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Abstract

We consider the use of an EM algorithm for fitting finite mixture models when mixture 

component size is known. This situation can occur in a number of settings, where individual 

membership is unknown but aggregate membership is known. When the mixture component size, 

i.e., the aggregate mixture component membership, is known, it is common practice to treat only 

the mixing probability as known. This approach does not, however, entirely account for the fact 

that the number of observations within each mixture component is known, which may result in 

artificially incorrect estimates of parameters. By fully capitalizing on the available information, 

the proposed EM algorithm shows robustness to the choice of starting values and exhibits 

numerically stable convergence properties.
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1 Introduction

Finite mixture models have been powerful tools for analyzing data where observations 

originate from various components but the component membership of each observation is 

not known. The analysis of such finite mixture models is commonly carried out using 

maximum likelihood estimation with the EM algorithm (Dempster et al., 1977; McLachlan 

and Peel, 2000). The finite mixture model has been extended to data with known mixture 

component size, i.e., the case when the exact number of observations within each mixture 

component is given and thus mixing probability parameters are known. The computational 

difficulty of fitting such a finite mixture model with known mixture component size, 

however, has hindered correct EM estimation and given rise to inconsistent EM estimates 

depending on starting values (Nettleton, 1999; Friede and Kieser, 2002). Here we focus on 

the problem of fitting a two-component mixture model with known mixture component size. 

0Address correspondence to Taeyoung Park, Department of Applied Statistics, Yonsei University, Seoul 120-749, Korea; 
tpark@yonsei.ac.kr. 

NIH Public Access
Author Manuscript
Commun Stat Simul Comput. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:
Commun Stat Simul Comput. 2015 July ; 44(6): 1545–1556. doi:10.1080/03610918.2013.824091.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The finite mixture problems with more than two mixture components would be solved by a 

nontrivial generalization of the method proposed in this paper.

Our work was specifically motivated by sample size adaptive designs for clinical trials. We 

want to consider adaptive designs that allow the estimation of nuisance parameters at an 

interim stage of a trial without breaking the blind for treatment identity. A common 

framework for studying such designs is to consider two treatments, experimental (E) and 

control (C) groups, with primary responses assumed to have normal distributions with 

common standard deviation σ and respective means μE and μC. Clinical trial sample sizes in 

such settings are typically based on power at a presumed value for σ and desired alternative 

μE -μC. In adaptive designs using sample size re-estimation, σ is suitably estimated in the 

actual trial from interim data obtained at the end of a pre-specified first phase and then an 

appropriate new sample size is usually calculated to maintain power. Various approaches 

have been considered to estimate σ from interim data for such adaptive designs (Zucker, 

1999; Friede and Kieser, 2001; Xing, 2005). In particular, Gould and Shih (1992) proposed 

using the EM algorithm for the problem of estimating σ by fitting a two-component normal 

mixture model with known treatment group size for bimodal response data. To deal with 

known treatment group size, their EM algorithm fixed the mixing probability parameter at 

the proportion of patients assigned to the experimental group. By doing so, the EM 

algorithm devised by Gould and Shih (1992) sometimes produced an incorrect estimate 

toward the boundary of the parameter space (Nettleton, 1999).

In clinical trials, it is also common practice to randomize patients to treatments using 

randomly permuted blocks (Rosenberger and Lachin, 2002). Then, the allocation of patients 

to the experimental or control group is periodically “balanced” in such an adaptive design. 

This balancing is important when “time confounding” needs to be guarded against, 

especially for a long duration clinical trial. Time confounding can occur when medical 

equipment, concomitant medications, staff, and even disease severity of patients entering the 

trial at different times changes and patients are not allocated to the two treatments in some 

sort of balanced manner. Gould and Shih (1992) did not assume blocked randomization in 

doing the computation for their adaptive design (although they conceptually considered 

designs with planned equal number of patients at the interim for each treatment group but 

could use this for their EM procedure). Hence their EM algorithm used the planned 

proportion of numbers of patients to each treatment, e.g., 0.5, at the interim, so that the 

treatment identities are assumed to follow independent Bernoulli distributions with 

probability 0.5. Obviously this assumption does not guarantee an equal number of patients in 

each group at the interim.

Gould and Shih’s ideas and our awareness of block randomization led to developing our 

new EM algorithm for fitting finite mixture models with known mixture component size. 

We point out that in addition to knowing patient numbers at the interim, we can gain even 

more information by utilizing the individual randomization blocks prior to and including the 

interim. The full goal is to improve the estimation of σ from interim data by fully taking 

advantage of the information contained in the block randomization, yet maintaining the 

blind of the clinical trial.
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In addition to adaptive clinical trials, our work is applicable to a number of other settings, 

where one knows that among n sample observations, there are m observations from one 

component and n–m observations from the other, but which specific observations are from 

each component is not known. When the latent component membership is of interest as a 

function of observable covariates for each individual, such type of data have been 

extensively analyzed and growing in popularity with recent advances in computing; see 

Chen and Yang (2007); Choi et al. (2008); Musalem et al. (2009); Park (2011); Verhelst 

(2008) for various examples. Our goal is to estimate the underlying and unknown 

parameters that determine the distribution of each component type, where we allow more 

general distributions than the normal distribution. Another more specific type of application 

of our methodology is to voting inferences where we could make use of the fact that during 

an election between two candidates, we can obtain the exact number of votes each candidate 

receives at a voting site. Further, under certain conditions we can obtain the previous voting 

histories for each individual voter at that site. Because each voter’s selection is blinded, the 

distribution of previous voting frequencies for individual voters can be viewed as a mixture 

of two distributions, each for two candidates’ supporters. Thus, if we wanted to assess if 

there were a difference in previous voting patterns between those who voted for one 

candidate and those who voted for the other, we could use our methodology with m voters 

for the one candidate and n – m for the other. In summary we see that the possible 

conceptual applications for our method arise when it is of interest to compare certain 

characteristics between two groups, given an anonymized list of two groups of people and 

the number of people belonging to each group.

In Section 2, we develop the EM algorithm for fitting mixture models of exponential family 

distributions when the exact number of observations within each mixture component is 

fixed. Section 3 discusses the efficient and numerically stable computation of the proposed 

EM algorithm. Section 4 compares in the context of normal mixture models the properties of 

the proposed EM algorithm and a conventional EM algorithm which uses the probability of 

the mixture being m/n. As an application of the proposed EM algorithm, a realistic adaptive 

design clinical trial example appears in Section 5. A discussion follows in Section 6.

2 The EM Algorithm with Known Mixture Component Size

2.1 The Conventional EM Algorithm

Suppose that y = (y1, …, yn) are observations from a mixture of two exponential family 

distributions of the same type with common parameter ξ and respective parameters ψ1 and 

ψ2, collectively denoted by θ = (ξ, ψ1, ψ2). Let π denote the mixing probability parameter of 

the mixture model and let zi denote a latent mixture indicator variable such that zi = 1 if yi 

belongs to the first mixture component and zi = 0 if it belongs to the second mixture 

component, for i = 1, …, n. When the exact number of observations within each mixture 

component is fixed, the sum of zi’s is known as

(2.1)
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To deal with the information that the mixture component size is known, one may simply fix 

the value of the mixing probability parameter at π = m/n and derive the EM algorithm 

accordingly; we call this a conventional EM algorithm throughout the paper. Then, the 

complete-data likelihood function for θ is written as

Using the current iterate of parameters, , at iteration t, the E-step 

computes the conditional expectation of zi given y and θ(t),

Then the M-step sets

where . The E-step and M-step are iterated until certain 

convergence criteria are satisfied.

2.2 The Proposed EM Algorithm

Despite the simplicity of its construction, the conventional EM algorithm does not deal with 

a correct model because the sum constraint in (2.1) is not fully accounted for. To improve 

the conventional EM algorithm by fully capitalizing on the available information, let us 

introduce a new latent vector  with support given by the set of all possible 

binary vectors on space

Then the random vector z* follows a so-called conditional Bernoulli distribution (Chen and 

Liu, 1997), and we write z* CBe(n, m, p) with probability mass function

where wi = pi/(1 − pi) is the odds of zi = 1 with pi = P(zi = 1), S = {1, …, n} is a set of 

indices, and R(m,S,w) = ΣB⊂S,|B|=m(Πi∈B wi) is the normalizing constant with R(0, S, w) = 1, 
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R(m, S, w) = 0 for any m > |S|, and w = (w1, …, wn). Then the complete-data likelihood 

function for θ is written as

(2.2)

where the probability of zi = 1 is a priori set to pi = m/n for i = 1, …, n.

Because the log of the complete-data likelihood function in (2.2) is linear in  with respect 

to θ, the E-step of the proposed EM algorithm amounts to computing the conditional 

expectation of  given y and θ(t). To derive the E-step, we compute the joint probability 

mass function of z* given y and θ(t) as

where  is the odds of  given y and θ(t), and

Then the E-step of the proposed EM algorithm is given by

(2.3)

where  and . The M-

step of the proposed EM algorithm sets

where .
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3 Efficient and Numerically Stable Computation of the Proposed EM 

Algorithm

The R(m, S, w) function is the summation over the product of all  combinations of 

wi’s and the computation of the R function may not be practical because n is typically large. 

As proposed by Gail et al. (1981), we thus consider an efficient recursive method to 

calculate the summation. That is, for S = {1, …, n} and 1≤ m ≤ |S|, we have

(3.4)

Then R(m, S, w) can be computed with m(n − 1) additions and m(n − m + 1) multiplications, 

which requires much less operations than  evaluations.

In the context of fitting finite mixture models with known mixture component size, the 

computation of the R function can be numerically unstable in certain circumstances. First, 

when there exists a little overlap between the distributions of the mixture components, the 

probability of belonging to the first component given y and θ(t) can be close to one, so that 

the corresponding  becomes extremely large. Because the R function in (2.3) is a sum of 

a product of ’s, such a large  causes inflation of the R function and its computation 

can be numerically unstable. Second, when the sample size n is large, it is likely that some 

observations come from the tail of a distribution such that  close to one and the 

corresponding  becomes extremely large. Even when there are no such extreme 

observations, a product of relatively large ’s can still cause inflation of the R function, 

thereby making its computation numerically unstable.

To circumvent such numerical instability, we propose to cancel out a large common factor 

between the numerator and denominator in (2.3) to make its computation numerically stable 

by noting that the E-step is computed as the ratio of two R functions. Specifically, we factor 

out a product of some largest ’s and model the remaining expression of the R function. 

The modified R function, denoted by , is defined as

where w[1] < w[2] < ⋯ < w[n] denote the n order statistics based on w1, … , wn, i.e., 

 is the original R(m, S, w) function divided by a product of the m largest wi’s.

Table 1 displays the arithmetic operations of  for a simple example when m = 2, 

S = {1, 2, 3, 4}, and w = (w1, w2, w3, w4) with w4 < w3 < w2 < w1, i.e., w[1] = w4, w[2] = w3, 

w[3] = w2, and w[4] = w1. Starting from the upper-left corner of the table,  is 
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generated at the lower-right corner. For S = {1, … , n}, 1 ≤ m ≤ |S|, and 1 ≤ j ≤ n, the new 

efficient and numerically stable recursive method is given by

which requires the same number of operations as with the original efficient recursive method 

in (3.4) and thus the cost of computation remains the same, while greatly improving 

numerical stability. Using the new efficient recursive method, the E-step in (2.3) is rewritten 

as

which is numerically stable for any given probability vector .

4 Comparison of the Conventional and Proposed EM Algorithms

We want to make clear the issues involved in estimation for our proposed EM algorithm in 

comparison to the conventional EM algorithm when we know the exact numbers of 

members in each component. To do this, we examine in detail the case where observations 

are taken from a mixture of two normal distributions, N(μ1, σ) and N(μ2, σ). In the three 

parameter setting (μ1, μ2, σ) of the two-component normal mixture model with known π, the 

maximum likelihood estimate exists and is consistent (Basford and McLachlan, 1985; 

McLachlan and Peel, 2000). However, Nettleton (1999) notes that the estimate of the 

conventional EM algorithm in this context (for example by Gould and Shih (1992) who use 

π = m/n) may converge toward the boundary of the parameter space while a true parameter 

lies in the interior of the parameter space. Friede and Kieser (2002) also show through a 

simulation study that the estimate of a within-group standard deviation from the 

conventional EM algorithm depends on the starting value of a standardized treatment effect, 

δ = (μ2 − μ1)/σ. Here we further illustrate the effect of the starting values on the convergence 

behavior of both the conventional and proposed EM algorithms, and the reason why the 

conventional EM algorithm sometimes converges toward the boundary of the parameter 

space.

For a simulation study, we generate 1000 test data sets, each of size 20, where 10 

observations are from yi ~ N(μ1, σ) for i = 1, …, 10, the other 10 observations are from yi ~ 

N(μ2, σ) for i = 11, …, 20, and the true values of parameters are set to (μ1, μ2, σ) = (0, 1, 1). 

Both the conventional and proposed EM algorithms are used to estimate (μ1, μ2, σ) with 

identical stopping rules. To demonstrate the dependence of convergence on starting values, 

we randomly select one out of the 1000 test data sets and run both the conventional and 

proposed EM algorithms with 40 different starting values 
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, where d = 0.005, 0.105, …, 3.905. Figure 1 shows the 

EM estimates for (μ1, μ2, σ) as a function of half the starting value . 

As shown in Figure 1, the conventional EM algorithm converges toward the boundary of the 

parameter space when δ(0) is small and to the interior mode when δ(0) is sufficiently large. 

That is, the conventional EM estimate depends on the starting value δ(0). From the other test 

data sets, we also note that a cutoff value for δ(0) that makes the conventional EM algorithm 

converge to the interior mode varies from data to data. By contrast, the proposed EM 

algorithm always converges to the interior mode, depending on neither δ(0) nor the type of 

data.

Figure 2 shows the scatterplot of 1000 EM estimates of (μ1, μ2) for the conventional and 

proposed EM algorithms with identical starting values δ(0) = 3. As shown in the left panel of 

Figure 2, the conventional EM estimates compose two apparent clusters with one near the 

true value (0, 1) and the other toward the boundary of the parameter space. The boundary of 

the parameter space implies that the underlying distribution is from a single component, 

which is incorrect because there exist two mixture components with separate means. Such 

artificial modes near the boundary of the parameter space may occur because the 

conventional EM algorithm deals with an incorrect complete-data likelihood without fully 

accounting for the fact that the exact number of observations within each mixture 

component is fixed. By contrast, the proposed EM estimates are all nicely spread out around 

the true value (0, 1).

We empirically explore the reason why the conventional EM algorithm sometimes produces 

boundary estimates for (μ1, μ2), while the proposed EM algorithm does not. To illustrate the 

reason, we used the same data set as in Figure 1. In the M-step of both EM algorithms, the 

means and standard deviation are conditionally maximized, i.e., we iterate between the 

maximization of (μ1, μ2) given σ and the maximization of σ given (μ1, μ2). Thus we examine 

the profile log-likelihood function of the conventional and proposed EM algorithms. Figure 

3 shows the behavior of the profile log-likelihood functions of the two EM algorithms when 

they start with an extreme starting value that is on the boundary of the parameter space. 

When it comes to the conventional EM algorithm, Figure 3(a) shows the profile log-

likelihood function for σ given ( ) such that the starting values for the means are 

given by . Note that the starting value of  is rather extreme 

because it implies that the underlying distribution is from a simple component; we use the 

extreme starting value for illustration purposes. The profile log-likelihood function is 

maximized at σ(1) = 1.33 given . Figure 3(b) shows the profile log-likelihood 

function for (μ1, μ2) given σ(1) = 1.33, which has a single mode at μ1 = μ2. Thus the profile 

log-likelihood function for (μ1 = μ2) is necessarily maximized , which implies that 

σ(2) that maximizes the profile log-likelihood function for σ given  remains at 

σ(1). Because of being trapped near the boundary of the parameter space, the conventional 

EM algorithm does not find the interior mode when it begins with  in this 

particular data set.
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In the case of the proposed EM algorithm, Figure 3(c) shows the profile log-likelihood 

function for σ given  such that the starting values for the means are also given by 

. The profile log-likelihood function for σ is then maximized at σ(1) = 

1.33, but the profile log-likelihood function for (μ1, μ2) given σ(1) = 1.33 now becomes 

slightly bimodal, as shown in Figure 3(d). Within the parameter space for (μ1, μ2), the 

profile log-likelihood function for (μ1 = μ2) given σ = 1.33 is maximized at 

. Next, Figure 3(e) shows that the profile log-likelihood function for 

σ given  is maximized at σ(2) = 1.29. Then the profile log-likelihood 

surface for (μ1, μ2) given σ(2) = 1.29 has two modes which are further apart, as shown in 

Figure 3(f). By alternating the conditional maximization steps, the estimates of (μ1, μ2) 

move away from the boundary near μ1 = μ2. This example illustrates how the proposed EM 

algorithm obtains the interior mode when the conventional EM algorithm cannot.

5 An Adaptive Design Clinical Trial Example

We illustrate the proposed EM algorithm and compare it with the conventional EM 

algorithm by applying them to the design of a realistic sample-size adaptive clinical trial. To 

evaluate the properties of an adaptive design in actual practice, we use a simulation study for 

a randomized trial of an experimental compound versus an appropriate comparator. The 

primary endpoints are assumed to follow two different normal distributions with a common 

standard deviation σ. Suppose we want a power of 80% to detect a clinically meaningful 

treatment difference with a level 0.05 test, assuming the endpoint has a standard deviation σ 

= 1 in each treatment group. This requires an initial sample size of N = 160, i.e., a total of 

160 observations in the trial. We plan to apply block randomization to avoid imbalance 

across the trial. In general practice, block sizes are randomly chosen (e.g., as a sequence of 

4, 6, 2, 4, etc) to protect against possibly guessing the next patient’s treatment allocation 

when small block sizes are used. When planning our trial, we chose a constant block size of 

4 as a simplified scenario for illustrative purposes.

Our adaptive clinical trial plans an interim analysis based on the first n = 80 completed 

patients with 20 randomization blocks, where m = 40 patients are assigned to the 

experimental group. Both the conventional and proposed EM algorithms are used to estimate 

σ from these n observations without knowing the treatment identities, and then recalculate 

the total sample size N′ at the interim. Then the additional N′ − n observations are simulated 

to generate a total of N′ observations in the trial. We repeat this procedure 3000 times to 

examine the power based on a sample of size N′ calculated by each EM algorithm’s interim 

estimate of σ. The expected size of additional samples is calculated by the average of the 

simulated additional sample sizes.

The initial sample size N needs to be increased if σ is incorrectly assumed too low; see Teel 

(2011) for details. We thus assume that σ was initially underestimated as σ = 1 when the true 

value of σ is . Then we examine how the blinded sample size re-estimation mitigates the 

effect of a false assumption of σ on the power of a trial. When an initial sample size is 

calculated as N = 160 with an underestimated value of σ = 1, the fixed sample size design 
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can only achieve a power of 51% at the true value of . Our power simulation study 

shows that by using the conventional EM procedure, the average number of observations 

required to attain a power of 80% is computed as N′ = 248 and the corresponding average 

power is 65.6% at the true value of . By contrast, the proposed EM procedure yields 

an adjusted sample size of N′ = 298 on average and the corresponding average power is 73% 

at the true value of . Although σ is underestimated as two-third the true value in the 

planning phase of the study, we obtain a power of 73% using the sample size adjustment 

based on the proposed EM procedure with block size 4. Furthermore, we note that the 

expected size of adjusted total samples, N′ = 298, is close to 320 which is the fixed sample 

size required to achieve a power of 80% at the true value of . Interestingly, the fixed 

sample power at 298 patients is 76.7%, so that the “cost” of the adaptive design is a “loss” 

of less that 4% in power compared to a fixed sample size design that knows the true value of 

σ. Since the goal is to maintain power at 80%, the proposed EM procedure is considered to 

be superior to the conventional EM procedure. These results are typical of a variety of 

scenarios (Teel, 2011) and demonstrate that our proposed EM algorithm is more 

advantageous than the conventional EM algorithm in maintaining power when doing sample 

size re-estimation.

6 Discussion

In this paper, we propose a new EM algorithm for two-component mixture models when the 

exact numbers of observations in each mixture component are given. The E-step of the new 

EM algorithm involves a conditional Bernoulli distribution, which requires the computation 

of the normalizing constant of a conditional Bernoulli distribution, denoted by R(m, S, w). 

Because a naive way of calculating R(m, S, w) is computationally expensive, we consider 

using the recursive method for calculating the normalizing constant of a conditional 

Bernoulli distribution, proposed by Gail et al. (1981). However, the recursive method used 

by Gail et al. (1981) can be numerically unstable in the context of mixture modeling. Thus 

we propose a new recursive method for calculating the normalizing constant of a conditional 

Bernoulli distribution that is not only efficient but also numerical stable. By fully accounting 

for the fact that the number of observations within each mixture component is given, the 

proposed EM algorithm produces maximum likelihood estimates that are robust to starting 

values and correctly lie in the interior of the parameter space.

When developing the new EM algorithm for mixture models with known mixture 

component size, the number of mixture components is confined to two. Although it is more 

general and practical to assume more than two components in the mixture model, the 

method for the general finite mixture models can be derived by a nontrivial generalization of 

the method proposed in this paper. In an adaptive randomized clinical trial that is an 

important application of our proposed method, it is also not uncommon to compare only the 

treatment and control groups. Thus, our paper focuses on the two-component mixture 

models and methods for the general finite mixture models are to be dealt with in future 

research.
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Figure 1. 
EM estimates for parameters, ( ), as a function of half the starting value of a 

standardized treatment effect. The left panels correspond to the conventional EM algorithm, 

while the right panels correspond to the proposed EM algorithm.
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Figure 2. 
Comparison of two EM estimates for μ1 and μ2 using 1000 test data sets. The triangle 

indicates the true value of (μ1, μ2) = (0, 1). The left panel is the result from the conventional 

EM algorithm and the right panel is from the proposed EM algorithm. The parameter space 

lies above the 45-degree line.
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Figure 3. 
Profile log-likelihood functions of the conventional and proposed EM algorithms.
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Table 1

New recursive generation of  when m = 2, S = {1, 2, 3, 4}, and w = (w1, w2, w3, w4) with w4 < w3 

< w2 < w1.
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