (2012)

present the following lemma at which it allows us to control the error made when approximating a

copula by another function.
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Lemma 1 Let g be a non-negative continuous copula density. Given ǫ > 0 there is a δ such that if

||g − f || < δ then ||g − C(f)|| < ǫ.

Note that these reweighting functions have the same differentiability properties as the function

f being reweighted. This can be seen from the integral equation that they satisfy:

d(1)(u) =
1

∫

d(2)(v)f(u, v)dv
and d(2)(v) =

1
∫

d(1)(u)f(u, v)du
.

Eventually, the term given in (1) can be used to see that good approximation of each conditional

copula would result in a good approximation of the multivariate density of interest.

5 Building approximations using minimally informative dis-

tributions

In this section, we give practical guide to build a minimally - informative vine structure to ap-

proximate any multivariate distribution. In the previous section, we present a method proposed

by Bedford et al. (2012) that all conditional copulae can be approximated using linear combina-

tions of basis functions. In this section, we are going to address the issue of how the appropriate

parameter values can be chosen. We also introduce a practical and efficient alternative based on

using the minimum information criterion that lies very close to the approach described above. In

other words, given the basis functions {1, h1, . . . , hk} : [0, 1]2 → R, we seek values λ1, . . . , λk so

that exp(
∑k

1 λihi) is close to the approximated copula density. This can be done by fitting the

moments of hi in the minimum information framework. Therefore, if Eg[hi(u, v)] = αi, we seek

for the minimum information copula density that also has these moments. This copula density can

uniquely be determined, using the D1AD2 algorithm, as follows

d1(u)d2(v) exp(
k

∑

1

λihi(u, v)).

As mentioned above, a multivariate distribution can be modelled by a vine structure where it

can be defined as a decomposition of the given multivariate distribution into certain conditional

copulae, associated with the conditioned and conditioning sets of the vine. The following algorithm

is summarised the steps to approximate the given multivariate distribution associated with a vine

structure:

1. Specify a basis family, denoted by S(k) = {h1, h2, . . .}

2. Specify a vine structure

3. For each part of vine, the bivariate copulae, specify either

11



• mean α1, . . . , αk for h1, . . . , hk on each pairwise copula;

• functions αm(ji | De) for the mean values as functions of the conditioning variables, for

m = 1, . . . , k.

One of the main aspect that would effect the aforementioned approximation is the basis family.

Here, we examine the impact of two basis families, the orthonormal polynomial series and Legender

multiwavelets on approximating the minimum information copulae and the multivariate distribution

associated with the chosen vine structure. We first briefly introduce these two basis functions.

5.1 Constructing Orthonormal Polynomial base

In mathematics, particularly numerical analysis, a basis function is an element of the basis for a

function space. The term is a degeneration of the term basis vector for a more general vector space;

that is, each function in the function space can be represented as a linear combination of the basis

functions. We say two polynomial functions g1 and g2 are orthonormal polynomial in the interval

[0, 1], if
∫ 1

0

g1(u)g2(u)du =

{

1 for g1(u) = g2(u);

0 for g1(u) 6= g2(u).
(6)

Orthonormal polynomial base can be more convenient than some natural basis for the purpose of

calculation. In fact, if the basis is an orthonormal polynomial basis, adding a new item to the

expansion does not change coefficient of the already found shorter expansion (Gui, 2009). But if

the basis is not orthonormal, any new item has in general nonzero projection on previous items. It

means that the already found coefficients of the expansion would have to be changed. That is one of

the reason we use orthonormal polynomial basis functions as the basis family, S(k). It is reasonable
to consider Gram-Schmidt orthonormal polynomial basis which is one of the famous orthonormal

polynomial basis functions on [0, 1].

To construct this orthonormal polynomial basis over the interval [0, 1], we use the Gram-Schmidt

process as follows.

ϕ0(u) = 1,

ϕn(u) =
un −∑n−1

j=0

∫
1

0
unϕj(u)du∫
1

0
ϕ2

j
(u)du

ϕj(u)

||un −∑n−1
j=0

∫
1

0
unϕj(u)du∫
1

0
ϕ2

j
(u)du

ϕj(u)||
n ≥ 1

The first few functions are

ϕ0(u) = 1, ϕ1(u) =
√
3(−1 + u), ϕ2(u) =

√
5(1− 6u+ 6u2),

ϕ3(u) =
√
7(−1 + 12u− 30u2 + 20u3), ϕ4(u) =

√
9(1− 20u+ 90u2 − 140u3 + 70u4)

ϕ5(u) =
√
11(−1 + 30u− 210u2 + 560u3 − 630u4 + 252u5), . . .

12



5.2 Constructing Legender Multiwavelets base

The use of wavelets for density estimation has recently gained in popularity due to their ability to

approximate a large class of functions, including those with localized, abrupt variations. However, a

well-known attribute of wavelet bases is that they can not be simultaneously symmetric, orthogonal,

and compactly supported. Therefore, a more general, vector-valued, construction of wavelets is

proposed by Locke and Peter (2012) to overcome this disadvantage, and making them natural choices

for estimating density functions, many of which exhibit local symmetries around features such as

a mode. Locke and Peter (2012) introduce the methodology of wavelet density estimation using

multiwavelet bases and illustrate several empirical results where multiwavelet estimators outperform

their wavelet counterparts at coarser resolution levels.

In this section, we use the multiwavelet bases to approximate the minimum information copula.

The main advantage of using these bases over the polynomial bases introduced in the previous

subsection is that the wavelets (and in particular, multiwavelets) are are better choices where the

functions of interest contain discontinuities and sharp spikes. In addition, in order to preserve the

orthonormality property among the multiwavelet bases, we use Legender multiwavelet bases.

In order to construct these bases, we need to introduce some notions and definitions which are

briefly described in the following subsections.

5.2.1 Multiresolution analysis

Wavelet theory is based on the idea of multiresolution analysis (MRA). Usually it is assumed that an

MRA is generated by one scaling function, and dilates and translates of only one wavelet φ ∈ L2(R)

form a stable basis of L2(R).

We can generate a reference subspace or sample space V0 as L2-closure of the linear span of the

integer translation of the following functions φm ∈ L2(R),m = 0, . . . , r, namely

V0 = closL2 ≺ φm(.− k) : k ∈ Z ≻, m = 0, . . . , r,

and consider subspace

Vj = closL2 ≺ φmj,k : k ∈ Z ≻, j ∈ Z and m = 0, . . . , r,

where φmj,k = φm(2jx− k) : j, k ∈ Z, m = 0, . . . , r.

Now, we are able to present a proper definition of multiresolution analysis as follows.

Definition 1: Functions φm ∈ L2(R), are said to generate a multiresolution analysis (MRA)

13



if they generate a nested sequence of closed subspaces Vj that satisfies

i) ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...

ii) closL2(
⋃

j∈Z Vj) = L2(R)

iii)
⋂

j∈Z Vj = 0

iv) φm(x) ∈ Vj ⇐⇒ φm(x+ 2−j) ∈ Vj ⇐⇒ φm(2x) ∈ Vj+1

v) {φm(.− k)}k∈Z ; form a Riesz basis of V0

. (7)

If φm generates an MRA, then φm are called scaling functions. In case that the different in-

teger translate of φm are orthogonal (with respect to the standard linear product ≺ f, g ≻=
∫ +∞

−∞
f(x)g(x)dx) for two functions in L2(R), denoted by φm(.− k)⊥φm(.− k) for m 6= m, k 6= k,

the scaling functions are called an orthogonal scaling functions.

As the subspaces Vj are nested, there exist complementary orthogonal subspaces Wj such that

Vj+1 = Vj
⊕

Wj , j ∈ Z

here and in the following
⊕

denotes orthogonal sums.

This yields an orthogonal decomposition of L2(R), namely;

L2(R) =
⊕

j∈Z

Wj ,

Definition 2: Functions ψm ∈ L2(R) are called wavelets, if they generate the complementary

orthogonal subspaces Wj of a MRA, i.e.,

Wj = closL2 ≺ ψm
jk : k ∈ Z ≻, j ∈ Z, and m = 0, . . . , r,

where ψm
j,k = ψm(2jx− k), j, k ∈ Z.

Obviously, ψm
j,k ⊥ ψm

j,k
for j 6= j, m 6= m and k 6= k, if ≺ 2j/2ψm

j,k, 2j/2ψm
j,k

≻= δj,jδk,kδm,m,

then ψm are called orthogonal wavelets, where

δi,k =

{

1 for i = k;

0 for i 6= k.

Now, we are able to define Legender scaling functions and its corresponding multiwavelets according

to MRA definition give above.

5.2.2 Construction of Scaling Functions

Legendre multiwavelets system with multiplicity r consists of r scaling functions and r wavelets.

The r-th order Legendre scaling functions are the set of r+1 functions φ0(x), . . . , φr(x) where φi(x)

is a polynomial of i-th order and all φ’s form orthogonal basis (Shamsi and Razzaghi, 2005), that

is, for i = 0, 1, . . . , r,

φi(x) =

i
∑

k=0

aikx
k, for i = 0, 1, . . . , r (8)
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The coefficient aik are chosen so that aik ≥ 0, and
∫ 1

0

φi(x)φk(x)dx = δi,k, for i, k = 0, 1, ..., r (9)

The scaling functions φi(x) have symmetry, anti-symmetry properties for odd or even i, respectively.

The two-scale relations for Legendre scaling functions of order r, are in the form (Albert et al., 2002);

φi(x) =

r
∑

j=0

pi,jφ
j(2x) +

r
∑

j=0

pi,r+j+1φ
j(2x− 1), for i = 0, 1, . . . , r (10)

The coefficients pi,j determined uniquely by substituting equation (8) to (10). Now we would like

to mention two remarks on the two scale relations.

1. Since φi(x) is a i-th order polynomial, the right hand side of (10) has at most i-th order

scaling functions. Therefore, pi,j = pi,r+j+1 = 0 for i < j.

2. The two scale relations for the Legendre scaling function of order n which is lower than r is a

subset of first n two-scale relations for φi for i = 0, 1, . . . , n form r-th order two scale relations.

5.2.3 Construction of Wavelets

The two-scale relation for the r-th order Legendre multiwavelets is given in the following form

(Albert et al., 2002):

ψi(x) =

r
∑

j=0

qi,jφ
j(2x) +

r
∑

j=0

qi,r+j+1φ
j(2x− 1), for i = 0, 1, . . . , r. (11)

The 2(r+1)2 unknown coefficients {qi,j} in (11) can be determined in terms of the following 2r(r+1)

vanishing moment conditions (12) and 2(r + 1) orthongonal conditions (13).

Vanishing moments
∫ 1

0

ψi(x)xjdx = 0, for i = 0, 1, . . . , r; j = 0, 1, ..., i+ r. (12)

Orthogonality
∫ 1

0

ψi(x)ψj(x)dx = δi,j , for i, j = 0, 1, . . . , r. (13)

For example, the Legendre scaling functions of order 5 consist of 6 functions as follows:

φ0(x) = 1 for 0 ≤ x ≤ 1

φ1(x) =
√
3(−1 + 2x) for 0 ≤ x ≤ 1

φ2(x) =
√
5(1− 6x+ 6x2); for 0 ≤ x ≤ 1

φ3(x) =
√
7(−1 + 12x− 30x2 + 20x3) for 0 ≤ x ≤ 1

φ4(x) =
√
9(1− 20x+ 90x2 − 140x3 + 70x4) for 0 ≤ x ≤ 1

φ5(x) =
√
11(−1 + 30x− 210x2 + 560x3 − 630x4 + 252x5) for 0 ≤ x ≤ 1

(14)
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The closed form solution to the Legendre multiwavelets of order 5, ψ0(x), ψ1(x)ψ2(x), ψ3(x), ψ4(x)

and ψ5(x) are given below which are determined using the conditions (12) and (13).

ψ0(x) =

{

3.55− 146.72x+ 1419.86x2 − 5300.81x3 + 8519.15x4 − 4997.9x5 for 0 ≤ x ≤ 1
2 ;

−502.87 + 4122.32x− 13346.68x2 + 21203.23x3 − 16470.37x4 + 4997.907x5 for 1
2 ≤ x ≤ 1

ψ1(x) =

{

−3.47 + 181.55x− 2188.78x2 + 10023.38x3 − 19433.09x4 + 13500.89x5 for 0 ≤ x ≤ 1
2

−2080.47+ 15646.19x− 46291.67x2 + 67299.87x3 − 48071.33x4 + 13500.89x5 for 1
2 ≤ x ≤ 1

ψ2(x) =

{

2.81− 174.03x+ 2438.52x2 − 12760.78x3 + 27823.96x4 − 21415.36x5 for 0 ≤ x ≤ 1
2

−4084.87+ 29360.26x− 83053.61x2 + 1.16× 105x3 − 79252.82x4 + 21415.36x5 for 1
2 ≤ x ≤ 1

ψ3(x) =

{

1.71− 121.14x+ 1911.69x2 − 11113.58x3 + 26588.59x4 − 22203.27x5 for 0 ≤ x ≤ 1
2

4935.99− 34300.49x+ 93930.24x2 − 1.27× 105x3 + 84427.78x4 − 22203.27x5 for 1
2 ≤ x ≤ 1

ψ4(x) =

{

−0.71 + 56.63x− 998.10x2 + 6413.33x3 − 16797.83x4 + 15222.11x5 for 0 ≤ x ≤ 1
2

3895.43− 26219.63x+ 69675.97x2 − 91443.07x3 + 59312.70x4 − 15222.11x5 for 1
2 ≤ x ≤ 1

ψ5(x) =

{

0.17− 15.67x+ 308.12x2 − 2193.38x3 + 6324.24x4 − 6273.06x5 for 0 ≤ x ≤ 1
2

1849.58− 12047.91x+ 31057.19x2 − 39627.04x3 + 25041.07x4 − 6273.06x5 for 1
2 ≤ x ≤ 1

6 Application: Norwegian Financial returns

In this section, we apply the approximation method presented in this paper using the basis func-

tions introduced in the previous section as the basis families, S(k) (as mentioned in the first step

in the algorithm above) to approximate the multivariate distribution associated with the selected

vine structure corresponding to the Norwegian financial returns. We then exhibit the potential

flexibility of our approach by comparing it with the other methods cited in Bedford et al. (2012)

and Aas et al. (2009).

Example: In this example we use the same data set as considered by Aas et al. (2009) and

Bedford et al. (2012) to illustrate the approximation method introduced in this paper. The data

consists of four time series of daily data: the Norwegian stock index (TOTX), the MSCI world stock

index, the Norwegian bond index (BRIX) and the SSBWG hedged bond index. They are recorded

over the period 04.01.1999 to 08.07.2003 at which 1094 data are collected. We denote these four

variables T,B,M and S, respectively.

We first shall remove serial correlation in these four time series, that is, the observation of each

variable must be independent over time. Hence, the serial correlation in the conditional mean and

the conditional variance are modeled by an AR(1) and a GARCH(1,1) model (Bollerslev, 1986),
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Figure 2: Selected vine structure for the Norwegian stock data set with 4 variables: Norwegian

stock index (T), MSCI world stock index (M), Norwegian bond index (B) and SSBWG hedged

bond index (S)

respectively. Thus, the following model for log-return xi is considered for the ith time series

xi,t = ci + αixi,t−1 + σi,tzi,t

E[zi,t] = 0 and V ar[zi,t] = 1

σ2
i,t = αi,0 + aiǫ

2
i,t−1 + biaσ

2
i,t−1

where ǫi,t−1 = σi,t + zi,t (see Aas et al., 2009).

The further analysis is performed on the standardized residuals zi . If the AR(1)-GARCH(1,1)

models are successful at modeling the serial correlation in the conditional mean and the conditional

variance, there should be no autocorrelation left in the standardized residuals and squared standard-

ized residuals. We can use the modified Q-statistic and the Lagrange multiplier test, respectively,

to check this (Aas et al, 2009). For all series, the null hypothesis that there is no autocorrelation left

for the both tests cannot be rejected at the %5 level. Since, we are mainly interested in estimating

the dependence structure of the risk factor, the standardized residual vectors are converted to the

uniform variables using the kernel method before further modeling. We denote the converted time

series of T,M,B and S by X,Y, Z and U , respectively.

Here, we are going to derive the vine approximation fitted to this data set to any given mul-

tivariate density using minimum information distribution. We adopt a vine structure to these
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data, as presented in Figure 2. Note that, the corresponding functions of the copula variables

X , Y , Z and U associated with T,M,B, S can be derived. For instance, these are defined by

hi(X,Y ) = h′i(F
−1
1 (X), F−1

2 (Y )) and should also have the same specified expectation, that is,

E(h′i(T,M)) = E(hi(X,Y )). We derive the minimum information copulae calculated in this exam-

ple based on them the copula variables, X,Y,X,W . We initially construct minimally informative

copulas between each set of two adjacent variables in the first tree, T1. Therefore, it is essential

to decide which bases should be taken and how many discretization points should be used in each

case. We start illustrate our procedure for the first copula in the first tree between T,M .
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Figure 3: The log-likelihood of the minimally informative copula between T and M , calculated

based on orthonormal basis (*) and Legendre multiwavelets (△).

We could simply choose basis functions, starting with simple orthonormal polynomials or Legen-

dre multiwavelets basis, and moving to more complex ones, and include them until we are satisfied

with our approximation. We included the following orthonormal polynomial basis functions, con-

structed using Gram-Schmidt process, in order

ϕ1(x)ϕ1(y), ϕ1(x)ϕ2(y), ϕ2(x)ϕ1(y), ϕ1(x)ϕ3(y), ϕ3(x)ϕ1(y),

ϕ2(x)ϕ2(y), ϕ2(x)ϕ3(y), ϕ3(x)ϕ2(y), ϕ1(x)ϕ4(y), ϕ4(x)ϕ1(y),

ϕ1(x)ϕ5(y), ϕ5(x)ϕ1(y), ϕ2(x)ϕ4(y), ϕ4(x)ϕ2(y), ϕ3(x)ϕ3(y), . . .

and the following Legendre multiwavelets basis functions which is constructed based on the method

presented in subsection 5.2

φ1(x)ψ0(y), φ1(x)ψ1(y), φ2(x)ψ0(y), φ1(x)ψ2(y), φ2(x)ψ1(y),

φ3(x)ψ0(y), φ1(x)φ1(y), ψ1(x)ψ1(y), ψ0(x)ψ2(y), ψ2(x)ψ0(y),

φ1(x)φ2(y), φ2(x)φ1(y), ϕ0(x)ϕ3(y), ϕ3(x)ϕ0(y)ϕ1(x)ϕ2(y), . . .
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Bedford et al. (2012) show that adding the basis functions in this way is not optimal, and propose

a method which is similar to a stepwise regression. In this method, at each stage, we propose to

assess the log-likelihood of adding each additional basis function. We then include the function

which produces the largest increase in the log-likelihood. At moment, we are investigating some

other methods, such as, Genetic, PSO algorithm, Lasso and ant-colony algorithms, to find the most

optimal basis functions in a sense that with smaller number of these bases, we would get the largest

log-likelihood.

Figure 3 shows the changes of log-likelihood in terms of adding basis functions for orthonor-

mal polynomial (∗) and Legendre multiwavelets (△). In order to compare our results with the

approximations made in Bedford et al. (2012) using the ordinary polynomial series, we choose six

orthonormal basis functions using the stepwise method as follows

ϕ1(T )ϕ1(M), ϕ2(T )ϕ2(M), ϕ1(T )ϕ2(M), ϕ1(T )ϕ3(M), ϕ3(T )ϕ3(M), ϕ4(T )ϕ1(M)

and also we choose six Legendre multiwavelet basis functions as follows

φ1(T )φ1(M), φ2(T )φ2(M), φ4(T )φ5(M), φ1(T )φ2(M), φ3(T )φ3(M), ψ2(T )φ4(M)

The corresponding log-likelihood based on orthonormal plynomial functions reaches to 60.66 and

based on Legendre multiwaveletswhich reaches to 63.36 which both are more than the log-likelihood,

58.1256, based on six basis functions calculated in Bedford et al. (2012). The corresponding

expectations of the selected orthonormal plynomial basis functions using the Norwegian financial

returns data are calculated as

α1 = −0.2292, α2 = 0.2104, α3 = 0.0808, α4 = −0.1025, α5 = −0.1120, α6 = 0.0463

and also for the selected Legendre multiwavelet bases are given by

α1 = 0.4803, α2 = 0.2298, α3 = −0.0021, α4 = 0.0194, α5 = 0.0866, α6 = 0.0191,

We now able to construct the minimum information copula CTM with respect to the uniform

distributions given the constraints as the selected basis functions reported above by the method

described in this paper. We first need to determine the number of discretization points (grid

size). It is trivial to conclude that a larger grid size will provide a better approximation to the

continuous copula but at the cost of more computation time. Similarly, the approximation will

become more precise if we run the D1AD2 algorithm in more iterations. Indeed, this would cost

us more computation time. Bedford et al. (2012) show that the number of iterations needed will

also depend on the grid size. The considered errors are reported to be in the range 1 × 10−1 to

1× 10−24. Thus, the larger the number of grid points used, the larger the number of iterations that

are needed for convergence which is true over all error levels. The grid sizes all follow the same

pattern with large increases in the number of iterations needed for improved accuracy initially and
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smaller increases when the error is smaller. We choose a grid size of 200× 200 throughout of this

example.

Based on the information given above regarding the grid size, number of iterations and error

size, we can derive the minimum information copula CTM associated with the chosen constraints.

This copula based on the orthonormal polynomial bases is plotted in Figure 4, and the copula based

on the Legendre multiwavelet basis functions is plotted in Figure 5. We present Lagrange multiplies

values (or parameter values) for this approximated copula density as follows

λ1 = −0.1995, λ2 = 0.1651, λ3 = 0.0912, λ4 = −0.0774, λ5 = −0.0772, λ6 = 0.0527

and in the similar way these parameter values for the minimum information copula based on the

Legendre multiwavelets bases are given by

λ1 = 1.9845, λ2 = 1.6158, λ3 = 0.0023, λ4 = −0.0263, λ5 = −7.4167, λ6 = 3.6819
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Figure 4: The minimally informative cop-

ula between T and M using the orthonormal

polynomial bases
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Figure 5: The minimally informative copula

between T and M using the Legendre multi-

wavelets bases

One of the main advantages of using the orthonormal polynomial and Legendre multiwavelets

basis functions over the ordinary polynomial series considered in Bedford et al. (2012) is that the

D1AD2 algorithm converges faster using these bases. This is because of the nice property of these

two bases that adding a new basis to the kernel defined in (3) and used to construct the minimum

information copula, does not change the Lagrange multipliers of the already used in the kernel. This

is shown in Table 1 for the orthonorma polynomial basis functions. But, this is not the case when

one is applying the ordinary polynomial bases (as proposed by Bedford et al, 2012) to calculate the

minimum information copula. In this situation, we need to run the D1AD2 algorithm each time a

new base is added to the already chosen bases, and the parameter values are changing accordingly.

Therefore, more iterations are required for the D1AD2 algorithm to converge. The optimisation
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Base Parameter values Log-Likelihood

ϕ1(T )ϕ1(M) -0.1995 29.36

Previous one, ϕ2(T )ϕ2(M) -0.1995, 0.1651 49.2

Previous one, ϕ1(T )ϕ2(M) -0.1995, 0.1651, 0.0912 52.8

Previous basis, ϕ1(T )ϕ3(M) -0.1995, 0.1651, 0.0912, -0.0774 56.16

Previous basis, ϕ3(T )ϕ3(M) -0.1995, 0.1651, 0.0912, -0.0774, -0.0772 59.04

Previous basis, ϕ4(T )ϕ1(M) -0.1995, 0.1651, 0.0912, -0.0774, -0.0772, 0.0527 60.66

Table 1: Adding new orthonormal polynomial basis did not change Lagrange multiplier

Type of Bases Number of bases Log-Likelihood

Ordinary Polynomial (Bedford et al. 2012) 6 58.1256

Orthonormal polynomial (Subsection 5.1) 6 60.66

Legangre multiwavelets (Subsection 5.2) 6 63.36

Table 2: Log-likelihoods of the minimum information copulae of different basis functions

time required for the D1AD2 algorithm using the the orthonormal polynomial bases is only 35.8646

seconds, for Legendre multiwavelets is 29.359 while this time for the ordinary polynomial bases is

72.93 seconds which is almost twofold of the former one and almost two and half times more than

the latter one.

Furthermore, by comparing the log-likelihoods of the minimum information copulas based on the

ordinary polynomial, orthonormal polynomial and Legangre multiwavelets, we can conclude that the

latter one produce more reliable copula density approximation in the sense that the corresponding

log-likelihood is much larger. We present the log-likelihood of these approximated copulae using the

aforementioned bases in Table 2. It should be noticed that the log-likelihood of the approximated

copula using only 5 bases of orthonormal polynomial or Legangre multiwavelets is still larger than

the fitted copula based on the six ordinary polynomial bases. In addition, we realize that the derived

approximated copula in term of the bases proposed in this paper are more flexible than ordinary

polynomial bases, since they aren’t sensitive to the initial values chosen for the parameter values

(Lagrange multipliers) in the D1AD2 algorithm.

The second copula in the first tree (T1) is CMB . Using the stepwise method, we choose the

following orthonormal polynomial bases

h
′

1(M,B) = ϕ1(M)ϕ1(B), h
′

2(M,B) = ϕ2(M)ϕ2(B), h
′

3(M,B) = ϕ1(M)ϕ3(B),

h
′

4(M,B) = ϕ2(M)ϕ4(B), h
′

5(M,B) = ϕ4(M)ϕ1(B), h
′

6(M,B) = ϕ1(M)ϕ5(B)
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and we also select the following Legendre multiwavelets basis functions

h
′

1(M,B) = φ1(M)φ1(B), h
′

2(M,B) = φ2(M)φ2(B), h
′

3(M,B) = φ2(M)φ4(B),

h
′

4(M,B) = φ3(M)φ1(B), h
′

5(M,B) = ψ1(M)φ1(B), h
′

6(M,B) = ψ2(M)φ1(B)

We similarly construct the minimally informative copulae associated with the orthonormal poly-

nomial bases which is shown in Figure 6. Note that the minimum information copulas for the

orthonormal polynomial and Legendre multiwavelets bases are quite similar, but the figure of later

one to some extent is smoother than the former one. The constraints as the mean of the chosen

orthonormal polynomial bases for the Norwegian Financial returns data are presented as

α1 = 0.4803, α2 = 0.2298, α3 = 0.0841, α4 = 0.0989, α5 = 0.0757, α6 = −0.0112

The parameter values associated with the fitted minimum information copula to the data with these

constraints are given by

λ1 = 0.5701, λ2 = 0.0847, λ3 = 0.0433, λ4 = 0.1000, λ5 = 0.0830, λ6 = −0.0531

The constraints for the Legendre multiwavelets bases are

α1 = 0.4803, α2 = 0.2298, α3 = 0.0989, α4 = 0.0757, α5 = 0.0531, α6 = 0.0463

and the corresponding parameter values are as follows

λ1 = 377.3642, λ2 = 193.9254, λ3 = 253.2358, λ4 = 281.7057, λ5 = −622.0234, λ6 = 12.2802

The log-likelihoods corresponding to the orthonormal polynomial and Legendre multiwavelets bases

are 158.0013 and 159.72, respectively, which are again more than the log-likelihood calculated based

on the ordinary polynomial bases.

The third marginal copula is between B and S. Similarly, the six bases are selected using the

stepwise procedure, and the corresponding constraints and resulting Lagrange multipliers are given

in Table 3 and Table 4 for orthonormal and Legendre multiwavelets, respectively. The approximated

minimally informative copula in terms of the orthonormal polynomial bases is shown in Figure 7.

Note that the minimum information copula associated with the Legendre multiwavelets bases is

very similar to the one given Figure 7, but to some extent is slightly smoother.

The conditional copulas in the second tree, T2 can similarly be approximated using the minimum

information approach. We only illustrate construction of the conditional minimum informative

copula between T |M and B|M , and the other conditional copulas in this tree can be similarly

approximated. In order to calculate this copula, we divide the support of M into some arbitrary

sub-intervals or bins and then construct the conditional copula within each bin. To do so we select

bases in the same way as for the marginal copulas and fit the copulae to the calculated mean values
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Base αi λi Log-

Likelihood

ϕ1(B)ϕ1(S) -0.1557 -0.1467

ϕ2(B)ϕ2(S) 0.1010 0.0836

ϕ3(B)ϕ1(S) -0.0510 -0.0426 20.13

ϕ1(B)ϕ4(S) -0.0378 -0.0365

ϕ2(B)ϕ1(S) 0.0253 0.0257

ϕ5(B)ϕ1(S) 0.0222 0.0240

Table 3: The minimally informative copula

for orthonormal polynomial bases between B

and S

Base αi λi Log-

Likelihood

φ1(B)φ1(S) 0.4803 -70.35

φ2(B)φ2(S) 0.2298 91.72

ψ2(B)φ2(S) 0.0539 16.61 25.07

ψ1(B)φ1(S) 0.0531 -22.29

ψ5(B)φ4(S) 0.0011 2.39

ψ4(B)φ2(S) -0.0098 -3.49

Table 4: The minimally informative copula

for Legendre multiwavelets bases between B

and S

or constraints. Here, we use four bins so that the first copula is for T,B|M ∈ (0, 0.25). The bases

for this copula based on the orthonormal polynomial basis are

h
′

1(T,B|M ∈ (0, 0.25)) = ϕ2(T )ϕ1(B), h
′

2(T,B|M ∈ (0, 0.25)) = ϕ5(T )ϕ1(B)

h
′

3(T,B|M ∈ (0, 0.25)) = ϕ3(T )ϕ1(B), h
′

4(T,B|M ∈ (0, 0.25)) = ϕ4(T )ϕ1(B)

h
′

5(T,B|M ∈ (0, 0.25)) = ϕ1(T )ϕ3(B), h
′

6(T,B|M ∈ (0, 0.25)) = ϕ2(T )ϕ3(B)

and the Legendre multiwavelets bases are also given by

h
′

1(T,B|M ∈ (0, 0.25)) = φ1(T )φ1(B), h
′

2(T,B|M ∈ (0, 0.25)) = φ2(T )φ2(B)

h
′

3(T,B|M ∈ (0, 0.25)) = ψ2(T )φ2(B), h
′

4(T,B|M ∈ (0, 0.25)) = ψ1(T )φ1(B)

h
′

5(T,B|M ∈ (0, 0.25)) = ψ5(T )φ4(B), h
′

6(T,B|M ∈ (0, 0.25)) = ψ4(T )φ2(B)
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The mean values for orthonormal polynomial basis functions which will constrain the minimum

information copula are

α1 = −0.2995, α2 = −0.1240, α3 = −0.1634, α4 = −0.0317, α5 = −0.0585, α6 = −0.0630

and these expectations for Legendre multiwavelets bases are as follows

α1 = 0.4803, α2 = 0.2298, α3 = 0.0539, α4 = 0.0531, α5 = 0.0011, α6 = −0.0098

We can follow this process again for the remaining bins. Tables 5 and 6 show the mean values

or constraints (denoted by αi) and corresponding Lagrange multipliers (λi) required to build the

conditional minimum information copula between T |M and B|M for orthonormal polynomial and

Legendre multiwavelets bases, respectively. The log-likelihood of the approximated copula in each

bin is also reported in these tables.

Note that the resulting minimum information copula over all bins for orthonormal polynomial

bases is 47.54 and for Legendre multiwavelets is 58.41 while this amount for the ordinary polynomial

bases is only 29.242 which indicates superiority of the former bases.

We can obtain the conditional minimum informative copula in the third tree, T3, similarly by

dividing each of the conditioning variables’ supports into four bins. Then the minimum information

copulas for T |(B,M) and S|(B,M) are calculated on each combination of bins for M and B which

makes 16 bins altogether for this tree. The bins, bases and log-likelihoods associated with each

copula based on the orthonormal polynomial and Legendre multiwavelets basis are given in Tables

7 and 8, respectively.

Thus the log-likelihood of the overall vine, obtained by summing the log-likelihoods of each of

the component copulas above, is 388.859.

The log-likelihood of the overall pair-copula model using the orthonormal polynomial (and

Legendre multiwavelets) bases, derived by adding the log-likelihoods of the copulas constructed

above, is then 434.135 (and this amount for Legendre multiwavelets is 552.25). These values are

considerably greater than the log-likelihoods of the fitted pair-copula models to the data using the

Gaussian copula, t-copula and the approximated pair-copula model using the ordinary polynomial

bases.

6.1 Comparison To Other Approaches

In this subsection, we compare our method with the other methods used to approximate the multi-

variate distribution fitted to the Norwegian financial returns data. In order to make a comparison

we compute the log-likelihood of the approximated density function by the method presented in this

paper and other approaches reported in Aas et. (2009) and Bedford et. (2012). The log-likelihood

of the overall pair-copula model using the orthonormal polynomial and Legendre multiwavelets
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Interval Bases αi λi Log-Likelihood

ϕ2(T )ϕ1(B) -0.2995 -0.3511

ϕ5(T )ϕ1(B) -0.1240 -0.135

0 < M < 0.25 ϕ3(T )ϕ1(B) -0.1634 -0.057 18.22

ϕ4(T )ϕ1(B) -0.0317 0.0776

ϕ1(T )ϕ3(B) -0.0585 -0.0705

ϕ2(T )ϕ3(B) -0.0630 0.001

ϕ3(T )ϕ1(B) 0.1504 0.1902

ϕ2(T )ϕ1(B) 0.0562 0.1051

0.25 < M < 0.5 ϕ4(T )ϕ1(B) 0.1030 0.1363 9.05

ϕ1(T )ϕ4(B) 0.0836 0.0944

ϕ1(T )ϕ2(B) 0.0823 0.0804

ϕ4(T )ϕ2(B) -0.0621 -0.0094

ϕ2(T )ϕ1(B) 0.1184 0.1679

ϕ1(T )ϕ3(B) -0.1080 -0.2311

0.5 < M < 0.75 ϕ2(T )ϕ4(B) 0.0956 0.1459 9.74

ϕ1(T )ϕ5(B) -0.0815 -0.2047

ϕ1(T )ϕ2(B) -0.0627 -0.1869

ϕ3(T )ϕ1(B) 0.0245 0.1253

ϕ1(T )ϕ1(B) -0.2659 -0.3177

ϕ2(T )ϕ4(B) 0.1568 0.1135

0.75 < M < 1 ϕ4(T )ϕ1(B) 0.1025 0.1290 10.53

ϕ1(T )ϕ5(B) -0.0079 0.0526

ϕ1(T )ϕ3(B) -0.1737 -0.1007

ϕ3(T )ϕ3(B) -0.0376 0.0456

Table 5: Minimaly informative copula for orthonormal basis between T and B given M
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Interval Bases αi λi Log-Likelihood

φ2(T )φ1(B) -0.020 -2.53

φ5(T )φ1(B) -0.021 2.17

0 < M < 0.25 ψ4(T )φ4(B) -0.018 -0.64 22.17

φ4(T )φ5(B) -0.002 -3.00

ψ0(T )φ6(B) -0.004 2.35

ψ5(T )φ4(B) 0.001 5.23

φ3(T )φ1(B) 0.1504 0.226

ψ4(T )φ4(B) 0.109 -7.30

0.25 < M < 0.5 ψ4(T )φ3(B) 0.102 9.97 12.08

φ2(T )φ1(B) 0.056 -3.31

φ4(T )φ1(B) 0.103 -0.25

φ5(T )φ3(B) 0.106 10.46

φ2(T )φ1(B) 0.118 -269.93

φ1(T )φ3(B) -0.1080 -439.13

0.5 < M < 0.75 ψ1(T )φ2(B) -0.102 104.95 11.30

φ2(T )φ4(B) 0.096 -29.99

φ3(T )φ5(B) 0.093 373.59

ψ4(T )φ5(B) 0.059 -14.53

φ1(T )φ1(B) -0.2659 247.49

φ2(T )φ4(B) 0.1568 -110.67

0.75 < M < 1 φ4(T )φ1(B) 0.1025 -108.01 12.86

ψ1(T )φ4(B) 0.069 -222.75

φ3(T )φ5(B) 0.021 -175.39

φ4(T )φ5(B) 0.063 -15.69

Table 6: Minimum information copula for Legendre multiwavelets between T and B given M
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Interval Bases Log-Likelihood

0 < M < 0.25, 0 < B < 0.25 ϕ1ϕ1, ϕ3ϕ1, ϕ1ϕ4, ϕ5ϕ1, ϕ4ϕ2, ϕ1ϕ5 8.93

0 < M < 0.25, 0.25 < B < 0.5 ϕ1ϕ1, ϕ1ϕ3, ϕ3ϕ3, ϕ3ϕ2, ϕ3ϕ1, ϕ5ϕ1 7.31

0 < M < 0.25, 0.5 < B < 0.75 ϕ2ϕ4, ϕ3ϕ3, ϕ5ϕ1, ϕ2ϕ2, ϕ1ϕ2, ϕ3ϕ2 6.81

0 < M < 0.25, 0.75 < B < 1 ϕ4ϕ1, ϕ2ϕ3, ϕ1ϕ2, ϕ1ϕ3, ϕ2ϕ2, ϕ2ϕ4 9.65

0.25 < M < 0.5, 0 < B < 0.25 ϕ1ϕ1, ϕ2ϕ4, ϕ3ϕ1, ϕ3ϕ3, ϕ1ϕ5, ϕ1ϕ2 8.63

0.25 < M < 0.5, 0.25 < B < 0.5 ϕ1ϕ1, ϕ5ϕ1, ϕ2ϕ1, ϕ4ϕ1, ϕ3ϕ1, ϕ1ϕ4 7.67

0.25 < M < 0.5, 0.5 < B < 0.75 ϕ1ϕ1, ϕ2ϕ1, ϕ5ϕ1, ϕ2ϕ3, ϕ1ϕ5, ϕ3ϕ2 9.5

0.25 < M < 0.5, 0.75 < B < 1 ϕ3ϕ2, ϕ1ϕ3, ϕ2ϕ4, ϕ3ϕ3, ϕ3ϕ1, ϕ4ϕ2 5.62

0.5 < M < 0.75,0 < B < 0.25 ϕ1ϕ1, ϕ3ϕ2, ϕ2ϕ4, ϕ1ϕ3, ϕ1ϕ5, ϕ4ϕ2 4.93

0.5 < M < 0.75, 0.25 < B < 0.5 ϕ1ϕ1, ϕ1ϕ2, ϕ2ϕ1, ϕ1ϕ3, ϕ3ϕ1, ϕ2ϕ2 10.49

0.5 < M < 0.75, 0.5 < B < 0.75 ϕ1ϕ1, ϕ1ϕ2, ϕ4ϕ1, ϕ3ϕ3, ϕ2ϕ2, ϕ5ϕ1 8.97

0.5 < M < 0.75, 0.75 < B < 1 ϕ1ϕ1, ϕ3ϕ3, ϕ4ϕ1, ϕ2ϕ3, ϕ1ϕ4, ϕ2ϕ4 10.08

0.75 < M < 1, 0 < B < 0.25 ϕ4ϕ2, ϕ5ϕ1, ϕ1ϕ5, ϕ3ϕ2, ϕ1ϕ2, ϕ1ϕ4 3.7

0.75 < M < 1, 0.25 < B < 0.5 ϕ2ϕ2, ϕ2ϕ4, ϕ2ϕ3, ϕ1ϕ1, ϕ4ϕ1, ϕ4ϕ2 8.7

0.75 < M < 1, 0.5 < B < 0.75 ϕ1ϕ4, ϕ1ϕ1, ϕ5ϕ1, ϕ1ϕ3, ϕ3ϕ2, ϕ3ϕ3 5.61

0.75 < M < 1, 0.75 < B < 1 ϕ2ϕ2, ϕ1ϕ1, ϕ2ϕ1, ϕ1ϕ5, ϕ4ϕ1, ϕ3ϕ2 20.24

Table 7: Minimum information copula for orthonormal basis between T and S givenM and B

bases, obtained by adding the log-likelihoods of each of the component copulas presented above,

are 434.135 and 552.25, respectively. These values are much greater than that obtained using the

t-copula examined by Aas et al (2009) of 291.801 and the minimum information copula based on the

ordinary polynomial bases of Bedford et al (2012) of 388.859. Note that, if we only use five bases

to approximate the multivariate density of interest, the log-likelihoods associated with orthonormal

polynomial and Legendre multiwavelets bases will be 429.3982 and 446.235, respectively, which

are still clearly better than the model proposed by Bedford et al (2012) based on the six ordinary

polynomial bases. We have computed the log-likelihood of the data sample for five different copula

models used on the same vine structure: The Gaussian copula, the t-copula used by Aas et al.

(2009), the minimum information copula using the ordinary polynomial bases presented by Bedford

et al. (2012) and our approximated copulas. We illustrate the corresponding results in Table 9.

7 Conclusion

In this paper, we extend the novel method originally presented by Bedford et al (2012) to approxi-

mate a multivariate distribution by any vine structure to any degree of approximation. The main
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Interval Bases Log-Likelihood

0 < M < 0.25, 0 < B < 0.25 φ1φ2, φ3φ1, ψ0φ2, φ4φ5, φ5φ4, ψ4φ2 10.64

0 < M < 0.25, 0.25 < B < 0.5 φ1φ1, ψ2ψ1, φ1φ3, φ3φ3, ψ1φ5, ψ5φ5 9.42

0 < M < 0.25, 0.5 < B < 0.75 ψ0φ5, φ5φ3, φ3φ3, φ1φ3, φ5φ1, φ2φ4 13.67

0 < M < 0.25, 0.75 < B < 1 φ4φ1, φ2φ3, φ1φ2, φ1φ3, ψ3φ5, φ5φ2 10.42

0.25 < M < 0.5, 0 < B < 0.25 φ1φ1, φ2φ4, φ2φ5, φ5φ4, ψ3φ2, φ5φ3 12.99

0.25 < M < 0.5, 0.25 < B < 0.5 ψ3φ1, ψ2φ5, ψ2φ3, φ2φ5, φ1φ2, ψ3φ2 15.67

0.25 < M < 0.5, 0.5 < B < 0.75 φ1φ1, φ5φ2, φ2φ1, φ4φ4, ψ2φ1, ψ3φ4 10.56

0.25 < M < 0.5, 0.75 < B < 1 φ5φ2, ψ0φ3, φ1φ1, φ5φ4, ψ0φ5, φ3φ1 10.77

0.5 < M < 0.75,0 < B < 0.25 φ3φ2, ψ5φ5, φ1φ4, ψ4φ2, ψ4φ1, φ3φ3 9.89

0.5 < M < 0.75, 0.25 < B < 0.5 φ5φ2, φ1φ1, ψ3φ1, ψ2φ1, φ2φ2, φ4φ4 10.26

0.5 < M < 0.75, 0.5 < B < 0.75 φ1φ1, φ2φ5, ψ3φ3, ψ3φ5, ψ0φ4, φ3φ3 14.01

0.5 < M < 0.75, 0.75 < B < 1 φ3φ4, ψ0φ4, φ1φ1, φ3φ5, φ3φ3, ψ3φ2 17.97

0.75 < M < 1, 0 < B < 0.25 φ1φ1, φ2φ3, ψ4φ1, φ3φ3, ψ3φ3, ψ2φ1 11.17

0.75 < M < 1, 0.25 < B < 0.5 φ1φ3, φ4φ2, φ5φ1, ψ4φ1, ψ2φ2, ψ3φ1 14.31

0.75 < M < 1, 0.5 < B < 0.75 φ1φ1, φ2φ5, ψ0φ2, ψ1φ4, ψ3φ3, φ4φ4 10.61

0.75 < M < 1, 0.75 < B < 1 φ3φ1, φ2φ2, φ1φ5, ψ4φ1, φ2φ4, φ5φ5 24.39

Table 8: Minimally informative copula for Legendre multiwavelets between T and S givenM and

B

idea to implement this approximation method is to use the minimum information copulae that can

be determined to any required degree of precision based on the data available. To approximate a

multivariate distribution by this method, we need to specify: 1) a vine structure; 2) a basis family;

3) for each part of vine, expected values for the certain functions associated with some constraints

on each pairwise copula.

Bedford et al (2012) approximate all conditional copulas using linear combinations of the or-

dinary polynomial basis functions. We make this approximation more precise by choosing more

appropriate basis family. We concentrate on the orthonormal polynomial basis functions and Leg-

endre multiwavelets in this paper. The Legendre multiwavelets and orthonormal polynomial basis

functions are shown that to be more convenient than some other natural basis for the purpose of

calculation. A very nice property of the orthonormal polynomial basis is that adding a new item to

the expansion does not change coefficient of the already found shorter expansion which is not the

case for the non-orthonormal basis where any new item has in general nonzero projection on previ-

ous items. It means that the already found coefficients of the expansion would have to be changed.

The Legendre multiwavelets basis, not only has this property, but the computation of the minimum
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Type of copula Log-Likelihood

Gaussian copula (Aas et al. 2009) 263.5052

t copula (Aas et al. 2009) 291.8014

Minimum information copula based 388.859

on polynomial basis (Bedford et al., 2012)

Minimum information copula 434.135

based on orthonormal polynomial

Minimum information copula 552.25

based on Legendre multiwavelets

Table 9: Comparison between different models.

information copula using this basis becomes even faster and the approximation would considerably

improve. In other words, applying these basis is so important from three main aspects: firstly, less

computation time is required to approximate the minimum information copula of interest; secondly,

the fitted models to the data using the minimum information copulas based on the orthonormal

polynomial and Legendre multiwavelets bases are better in the sense that their log-likelihoods are

much larger than than log-likelihood of the alternative models; thirdly, the approximations made

in this paper are robust in the sense that they are not sensitive to the initial values chosen for the

parameter values.

In addition to these properties, our method has this property that it can be used to build

arbitrarily good approximations to the original distribution. One of the most clear sources of

potential error in our approximation is the choice of base where it is convenient to take a low number

of functions hi. The terms chosen in both orthonormal polynomial and Legendre multiwavelets

would generate asymmetric copulas which seems to have great impact in modelling general data

sets. The use of large numbers of functions does give more accuracy, at the cost of considerable

extra computation at the construction stage but at no extra cost at the sampling stage. Indeed,

we can approximate the requested model more precisely using less numbers of basis functions

proposed in this paper and with smaller computation time than the alternative methods. In fact,

the generalization made in this paper gives natural ways to generate asymmetric copulas, and

simple ways to specify non-constant conditional correlations (or other moments). At moment, we

are investigating some alternative methods to the stepwise method used in this paper to find the

most optimal basis functions in a sense that with smaller number of these bases, we would get the

largest log-likelihood.

The method used in this paper is very flexible and any functions can be used to construct

the minimum information copulas used here. This method can be use for modeling more complex

applications at which basis functions should be computed in computer codes. Due to numerous
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evaluation of these function to construct the minimum information distribution, the computation

and then approximation will be infeasible. One suggestion to ease the computation and reduce the

complexity of model is to use the Gaussian process emulators.

Acknowledgement: The authors are grateful to Professor Tim Bedford for his helpful com-
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