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Social Desirability Bias (SDB) is the tendency in respondents to answer questions

untruthfully in the hope of giving good impression to others. SDB occurs when the

survey question is highly sensitive or personal, and responses cause sample statistics

to systematically over- or underestimate corresponding population parameters. The

Randomized Response Technique (RRT) is one of several methods to get around SDB

in surveys involving sensitive questions in a face-to-face interview.

In this thesis, we first review some of the existing binary response RRT models.

Then, by combining two existing models, we propose a new model—Two-Stage Binary

Optional RRT model. Much of the focus is on estimating π, the prevalence of sensitive

characteristic and ω, the sensitivity level of the underlying question. We discuss the

asymptotic properties of our estimators and present some simulation results. It turns

out that the proposed Two-Stage Binary Optional RRT model is more effective than

the Optional RRT model proposed by Gupta 2001 [4].
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CHAPTER I

INTRODUCTION

1.1 Social Desirability Bias

Social Desirability Bias (SDB) is the idiosyncrasy created by respondents in answer-

ing sensitive questions unfaithfully in the hope of leaving good impression on others. In

addition to this Impression Management component, there also exists Self-Deception

component in SDB. Some people just tend to believe that they are not engaged in

socially undesirable activities and report to the interviewer accordingly, causing dif-

ferent kind of SDB. Paulhus 1984 [16] recommends that Impression Management, not

Self-Deception, be controlled in survey research. SDB can happen when the survey

question is highly sensitive or personal. This is one of the many biases which occur

during survey sampling. Other typical biases are evasive answer bias, refusal bias, non-

response bias, selection bias, voluntary response bias, and so forth. These biases create

a problem because they cause sample statistics to systematically over- or underestimate

corresponding population parameters.

There are several techniques to promote faithful answers and to avoid Impression

Management component of SDB such as the Bogus Pipeline Technique, the Unmatched

Count Technique, and the Randomized Response Technique.
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1.2 Unmatched Count Technique

This technique has couple of different names; the Item Count Technique and the

List Technique. The basic idea of the Unmatched Count Technique (UCT) is very

simple. Randomly selected respondents in the control group receive a group of non-

sensitive questions, and are asked to report the number of “yes” answers. After one

more question—which is sensitive—is added to the existing set of questions, the new

set of questions is given to the other group. As members of both groups are randomly

selected, we can assume that their proportions of “yes” responses towards the non-

sensitive questions would be the same. Thus, we can get the unmatched count from

the experimental group. As the respondents are required to simply report the number

of “yes” answers, Impression Management component of SDB can be avoided. The

population proportion of “yes” answer to the sensitive question can now be deduced

statistically.

In many cases, it would be easy for a researcher to implement the UCT. Just

paper and pencils are needed and no other complex randomization devices are required.

Also, for the participants, the UCT is quite easy to understand and straightforward,

providing a strong perceived sense of privacy. Studies such as Coutts and Jann 2011

[2] and Lavender and Anderson 2009 [12] have shown that, in practice, the UCT is

more effective than other techniques because the highest perception of anonyminty is

found for the UCT among the respondents. However, the theory for the UTC model

is not as extensive as is for the RRT models. The RRT models allow many different

kinds of improvements which make these models more efficient. These improvements
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include optional models and two-stage models.

1.3 Bogus Pipeline Method

The term Bogus Pipeline (BPL) was coined by Jones and Sigall 1971 [10] to discribe

an imaginary dream device for psychologists, which would provide a direct pipleline

to the soul. Thus, they could have access to reliable phychological indicators. Jones

and Sigall 1971 [10] proposed that respondents’ answers wouldn’t be contaminated by

many of the biases, including SDB, if they were convinced that the device in front of

them was an actual polygraph. Their explanation was that respondents didn’t want to

be second-guessed by a machine, trying to avoid possible loss of face while believing the

true answers would be revealed regardless of their response. Roese and Jamieson 1993

[18] showed that the BPL produced reliable effects consistent with a reduction in SDB

after meta-analysing 31 studies that had used the bogus pipeline for their research.

1.4 Randomized Response Technique

The Randomized Response Technique (RRT) was first proposed by Warner 1965

[21]. It is a survey research method specifically designed to ask sensitive questions.

Suppose we need to estimate the proportion of drug abusers in a population in the

last 3 months. Let us have a deck of cards where 10% of the cards have the statement “I

have used controlled substances without prescription at least once in the last 3 months.”

The rest of the cards have the statement “I have not used controlled substances without

prescription in the last 3 months,” written on them. The respondents are expected to

give a binary answer—either “yes, this statement is correct,” or “no, this statement is
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not correct”—to the statement on the card which they draw from the deck. Due to the

randomization device—10% probability of drawing drug abuse question, the researcher

has no idea of what a “yes” answer means individually.

Notice that it is quite important in practice for a respondent to understand that

the RRT maintains privacy, as the randomization device is invisible. Some of the

respondents might not be able to grasp this probability concept easily. Without this

understanding, Impression Management component of SDB cannot be overcome.

Since the RRT method was first introduced in 1965, there are many areas where the

RRT models have been used. One of the interesting studies using the RRT in practice

is by Schneider 2003 [19]. It was an experimental study to examine whether com-

pensation and stock ownership affect internal auditors’ objectivity. In order to elicit

truthful responses and overcome SDB from active internal auditors, Schneider adopted

the RRT and collected randomized responses from 172 participants. It was found that

stock ownership did not affect internal auditors’ reporting decisions while compensa-

tion tied to stock prices made internal auditors report violations less frequently. In

the Netherlands, Lensvelt-Mulders, van der Heijden, Laudy, and van Gils 2006 [13]

validated a computer assisted RRT survey to estimate the prevalence of fraud in dis-

ability benefits. By the time of Lensvelt-Mulders et al.’s research, the actual survey to

estimate the disability fraud in the Netherlands included home interviews by trained

interviewers with randomized response questions. Lavender and Anderson 2009 [12]

assessed the effect of perceived anonymity on endorsements of eating disorder bahaviors

and attitudes among 469 undergraduate women from a university in the Northeastern
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United States. They used a standard anonymous true/false survey, the UCT, and

the RRT. Then they compared the results generated by those three different survey

techniques. In Germany, Ostapczuk, Musch, and Moshagen 2009 [15] studied SDB

among the highly educated and the less educated in their attitude towards foreigners,

comparing their answers from direct questioning conditions and the RRT conditions.

In Hong Kong, Kwan, So, and Tam 2010 [11] showed how truthful answers to sensitive

questions about software piracy can be estimated by using the RRT.

1.5 Outline of the Thesis

Chapter I has presented a brief introduction to Social Desirablity Bias and discussed

several techniques to promote faithful answers in answering sensitive questions. It also

has discussed how those techniques were applied in practice.

Chapter II presents three previous studies and models in the RRT area, which serve

as the foundation for the proposed model in this thesis.

Chapter III proposes the Two-Stage Binary Optional RRT model and examines

estimators for the two parameters of the model (π—the prevalence of sensitive char-

acteristic and ω—the sensitivity level of the underlying question) and the variances of

them. In Section 3.2, π̂p and V ar(π̂p) are discussed. As for ω̂p, the first order approx-

imation of V ar(ω̂p) is presented in Section 3.3. Asymptotic normality of π̂p and ω̂1 is

discussed in these sections too.

Chapter IV presents optimal sub-sample sizes of n1 and n2 to minimize V ar(π̂p)

in Theorem IV.1 and to minimize V ar(ω̂1) in Theorem IV.2. It also presents optimal

value of the Two-Stage Parameter (T ).
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Chapter V presents how the simulations are set up and discusses the results of

simulations of the proposed model.

Chapter VI presents the concluding remarks of this thesis.

Appendix A presents the R program code for the simulations of the proposed model.
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CHAPTER II

SOME RANDOMIZED RESPONSE TECHNIQUE MODELS

2.1 First Model

In his groundbreaking paper in 1965, Warner [21] proposed a very interesing idea

of how to deal with evasive answer bias, especially when it comes to personal or con-

troversial survey questions. The basic idea is very simple; putting a randomization

mechanism between the interviewer and the interviewee, so that the intervewer cannot

know what the answer will really mean. By permitting the interviewee to maintain

privacy, one can expect increased cooperation and a more truthful answer from the

interviewee. Throughout this thesis, we assume that our sample is a simple random

sample with replacement.

Warner 1965 [21] proposed a spinner with probability p pointing to the letter A and

with probability (1 − p) pointing to the letter B. Every respondent belongs to either

Group A—the sensitive group, or Group B—the non-sensitive group. The spinner is

run without the interviewer’s presense and the interviewee is to report a “Yes” or a

“No” to indicate whether or not the group the spinner is pointing to is the group he or

she actually belongs to.

Let Py be the probability of a “Yes” response from a respondent. Note that a “Yes”

response can be provided in two ways. One is when the respondent belongs to Group

A while the spinner points to A. Another is when he or she belongs to Group B while
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the spinner points to B. Let π be the proportion of a population that belongs to Group

A. We want to estimate π.

Then Py can be expressed as follows.

Py = πp+ (1− π)(1− p) (II.1)

Solving for π, we have

π =
Py − (1− p)

2p− 1
.

Thus, the Warner’s estimate of π is given by

π̂w =
P̂y − (1− p)

2p− 1
. (II.2)

where P̂y is the proportion of “Yes” responses in the survey.

P̂y is both an unbiased and the Maximum Likelihood Estimator (MLE) of Py as

shown in Chaudhuri 2011 [1]. Taking expected value on both sides of Equation (II.2),

we get

E (π̂w) =
E
(
P̂y

)
− (1− p)

2p− 1
=
Py − (1− p)

2p− 1
= π.

Thus, π̂w is an unbiased estimator of π.
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Using V ar(P̂y) =
Py(1−Py)

n
, the variance of π̂w is,

V ar (π̂w) =
1

(2p− 1)2
V ar

(
P̂y

)
(II.3)

=
1

(2p− 1)2

{
Py(1− Py)

n

}
. (II.4)

After substituting Py from Equation (II.1) into Equation (II.4), we have the vari-

ance of the Warner’s estimator as given by

V ar(π̂w) =
π(1− π)

n
+

p(1− p)
n(2p− 1)2

(II.5)

with

V̂ ar(π̂w) =
π̂w(1− π̂w)

n− 1
+

p(1− p)
(n− 1)(2p− 1)2

(II.6)

2.2 Two-Stage Model by Mangat and Singh, 1990

In 1990, Mangat and Singh [14] introduced a Two-Stage RRT model by injecting

an element of truthful responses into the Warner’s randomized response model [21].

In order to have more truthful answers, they put one more randomization device

into the original Warner’s model. The first randomization device has two options: (1)

‘Do you belong to Group A?’, and (2) ‘Go to the second randomization device,’ And,

the second stage—or the second randomization device—is nothing but the Warner’s

randomization device. The probabilities of (1) and (2) are known to be T and (1−T ),
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respectively. Because the entire process remains unobserved by the interviewer as in

the Warner’s model, the interviewee can maintain privacy regardless of the answer

either from the first randomization device or from the Warner’s randomization device.

Let Py be the probability of a “Yes” response from a respondent under this model.

Py is given by

Py = Tπ + (1− T ){πp+ (1− π)(1− p)} = {T + (2p− 1)(1− T )}π + (1− T )(1− p). (II.7)

Rewriting this equation for π

π =
Py − (1− p)(1− T )
T + (2p− 1)(1− T )

=
Py − (1− p)(1− T )
(2p− 1) + 2T (1− p)

.

This leads to the Mangat and Singh’s estimator for π, given by

π̂m =
P̂y − (1− p)(1− T )
(2p− 1) + 2T (1− p)

. (II.8)

where P̂y is the proportion of “Yes” responses in the survey.

As P̂y is both an unbiased and the MLE of Py, π̂m is unbiased too. This can be

seen from the fact that

E (π̂m) =
E
(
P̂y

)
− (1− p)(1− T )

(2p− 1) + 2T (1− p)
=

Py − (1− p)(1− T )
(2p− 1) + 2T (1− p)

= π.
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Also,

V ar(π̂m) =
1

{(2p− 1) + 2T (1− p)}2
V ar(P̂y) (II.9)

=
1

{(2p− 1) + 2T (1− p)}2

{
Py(1− Py)

n

}
. (II.10)

Using Equation (II.7), this can be rewritten as

V ar(π̂m) =
π(1− π)

n
+

(1− T )(1− p){1− (1− T )(1− p)}
n{(2p− 1) + 2T (1− p)}2

(II.11)

with

V̂ ar(π̂m) =
π̂m(1− π̂m)

n− 1
+

(1− T )(1− p){1− (1− T )(1− p)}
(n− 1){(2p− 1) + 2T (1− p)}2

(II.12)

Mangat and Singh 1990 [14] showed that

V ar(π̂m) < V ar(π̂w) if
1− 2p

1− p
< T (II.13)

As 1−2p
1−p < 1 for 0 < p < 1, a meaningful value of T can be chosen between 1−2p

1−p

and 1.

2.3 Optional Randomized Response Model by Gupta, 2001

It is reasonable to assume that some proportion of the population might not feel

that the survey question is sensitive and would give candid answers if they get the

option to answer truthfully. Instead of injecting an element of truth by the researchers
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as in the Two-Stage Model by Mangat and Singh, we can incorporate this unknown

proportion of truthfulness differently into a new model. In this Optional Model, the

respondent has the freedom to choose how to answer the question. If the respondent

feels the question is sensitive, he or she can give a scrambled response. If the respondent

doesn’t feel it’s a sensitive quesion, he or she can just give a true answer. This optional

randomization process takes place without being observed by the researcher, who has

no idea of what method the respondent chose and what a “Yes” response means.

In the Two-Stage Model, parameter T could be chosen by the interviewer, thus

was a known constant prior to using the two randomization devices. In this Optional

Model, the sensitivity level (ω) of a specific question is defined to be the population

proportion of subjects who feel the question is sensitive. Notice that there are two

unknown parameters in this model—π and ω. The Optional Randomized Response

models were first proposed by Gupta 2001 [4] and Gupta, Gupta, and Singh 2002 [5].

The characteristics of the models have been discussed in great depth by Gupta and

Shabbir 2004 [7], Gupta, Thornton, Shabbir, and Singhal 2006 [9], Gupta, Shabbir,

and Sehra 2010 [8], and Gupta, Mehta, Shabbir, and Dass 2012 [6].

The probability of a “Yes” response in this model can be expressed as

Py = (1− ω)π + ω{πp+ (1− π)(1− p)} (II.14)

Equation (II.14) can be rearranged as

Py − π = (p− 1)(2π − 1)ω (II.15)
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As Equation (II.15) includes two parameters—π and ω, it cannot be handled with

one set of responses. Assume we have two independent samples with sample sizes n1

and n2 respectively (n1 + n2 = n). Let us also assume that p1 and p2 are different

probabilities associated with the different Warner’s devices used in the two samples.

Using Equation (II.15) for the two independent samples, we have

Py1 − π = (p1 − 1)(2π − 1)ω and Py2 − π = (p2 − 1)(2π − 1)ω (II.16)

With λ = (p1−1)
(p2−1) as in Greenberg, Abul-Ela, Simmons, and Horvitz 1969 [3], we

have

π =
λPy2 − Py1
λ− 1

(II.17)

From Equation (II.17), we have the Gupta estimator for π as

π̂g =
λP̂y2 − P̂y1
λ− 1

(II.18)

where P̂y1 and P̂y2 are the proportions of “Yes” responses in the two samples.

Note that π̂g is unbiased as shown below.

E (π̂g) =
λE
(
P̂y2

)
− E

(
P̂y1

)
λ− 1

=
λPy2 − Py1
λ− 1

= π (II.19)
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Using V ar(P̂y1) =
Py1 (1−Py1 )

n1
and V ar(P̂y2) =

Py2 (1−Py2 )

n2
, the variance of π̂g is,

V ar(π̂g) =
1

(λ− 1)2
{λ2V ar(P̂y2) + V ar(P̂y1)}

=
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
(II.20)

Notice that the two samples are independent so that the covariance term does not

exist in Equation (II.20).

Using n1 = n− n2, we can rewrite Equation (II.20) as

V ar(π̂g) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)
n− n2

}
(II.21)

After taking partial derivative on both sides of Equation (II.21), the optimal ratio

of n1

n2
—which gives the minimum variance—is obtained.

∂V ar(π̂g)

∂n2
=

1

(λ− 1)2

{
−λ2Py2(1− Py2)

n22
+
Py1(1− Py1)
(n− n2)2

}
= 0 (II.22)

Solving Equation (II.22) for n1

n2
, we have the optimal ratio of

(
n1

n2

)
opt(π̂g)

as

follows.

(
n1
n2

)
opt(π̂g)

=
1

λ

√
Py1(1− Py1)
Py2(1− Py2)

=
(1− p2)
(1− p1)

√
Py1(1− Py1)
Py2(1− Py2)

(II.23)
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Now, let us solve Equations (II.16) for ω. Note that

Py1 − Py2 = (p1 − p2)(2π − 1)ω (II.24)

Solving Equation (II.24) for ω and substituting π =
λPy2−Py1

λ−1 and λ = (p1−1)
(p2−1) from

Equations (II.17), we have,

ω =
Py1 − Py2

2Py1(1− p2)− 2Py2(1− p1)− (p1 − p2)
. (II.25)

By replacing Py1 and Py2 with their unbiased MLEs, the Gupta estimator for ω

is

ω̂g =
P̂y1 − P̂y2

2P̂y1(1− p2)− 2P̂y2(1− p1)− (p1 − p2)
(II.26)

Given that ω̂g is a ratio of combinations of two random variables, calculation of

its mean and variance will require some approximation, as we will discuss in the next

chapter.
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CHAPTER III

PROPOSED MODEL: TWO-STAGE BINARY OPTIONAL

RRT MODEL

3.1 Model Setup

The proposed model in this thesis is the combination of the Two-Stage Model in

Section 2.2 and the Optional Model in Section 2.3. The first randomization device the

interviewee encounters in the proposed model has two options (1) ‘Do you belong to

the sensitive group?’ and (2) ‘Go to the second randomization device.’ The second

stage—or the second randomization device—is nothing but the Optional RRT Model

by Gupta 2001 [4] in Section 2.3. The interviewee is not observed during the entire

process of applying this model like the previous models explained in Chapter II, in

order for him or her to maintain privacy.

Let Py be the probability of “Yes” response from a respondent under this model,

T be the probability of asking ‘Do you belong to the sensitive group?’ in the first

randomized device, π be the proportion of the population that belongs to the sensitive

group, p be the probability of the spinner pointing to the sensitive group, and ω be the

level of sensitivity of the survery question in the population. We have,

Py = Tπ + (1− T ) {(1− ω)π + ω{πp+ (1− π)(1− p)}} . (III.1)
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Equation (III.1) can be re-arranged as

Py = Tπ + π − Tπ + (1− T ) {−π + πp+ (1− π)(1− p)}ω

This leads to

Py − π = (1− T )(p− 1)(2π − 1)ω (III.2)

Equation (III.2) cannot be handled directly, because it has two unknown parameters—

π and ω—in it. T is assumed known. Assume also we have two independent samples

with sample sizes n1 and n2 respectively (n1 + n2 = n). Let us assume that p1 and

p2 are different probabilites associated with the different Warner’s devices used in the

two samples with this background.

Using Equation (III.2) for the two independent samples, we have

Py1 − π = (1− T )(p1 − 1)(2π − 1)ω (III.3)

Py2 − π = (1− T )(p2 − 1)(2π − 1)ω (III.4)

With λ = (p1−1)
(p2−1) , we get

π =
λPy2 − Py1
λ− 1

(III.5)
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3.2 π̂p and V ar (π̂p)

Equation (III.5) leads to the estimator

π̂p =
λP̂y2 − P̂y1
λ− 1

(III.6)

where P̂y1 and P̂y2 are the proportions of “Yes” responses in the two samples.

Theorem III.1. π̂p ∼ AN(π, Vπ), where Vπ = 1
(λ−1)2

{
λ2

Py2 (1−Py2 )

n2
+

Py1 (1−Py1 )

n1

}
.

Proof. According to Equation (III.6), π̂p is a linear combination of P̂y2 and P̂y1 . As

P̂y2 and P̂y1 are independent and have asymptotically normal distributions, the linear

combination is also asymptotically normal. It may be noted that as the total sample

size n goes to infinity, so will the sub-sample sizes n1 and n2, although at different

rates.

Using E(P̂y2) = Py2 and E(P̂y1) = Py1 , the expected value of π̂p is

E (π̂p) =
λE
(
P̂y2

)
− E

(
P̂y1

)
λ− 1

=
λPy2 − Py1
λ− 1

= π.

Thus, π̂p is an unbiased estimator for π.
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Using V ar(P̂y1) =
Py1 (1−Py1 )

n1
, V ar(P̂y2) =

Py2 (1−Py2 )

n2
, and Cov(P̂y1 , P̂y2) = 0 as the

two samples are independent, the variance of π̂p is given by

V ar(π̂p) =
1

(λ− 1)2
{λ2V ar(P̂y2) + V ar(P̂y1)}

=
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
= Vπ (III.7)

Note that Equation (III.6) will be used to simulate the mean and variance of π̂p

and Equation (III.7) will be used to calculate the theoretical variance of π̂p later in

Section 5.1.

3.3 ω̂p and V ar (ω̂p) with 1st Order Approximation

Subtracting Equation (III.4) from Equation (III.3), we have

Py1 − Py2 = (1− T )(p1 − p2)(2π − 1)ω. (III.8)

Solving for ω, we have

ω =

{
Py1 − Py2

(1− T )(p1 − p2)

}
1

(2π − 1)
. (III.9)
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(2π − 1) is expressed as follows

2π − 1 =
2(λPy2 − Py1)

λ− 1
− 1

=
2λPy2 − 2Py1 − λ+ 1

λ− 1

=
λ(2Py2 − 1)− (2Py1 − 1)

λ− 1

=
{ 1−p11−p2 (2Py2 − 1)− (2Py1 − 1)

1−p1
1−p2 − 1

=
1− p2
p2 − p1

{
1− p1
1− p2

(2Py2 − 1)− (2Py1 − 1)

}

=
(1− p1)(2Py2 − 1)− (1− p2)(2Py1 − 1)

p2 − p1
(III.10)

If θ1 = 2Py1 − 1 and θ2 = 2Py2 − 1, (III.11)

then, (2π − 1) is given by

2π − 1 =
(1− p1)θ2 − (1− p2)θ1

p2 − p1
. (III.12)
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Now from Equation (III.9), ω is given by

ω =

{
Py1 − Py2

(1− T )(p1 − p2)

}
1

(2π − 1)

=
Py1 − Py2

(1− T ){(1− p2)θ1 − (1− p1)θ2}

=
(2Py1 − 1)− (2Py2 − 1)

2(1− T ){(1− p2)θ1 − (1− p1)θ2}

=
θ1 − θ2

2(1− T ){(1− p2)θ1 − (1− p1)θ2}
(III.13)

By replacing θi with its unbiased MLE (θ̂i = 2P̂yi − 1) in (III.13), the estimator

for ω can be expressed as follows.

ω̂p =
θ̂1 − θ̂2

2(1− T ){(1− p2)θ̂1 − (1− p1)θ̂2}
(III.14)

Note that Equation (III.14) will be used to simulate the mean and variance of ω̂p

later in Section 5.2.

Also note that ω̂p is a bivariate function of θ̂1 and θ̂2. Thus, Equation (III.14) can

be written as

ω̂p(θ̂1, θ̂2) =
θ̂1 − θ̂2

2(1− T ){(1− p2)θ̂1 − (1− p1)θ̂2}
(III.15)
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Taylor’s expansion for a bivariate function g(x, y) is given by, as in Spiegel 1991

[20, p.9],

g(x, y) = g(a, b) + gx(a, b)(x− a) + gy(a, b)(y − b)

+
gxx(a, b)

2!
(x− a)2 + gyy(a, b)

2!
(y − b)2 + 2

gxy(a, b)

2!
(x− a)(y − b)

+ · · · · · · (III.16)

So, using the first order Taylor’s expansion, ω̂p becomes,

ω̂p ≈ ω̂p(θ1, θ2) +
∂ω̂p(θ̂1, θ̂2)

∂θ̂1

∣∣∣∣∣
θ1,θ2

(θ̂1 − θ1) +
∂ω̂p(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣∣
θ1,θ2

(θ̂2 − θ2) = ω̂1 (III.17)

Note the following first order partial derivatives

∂ω̂p(θ̂1, θ̂2)

∂θ̂1
=

1

2(1− T )
∂

∂θ̂1

{
θ̂1 − θ̂2

(1− p2)θ̂1 − (1− p1)θ̂2

}

=
1

2(1− T )

{
{(1− p2)θ̂1 − (1− p1)θ̂2}−1 − (θ̂1 − θ̂2){(1− p2)θ̂1 − (1− p1)θ̂2}−2(1− p2)

}

=
1

2(1− T )

{
{(1− p2)θ̂1 − (1− p1)θ̂2} − (θ̂1 − θ̂2)(1− p2)

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
(1− p2)θ̂1 − (1− p1)θ̂2 − (1− p2)θ̂1 + (1− p2)θ̂2

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
−(1− p1)θ̂2 + (1− p2)θ̂2
{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
(p1 − p2)θ̂2

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}
(III.18)
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and,

∂ω̂p(θ̂1, θ̂2)

∂θ̂2
=

1

2(1− T )
∂

∂θ̂2

{
θ̂1 − θ̂2

(1− p2)θ̂1 − (1− p1)θ̂2

}

=
1

2(1− T )

{
−{(1− p2)θ̂1 − (1− p1)θ̂2}−1 + (θ̂1 − θ̂2){(1− p2)θ̂1 − (1− p1)θ̂2}−2(1− p1)

}

=
1

2(1− T )

{
(θ̂1 − θ̂2)(1− p1)− {(1− p2)θ̂1 − (1− p1)θ̂2}

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
(1− p1)θ̂1 − (1− p1)θ̂2 − (1− p2)θ̂1 + (1− p1)θ̂2

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
(1− p1)θ̂1 − (1− p2)θ̂1
{(1− p2)θ̂1 − (1− p1)θ̂2}2

}

=
1

2(1− T )

{
−(p1 − p2)θ̂1

{(1− p2)θ̂1 − (1− p1)θ̂2}2

}
. (III.19)

Thus, the first order approximation of ω̂p is

ω̂1 =
1

2(1− T )

{
θ1 − θ2

(1− p2)θ1 − (1− p1)θ2
+

(p1 − p2)θ2(θ̂1 − θ1)
{(1− p2)θ1 − (1− p1)θ2}2

−
(p1 − p2)θ1(θ̂2 − θ2)

{(1− p2)θ1 − (1− p1)θ2}2

}
(III.20)

Note that Equation (III.20) will be used to simulate the mean and variance of ω̂1

later in Section 5.2.

Theorem III.2. ω̂1 ∼ AN(ω, Vω),

where Vω =
(p1−p2)2

{
(2Py2−1)

2
{

Py1 (1−Py1 )

n1

}
+(2Py1−1)

2
{

Py2 (1−Py2 )

n2

}}
(1−T )2{(1−p2)(2Py1−1)−(1−p1)(2Py2−1)}

4 .
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Proof. According to Equation (III.20), ω̂1 is a linear combination of θ̂1 and θ̂2, and

hence of P̂y2 and P̂y1 . As P̂y2 and P̂y1 are independent and have asymptotically normal

distributions, the linear combination is also asymptotically normal.
Applying expected value on both sides of (III.20) and using E(θ̂i) = θi, we get

E (ω̂1) =
1

2(1− T )

 θ1 − θ2
(1− p2)θ1 − (1− p1)θ2

+
(p1 − p2)θ2

(
E
(
θ̂1
)
− θ1

)
{(1− p2)θ1 − (1− p1)θ2}2

−
(p1 − p2)θ1

(
E
(
θ̂2
)
− θ2

)
{(1− p2)θ1 − (1− p1)θ2}2



=
1

2(1− T )

{
θ1 − θ2

(1− p2)θ1 − (1− p1)θ2

}

=
Py1 − Py2

(1− T ){(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}

= ω

Thus, ω̂1 is an unbiased estimator for ω.

Taking variance on both sides of Equation (III.20), and using V ar(θ̂1) = 4V ar(P̂y1) =

4Py1 (1−Py1 )

n1
, V ar(θ̂2) = 4V ar(P̂y2) =

4Py2 (1−Py2 )

n2
, and Cov(P̂y1 , P̂y2) = 0 (as the two sam-

ples are independent), the variance of ω̂1 is,

V ar (ω̂1) =
1

4(1− T )2

 (p1 − p2)2θ22V ar
(
θ̂1

)
{(1− p2)θ1 − (1− p1)θ2}4

+
(p1 − p2)2θ21V ar

(
θ̂2

)
{(1− p2)θ1 − (1− p1)θ2}4


=

(p1 − p2)2

4(1− T )2{(1− p2)θ1 − (1− p1)θ2}4
{
θ22V ar

(
θ̂1

)
+ θ21V ar

(
θ̂2

)}

=
(p1 − p2)2

{
(2Py2 − 1)2

{
Py1

(1−Py1
)

n1

}
+ (2Py1 − 1)2

{
Py2

(1−Py2
)

n2

}}
(1− T )2{(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}4

= Vω (III.21)
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Note that Equation (III.21) will be used to calculate the theoretical variance of ω̂1

later in Section 5.2.
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CHAPTER IV

OPTIMALITY ISSUES

4.1 Optimal Sub-Sample Sizes

Theorem IV.1. The optimal value of n1

n2
that minimizes V ar (π̂p) is given by

(
n1
n2

)
opt(π̂p)

=
1

λ

√
Py1(1− Py1)
Py2(1− Py2)

=
(1− p2)
(1− p1)

√
Py1(1− Py1)
Py2(1− Py2)

, (IV.1)

where n1 and n2 are sub-sample sizes of n with n = n1 + n2.

Proof. Using n1 = n− n2, we can rewrite Equation (III.7) as follows.

V ar(π̂p) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)
n− n2

}
(IV.2)

After taking partial derivative on both sides of Equation (IV.2), we get

∂V ar(π̂p)

∂n2
=

1

(λ− 1)2

{
−λ2Py2(1− Py2)

n22
+
Py1(1− Py1)
(n− n2)2

}
= 0 (IV.3)

∂2V ar(π̂p)

∂n22
=

1

(λ− 1)2

{
2λ2

Py2(1− Py2)
n32

+ 2
Py1(1− Py1)
(n− n2)3

}
> 0 (IV.4)

Note that the second derivative of V ar(π̂p) is always positive. Thus, V ar(π̂p) is

convex and we have the minimum variance when ∂V ar(π̂p)

∂n2
= 0.
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Solving Equation (IV.3) for
(
n1

n2

)
, we have

λ2
Py2(1− Py2)

n22
=
Py1(1− Py1)
(n− n2)2

⇐⇒ (n− n2)2

n22
=

1

λ2

{
Py1(1− Py1)
Py2(1− Py2)

}

⇐⇒ n21
n22

=
1

λ2

{
Py1(1− Py1)
Py2(1− Py2)

}

(
n1
n2

)
opt(π̂p)

=
1

λ

√
Py1(1− Py1)
Py2(1− Py2)

=
(1− p2)
(1− p1)

√
Py1(1− Py1)
Py2(1− Py2)

.

Notice that
(
n1

n2

)
opt(π̂g)

from the Gupta 2001 [4] model in Section 2.3 and
(
n1

n2

)
opt(π̂p)

in Equation (IV.1) look similar, but they are not identical because (1− T ) is included

in Py2 and Py1 for π̂p in our model. (See Equations (III.3) and (III.4).)

Theorem IV.2. The optimal value of n1

n2
that minimizes V ar (ω̂1) is given by

(
n1
n2

)
opt(ω̂1)

=

∣∣∣∣2Py2 − 1

2Py1 − 1

∣∣∣∣
√
Py1(1− Py1)
Py2(1− Py2)

, (IV.5)

when n1 and n2 are sub-sample sizes of n, where n = n1 + n2 and the 1st order Taylor

approximation of ω̂p is used.

Proof. Using n1 = n− n2, we can rewrite (III.21) as follows.

V ar (ω̂1) =
(p1 − p2)2

{
(2Py2 − 1)2

{
Py1 (1−Py1 )

n1

}
+ (2Py1 − 1)2

{
Py2 (1−Py2 )

n−n1

}}
(1− T )2{(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}4

(IV.6)
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After taking partial derivative on both sides of Equation (IV.6) with respect to n1,

we have the optimal n1

n2
ratio which gives the minimum variance of ω̂1.

∂V ar (ω̂1)

∂n1
= −(2Py2 − 1)2

{
Py1(1− Py1)

n21

}
+ (2Py1 − 1)2

{
Py2(1− Py2)
(n− n1)2

}
= 0 (IV.7)

∂2V ar (ω̂1)

∂n21
= 2(2Py2 − 1)2

{
Py1(1− Py1)

n31

}
+ 2(2Py1 − 1)2

{
Py2(1− Py2)
(n− n1)3

}
> 0 (IV.8)

Note that the second derivative of V ar (ω̂1) is always positive. Thus, V ar (ω̂1) is

convex and we have the minimum variance when ∂V ar(ω̂1)
∂n1

= 0.

Solving Equation (IV.7) for n1

n2
, we have

(2Py1 − 1)2
{
Py2(1− Py2)
(n− n1)2

}
= (2Py2 − 1)2

{
Py1(1− Py1)

n21

}

n21
(n− n1)2

=
(2Py2 − 1)2

(2Py1 − 1)2

{
Py1(1− Py1)
Py2(1− Py2)

}

n21
n22

=
(2Py2 − 1)2

(2Py1 − 1)2

{
Py1(1− Py1)
Py2(1− Py2)

}

(
n1
n2

)
opt(ω̂1)

=

∣∣∣∣2Py2 − 1

2Py1 − 1

∣∣∣∣
√
Py1(1− Py1)
Py2(1− Py2)
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Now, let’s compare two optimal values of n1

n2
to see how they behave in a given

setting. From Equation (IV.5), we have
(
n1

n2

)
opt(ω̂1)

as

(
n1
n2

)
opt(ω̂1)

=

∣∣∣∣1− 2(1− T )(1− p1)ω
1− 2(1− T )(1− p2)ω

∣∣∣∣
√
Py1(1− Py1)
Py2(1− Py2)

(IV.9)

Here in Equation (IV.9), p1 is in its numerator and p2 is in the denominator, whereas

p1 and p2 are located in the opposite way in Equation (IV.1). Thus, these two optimal

values are quite opposite of each other and behave like reciprocal of each other. This

will be shown later in Section 5.3 in detail. The estimation of π̂ and its variance

are the most important task because they are directly related to the survey question.

Throughout Chapter V, the optimal values of
(
n1

n2

)
opt(π̂p)

were chosen first. Then n1

and n2 were determined accordingly and used in each simulation.

4.2 Optimal Value of the Two-Stage Parameter (T )

In this section, we study how V ar(π̂p) behaves with respect to T in the proposed

model.

Theorem IV.3. V ar(π̂p) is maximum, when T = T ∗,

where T ∗ =
n1λ {2(1− p2)ω − 1}+ n2 {2(1− p1)ω − 1}

2ωn(1− p1)
.
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Proof. Expanding the variance formula (III.7) with Py1 and Py2 from Equations (III.3)

and (III.4), we have,

V ar(π̂p) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}

=
1

(λ− 1)2
λ2

n2
{(1− T )(p2 − 1)(2π − 1)ω + π} {1− (1− T )(p2 − 1)(2π − 1)ω − π}

+
1

(λ− 1)2
1

n1
{(1− T )(p1 − 1)(2π − 1)ω + π} {1− (1− T )(p1 − 1)(2π − 1)ω − π} (IV.10)

The coefficient of T 2 is negative.

− 1

(λ− 1)2

{
λ2

n22
(1− p2)2(2π − 1)2ω2 +

1

n21
(1− p1)2(2π − 1)2ω2

}
< 0 (IV.11)

Thus,
(
∂2V ar(π̂p)

∂T 2

)
T=T ∗

< 0 for the quadratic equation of T . And the right-hand

side of Equation (IV.10) is concave. So T ∗, which satisfies
(
∂V ar(π̂p)

∂T

)
T=T ∗

= 0, gives

the maximum value.
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Setting the first partial derivative of V ar(π̂p) with respect to T in Equation (IV.10)

equal to zero, we get

∂V ar(π̂)

∂T
=

1

(λ− 1)2
λ2

n2
{−(p2 − 1)(2π − 1)ω} {1− (1− T )(p2 − 1)(2π − 1)ω − π}

+
1

(λ− 1)2
λ2

n2
{(1− T )(p2 − 1)(2π − 1)ω + π} {(p2 − 1)(2π − 1)ω}

+
1

(λ− 1)2
1

n1
{−(p1 − 1)(2π − 1)ω} {1− (1− T )(p1 − 1)(2π − 1)ω − π}

+
1

(λ− 1)2
1

n1
{(1− T )(p1 − 1)(2π − 1)ω + π} {(p1 − 1)(2π − 1)ω} = 0

⇐⇒ λ2(p2 − 1)

n2
{−1 + 2(1− T )(p2 − 1)(2π − 1)ω + 2π}

+
(p1 − 1)

n1
{−1 + 2(1− T )(p1 − 1)(2π − 1)ω + 2π} = 0

⇐⇒ λ2(p2 − 1)

n2
{2(1− T )(p2 − 1)(2π − 1)ω + (2π − 1)}

+
(p1 − 1)

n1
{2(1− T )(p1 − 1)(2π − 1)ω + (2π − 1)} = 0

⇐⇒ λ2(p2 − 1)

n2
(2π − 1) {2(1− T )(p2 − 1)ω + 1}+ (p1 − 1)

n1
(2π − 1) {2(1− T )(p1 − 1)ω + 1} = 0

⇐⇒ λ2(p2 − 1)

n2
{2(1− T )(p2 − 1)ω + 1}+ (p1 − 1)

n1
{2(1− T )(p1 − 1)ω + 1} = 0

⇐⇒ T =
λ
n2

+ 1
n1

2ω
{
λ
n2

(p2 − 1) + 1
n1

(p1 − 1)
} + 1 = T ∗ (IV.12)
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Simplifying further, we have T ∗ given by

T ∗ =
λ
n2

+ 1
n1

2ω
{
λ
n2

(p2 − 1) + 1
n1

(p1 − 1)
} + 1 =

λ
n2

+ 1
n1

2ω
{

1
n2

(p1−1)
(p2−1) (p2 − 1) + 1

n1
(p1 − 1)

} + 1

=
λ
n2

+ 1
n1

2ω
{

1
n2

(p1 − 1) + 1
n1

(p1 − 1)
} + 1 =

λ
n2

+ 1
n1

2ω
{

1
n2

+ 1
n1

}
(p1 − 1)

+ 1

=
n1λ+ n2

2ω {n1 + n2} (p1 − 1)
+ 1 =

n1λ+ n2 + 2ωn1(p1 − 1) + 2ωn2(p1 − 1)

2ωn(p1 − 1)

=
n1λ+ n2 + 2ωn1λ(p2 − 1) + 2ωn2(p1 − 1)

2ωn(p1 − 1)
=
n1λ {2(p2 − 1)ω + 1}+ n2 {2(p1 − 1)ω + 1}

2ωn(p1 − 1)

=
n1λ {2(1− p2)ω − 1}+ n2 {2(1− p1)ω − 1}

2ωn(1− p1)
(IV.13)

Note that

T ∗ ≥ 0 when
{
n1λ {2(1− p2)ω − 1}+ n2 {2(1− p1)ω − 1}

}
≥ 0 (IV.14)

T ∗ < 0 when
{
n1λ {2(1− p2)ω − 1}+ n2 {2(1− p1)ω − 1}

}
< 0. (IV.15)

Lemma IV.4. If V ar(π̂p) = V ar(π̂g),

T = 0 or T =
n1λ

{
2(1− p2)ω − 1

}
+ n2

{
2(1− p1)ω − 1

}
ωn(1− p1)

= Tb
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Proof. Notice that V ar(π̂g) = V ar(π̂p)|T=0 because the proposed model is nothing but

the Gupta 2001 [4] model when T = 0.

Also, from Equations (II.20) and (IV.2), we have,

V ar(π̂g) =
1

(λ− 1)2

{
λ2
Py2|g(1− Py2|g)

n2
+
Py1|g(1− Py1|g)

n1

}

V ar(π̂p) =
1

(λ− 1)2

{
λ2
Py2|p(1− Py2|p)

n2
+
Py1|p(1− Py1|p)

n1

}
.

From Equations (II.16), we have the following for V ar(π̂g).

Py1|g = (p1 − 1)(2π − 1)ω + π, and Py2|g = (p2 − 1)(2π − 1)ω + π.

From Equations (III.3) and (III.4), we have the following for V ar(π̂p).

Py1|p = (1− T )(p1 − 1)(2π − 1)ω + π, and Py2|p = (1− T )(p2 − 1)(2π − 1)ω + π.

If β1 = (p1 − 1)(2π − 1)ω and β2 = (p2 − 1)(2π − 1)ω, (IV.16)

the variances V ar(π̂g) and V ar(π̂p) from Equations (II.20) and (IV.2) can be expressed
as follows.

V ar(π̂g) = V ar(π̂p)|T=0 =
1

(λ− 1)2

{
λ2

n2
(π + β2)(1− π − β2) +

1

n1
(π + β1)(1− π − β1)

}
(IV.17)

V ar(π̂p) =
1

(λ− 1)2

{
λ2(π + (1− T )β2)(1− π − (1− T )β2)

n2
+

(π + (1− T )β1)(1− π − (1− T )β1)
n1

}
(IV.18)
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Plugging in Equations (IV.17) and (IV.18) into V ar(π̂p) = V ar(π̂g), we have

1

(λ− 1)2

{
λ2(π + (1− T )β2)(1− π − (1− T )β2)

n2
+

(π + (1− T )β1)(1− π − (1− T )β1)
n1

}

=
1

(λ− 1)2

{
λ2

n2
(π + β2)(1− π − β2) +

1

n1
(π + β1)(1− π − β1)

}
.

Reorganizing this, we have

λ2(π + (1− T )β2)(1− π − (1− T )β2)
n2

+
(π + (1− T )β1)(1− π − (1− T )β1)

n1

=
λ2

n2
(π + β2)(1− π − β2) +

1

n1
(π + β1)(1− π − β1)

⇐⇒ λ2n1
(
π + (1− T )β2

)(
1− π − (1− T )β2

)
+ n2

(
π + (1− T )β1

)(
1− π − (1− T )β1

)

= λ2n1(π + β2)(1− π − β2) + n2(π + β1)(1− π − β1)

⇐⇒ λ2n1(π + β2 − β2T )(1− π − β2 + β2T ) + n2(π + β1 − β1T )(1− π − β1 + β1T )

= λ2n1(π + β2)(1− π − β2) + n2(π + β1)(1− π − β1)

⇐⇒ λ2n1
(
(π + β2)(1− π − β2) + β2(π + β2)T + β2(π + β2 − 1)T − β2

2T
2
)

+ n2
(
(π + β1)(1− π − β1) + β1(π + β1)T + β1(π + β1 − 1)T − β2

1T
2
)

= λ2n1(π + β2)(1− π − β2) + n2(π + β1)(1− π − β1)

⇐⇒ λ2n1
(
β2(π + β2)T + β2(π + β2 − 1)T − β2

2T
2
)
+ n2

(
β1(π + β1)T + β1(π + β1 − 1)T − β2

1T
2
)
= 0
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Thus, the equation becomes

λ2n1
(
β2(2π + 2β2 − 1)T − β2

2T
2
)
+ n2

(
β1(2π + 2β1 − 1)T − β2

1T
2
)
= 0. (IV.19)

Factoring the left hand side of (IV.19), we have

T
{
(λ2n1β

2
2 + n2β

2
1)T − λ2n1β2(2π + 2β2 − 1)− n2β1(2π + 2β1 − 1)

}
= 0 (IV.20)

The solutions are

T =0 or, (IV.21)

T =
λ2n1β2(2π + 2β2 − 1) + n2β1(2π + 2β1 − 1)

λ2n1β2
2 + n2β2

1

= Tb (IV.22)

Plugging in β1 and β1 from Equations (IV.16) into Equation (IV.22), Tb will be,

Tb =
λ2n1(p2 − 1)(2π − 1)ω

(
2(p2 − 1)(2π − 1)ω + 2π − 1

)
+ n2(p1 − 1)(2π − 1)ω

(
2(p1 − 1)(2π − 1)ω + 2π − 1

)
λ2n1(p2 − 1)2(2π − 1)2ω2 + n2(p1 − 1)2(2π − 1)2ω2

.

Dividing out the common factor of (2π − 1)2ω, we get

Tb =
λ2n1(p2 − 1){2(p2 − 1)(2π − 1)ω + 2π − 1}+ n2(p1 − 1){2(p1 − 1)(2π − 1)ω + 2π − 1}

λ2n1(p2 − 1)2(2π − 1)ω + n2(p1 − 1)2(2π − 1)ω

=
λ2n1(p2 − 1)(2π − 1){2(p2 − 1)ω + 1}+ n2(p1 − 1)(2π − 1){2(p1 − 1)ω + 1}

λ2n1(p2 − 1)2(2π − 1)ω + n2(p1 − 1)2(2π − 1)ω

=
λ2n1(p2 − 1){2(p2 − 1)ω + 1}+ n2(p1 − 1){2(p1 − 1)ω + 1}

λ2n1(p2 − 1)2ω + n2(p1 − 1)2ω
.
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Using λ = (p1−1)
(p2−1) , it can be further simplified to

Tb =
λ (p1−1)

(p2−1)n1(p2 − 1)
{
2(p2 − 1)ω + 1

}
+ n2(p1 − 1)

{
2(p1 − 1)ω + 1

}
(p1−1)2
(p2−1)2n1(p2 − 1)2ω + n2(p1 − 1)2ω

=
λn1(p1 − 1)

{
2(p2 − 1)ω + 1

}
+ n2(p1 − 1)

{
2(p1 − 1)ω + 1

}
ω
{
n1 + n2

}
(p1 − 1)2

Thus, we have

Tb =
n1λ

{
2(1− p2)ω − 1

}
+ n2

{
2(1− p1)ω − 1

}
ωn(1− p1)

. (IV.23)

Lemma IV.5.

2T ∗ = Tb

Proof. From Equations (IV.13) and (IV.23), we have

2T ∗ = 2
n1λ

{
2(1− p2)ω − 1

}
+ n2

{
2(1− p1)ω − 1

}
2ωn(1− p1)

=
n1λ

{
2(1− p2)ω − 1

}
+ n2

{
2(1− p1)ω − 1

}
ωn(1− p1)

= Tb. (IV.24)
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Lemma IV.6. Tb < 1,

when 0 < p1 < 1, 0 < p2 < 1, 0 < ω < 1, 0 < n1

n
< 1, and 0 < n2

n
< 1.

Proof. From Equation (IV.23), Tb can be rewritten as

Tb =
n1λ

{
2(p2 − 1)ω + 1

}
+ n2

{
2(p1 − 1)ω + 1

}
ωn(p1 − 1)

=
2n1λ(p2 − 1)ω + n1λ+ 2n2(p1 − 1)ω + n2

ωn(p1 − 1)

=
2n1
n

+
n1

n(p2 − 1)ω
+

2n2
n

+
n2

n(p1 − 1)ω

= 2 +
n1

n(p2 − 1)ω
+

n2
n(p1 − 1)ω

= 2− 1

ω

{
n1

n(1− p2)
+

n2
n(1− p1)

}

= 2− 1

ω

{
n1/n

(1− p2)
+

1− n1/n
(1− p1)

}

= 2− 1

ω

{
n1/n

(1− p2)
− n1/n

(1− p1)
+

1

(1− p1)

}

= 2− 1

ω

{
(p2 − p1)

(1− p2)(1− p1)

(n1
n

)
+

1

(1− p1)

}
. (IV.25)

When the quantity inside of the bracket in Equation (IV.25) has the smallest value,

we have the maximum value of Tb, given by

Max
[
Tb
]
= 2−Min

[
1

ω

{
(p2 − p1)(n1/n)
(1− p2)(1− p1)

+
1

(1− p1)

}]
= 2− 1 = 1 (IV.26)
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A slightly different but essentially the same proof can be found in Theorem 4 of

Gupta et al 2012 [6].

By Equations (IV.14) and (IV.15) and Lemma IV.5, Tb ≥ 0 or Tb < 0.

(1) If Tb ≥ 0, using Lemma IV.6, we have 0 ≤ Tb < 1. Thus, we can choose a T

such that Tb < T < 1. This is the case with the black parabola in Figure 1. When

Tb < T , V ar(π̂p) < V ar(π̂g).

(2) If Tb < 0, then Tb < 0 < T < 1. Thus, V ar(π̂p) < V ar(π̂g) holds true for all T ,

0 < T < 1. This is the case with the left-side red parabola in Figure 1.

In either case, for every value of Tb, we can find a T such that T satisfies V ar(π̂p) <

V ar(π̂g). Thus, for all Tb, there is T , which is 0 < T < 1, that satisfies Tb < T < 1

and V ar(π̂p) < V ar(π̂g).

Notice that, in Figure 1, T ∗ is shown to be positive or negative and V ar(π̂p)|T=T ∗ is

the maximum value as explained in Theorem IV.3 and Equations (IV.14) and (IV.15).

The two solutions—0 and Tb—satisfying V ar(π̂p) = V ar(π̂g) are illustrated accordingly

as proved in Lemma IV.4. As V ar(π̂p) = V ar(π̂g) leads to a quadratic equation,

2T ∗ = Tb can be easily verified in Figure 1. Notice also that Tb < 1 in Figure 1 as

proved in Lemma IV.6. Thus, as explained above, a meaningful value of T which

satisfies (Tb < T < 1) can always be chosen. A slightly different but essentially the

same proof—but for a different model—can be found in Theorem 5 of Gupta et al 2012

[6].
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Figure 1: (T = 0), (2T ∗ = Tb) and (Tb < 1)
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CHAPTER V

SIMULATION RESULTS

In Sections 5.1 and 5.2, simulation results are presented for the two main parameters

(π and ω). The optimal values of n1

n2
are presented in Section 5.3. For the theorerical

values of V ar (ω̂p), the first order Talyor’s approximation was used. All the simulations

in this thesis were conducted in the R programming language (R Development Core

Team, 2012 [17]). Three parameters—T , π, and ω—were allowed to vary while all

the other variables were fixed; n = 1000, p1 = 0.85, p2 = 0.15, and 1000 trials per

simulation. Then, n1 and n2 were chosen to minimize the variance of π̂p for each case.

An R code for the proposed model is attached in Appendix A.

The first thing to verify is that simulated values for π̂p and ω̂p provide good estimates

for the respective parameters. Second, simulated variances of π̂p and ω̂p are examined

to see if they are close to the theoretical variances. Third, with the help of statistical

software simulation, we examine normality of π̂p, ω̂p, and ω̂1, as we already proved

asymptotic normality of π̂p and ω̂1 in Theorems III.1 and III.2. Lastly, the optimal

values of n1

n2
with respect to π̂p and ω̂1 are presented in Table 9.

5.1 Simulation of E (π̂p) and V ar (π̂p)

For the simulation of E (π̂p) and V ar (π̂p), the value of T varied from 0.1 to 0.5 in

steps of 0.1, while ω varied from 0.1 to 0.9 in increments of 0.2. π values were selected

to be 0.1, 0.2, 0.3, and 0.8. Table 1 is for π = 0.1, Table 2 for π = 0.2, Table 3 for
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π = 0.3, and Table 4 for π = 0.8. In practice, π must be quite small because it is the

proportion of a population which belongs to a specific group that entails certain degree

of sensitivity. Nonetheless, Table 4 for π = 0.8 is included for the sake of mathematical

model.

Simulated values of E (π̂p) and V ar (π̂p) are very close to corresponding true pa-

rameter value of π and theoretical value of V ar (π̂p). This is clearly shown in Tables

1, 2, 3, and 4.

As for the normality of π̂p, there is little evidence that the samples of π̂p are from

non-normal distributions. All the p-values are greater than 0.01 in Tables 1, 2, 3, and

4 and we have only a few p-values between 0.01 and 0.05. As we proved that π̂p is

asymptotically nomal in Theorem III.1, the number of p-values that are less than 0.05

will decrease as n increases further. Out of 100 runs, only 6 cases have a p-value of

less than 0.05. And there is no p-value less than 0.01 for π̂p. Although we used a total

sample size of 1000 for our simulation study, we did experiment with smaller total

sample sizes of 800 and 600, and the results of the normality of π̂p were similar.

Notice that n1 and n2 are calculated for each case to have minimum variance of π̂p.

Thus, n1 and n2 are all different for each case.
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Table 1: Simulation Results for π̂p (π = 0.1)

π = 0.1, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.1 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (π̂p) 0.1000 0.1000 0.1010 0.1005 0.0993

p-value of Shapiro-Wilk Normality Test on π̂p 0.5036 0.0193 0.5553 0.6697 0.3289

Simulated
√
V ar (π̂p) 0.0148 0.0142 0.0150 0.0141 0.0137

Theoretical
√
V ar (π̂p) 0.0145 0.0144 0.0143 0.0142 0.0141

Optimal n1 829 830 832 834 837

Optimal n2 171 170 168 166 163

0.3 Simulated Mean (π̂p) 0.1000 0.1001 0.1000 0.1000 0.1001

p-value of Shapiro-Wilk Normality Test on π̂p 0.8416 0.6815 0.5242 0.6726 0.3472

Simulated
√
V ar (π̂p) 0.0165 0.0160 0.0160 0.0153 0.0146

Theoretical
√
V ar (π̂p) 0.0161 0.0158 0.0156 0.0154 0.0151

Optimal n1 810 812 814 817 820

Optimal n2 190 188 186 183 180

0.5 Simulated Mean (π̂p) 0.1006 0.1006 0.0986 0.0994 0.0999

p-value of Shapiro-Wilk Normality Test on π̂p 0.0847 0.3429 0.2622 0.1888 0.1083

Simulated
√
V ar (π̂p) 0.0179 0.0170 0.0168 0.0167 0.0161

Theoretical
√
V ar (π̂p) 0.0172 0.0169 0.0166 0.0163 0.0159

Optimal n1 806 806 807 809 811

Optimal n2 194 194 193 191 189

(Continued on next page.)
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π = 0.1, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.1 0.1 0.2 0.3 0.4 0.5

0.7 Simulated Mean (π̂p) 0.1000 0.0999 0.1004 0.1007 0.1009

p-value of Shapiro-Wilk Normality Test on π̂p 0.4427 0.2335 0.2330 0.4422 0.4753

Simulated
√
V ar (π̂p) 0.0178 0.0176 0.0174 0.0172 0.0162

Theoretical
√
V ar (π̂p) 0.0180 0.0177 0.0174 0.0170 0.0166

Optimal n1 812 809 807 806 807

Optimal n2 188 191 193 194 193

0.9 Simulated Mean (π̂p) 0.0999 0.1011 0.0992 0.1002 0.0995

p-value of Shapiro-Wilk Normality Test on π̂p 0.7997 0.2142 0.6837 0.2039 0.3914

Simulated
√
V ar (π̂p) 0.0184 0.0183 0.0178 0.0181 0.0167

Theoretical
√
V ar (π̂p) 0.0185 0.0183 0.0180 0.0176 0.0172

Optimal n1 825 818 812 808 806

Optimal n2 175 182 188 192 194
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Table 2: Simulation Results for π̂p (π = 0.2)

π = 0.2, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.2 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (π̂p) 0.1999 0.1991 0.1994 0.2006 0.1993

p-value of Shapiro-Wilk Normality Test on π̂p 0.2117 0.5547 0.3494 0.5250 0.7446

Simulated
√
V ar (π̂p) 0.0188 0.0184 0.0191 0.0189 0.0185

Theoretical
√
V ar (π̂p) 0.0185 0.0185 0.0184 0.0184 0.0183

Optimal n1 842 843 844 845 845

Optimal n2 158 157 156 155 155

0.3 Simulated Mean (π̂p) 0.2004 0.2010 0.1994 0.2000 0.2005

p-value of Shapiro-Wilk Normality Test on π̂p 0.5224 0.9052 0.5283 0.8546 0.3197

Simulated
√
V ar (π̂p) 0.0191 0.0193 0.0186 0.0190 0.0186

Theoretical
√
V ar (π̂p) 0.0192 0.0191 0.0190 0.0189 0.0188

Optimal n1 833 834 836 837 838

Optimal n2 167 166 164 163 162

0.5 Simulated Mean (π̂p) 0.1990 0.2002 0.2002 0.1995 0.2001

p-value of Shapiro-Wilk Normality Test on π̂p 0.8803 0.1244 0.4427 0.6523 0.1496

Simulated
√
V ar (π̂p) 0.0197 0.0198 0.0200 0.0198 0.0193

Theoretical
√
V ar (π̂p) 0.0198 0.0196 0.0195 0.0193 0.0192

Optimal n1 830 831 831 832 834

Optimal n2 170 169 169 168 166

(Continued on next page.)
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π = 0.2, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.2 0.1 0.2 0.3 0.4 0.5

0.7 Simulated Mean (π̂p) 0.1996 0.1991 0.1998 0.2004 0.2001

p-value of Shapiro-Wilk Normality Test on π̂p 0.9666 0.7086 0.5608 0.8158 0.8659

Simulated
√
V ar (π̂p) 0.0198 0.0198 0.0196 0.0195 0.0203

Theoretical
√
V ar (π̂p) 0.0202 0.0200 0.0199 0.0197 0.0195

Optimal n1 832 831 830 830 831

Optimal n2 168 169 170 170 169

0.9 Simulated Mean (π̂p) 0.2002 0.2007 0.1987 0.2004 0.1994

p-value of Shapiro-Wilk Normality Test on π̂p 0.0113 0.0683 0.4936 0.9697 0.8176

Simulated
√
V ar (π̂p) 0.0204 0.0201 0.0197 0.0198 0.0197

Theoretical
√
V ar (π̂p) 0.0204 0.0203 0.0202 0.0200 0.0198

Optimal n1 838 835 832 831 830

Optimal n2 162 165 168 169 170
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Table 3: Simulation Results for π̂p (π = 0.3)

π = 0.3, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.3 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (π̂p) 0.3010 0.3003 0.2999 0.3002 0.3000

p-value of Shapiro-Wilk Normality Test on π̂p 0.0798 0.3527 0.5406 0.4402 0.6443

Simulated
√
V ar (π̂p) 0.0211 0.0206 0.0217 0.0206 0.0204

Theoretical
√
V ar (π̂p) 0.0209 0.0209 0.0208 0.0208 0.0208

Optimal n1 847 848 848 848 848

Optimal n2 153 152 152 152 152

0.3 Simulated Mean (π̂p) 0.3004 0.2990 0.2987 0.2994 0.2989

p-value of Shapiro-Wilk Normality Test on π̂p 0.7040 0.5951 0.1879 0.5741 0.2431

Simulated
√
V ar (π̂p) 0.0214 0.0217 0.0212 0.0218 0.0211

Theoretical
√
V ar (π̂p) 0.0212 0.0211 0.0211 0.0210 0.0210

Optimal n1 844 844 845 845 846

Optimal n2 156 156 155 155 154

0.5 Simulated Mean (π̂p) 0.2999 0.3008 0.3003 0.2995 0.2987

p-value of Shapiro-Wilk Normality Test on π̂p 0.0465 0.7464 0.7525 0.7084 0.8284

Simulated
√
V ar (π̂p) 0.0225 0.0204 0.0215 0.0218 0.0211

Theoretical
√
V ar (π̂p) 0.0214 0.0213 0.0213 0.0212 0.0211

Optimal n1 842 842 843 843 844

Optimal n2 158 158 157 157 156

(Continued on next page.)
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π = 0.3, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.3 0.1 0.2 0.3 0.4 0.5

0.7 Simulated Mean (π̂p) 0.3002 0.3005 0.2997 0.2997 0.3002

p-value of Shapiro-Wilk Normality Test on π̂p 0.8269 0.5882 0.7657 0.4592 0.3040

Simulated
√
V ar (π̂p) 0.0212 0.0219 0.0220 0.0215 0.0215

Theoretical
√
V ar (π̂p) 0.0215 0.0215 0.0214 0.0214 0.0213

Optimal n1 843 842 842 842 843

Optimal n2 157 158 158 158 157

0.9 Simulated Mean (π̂p) 0.3003 0.2996 0.2995 0.3008 0.3016

p-value of Shapiro-Wilk Normality Test on π̂p 0.8752 0.8666 0.0976 0.5584 0.1954

Simulated
√
V ar (π̂p) 0.0214 0.0204 0.0222 0.0216 0.0223

Theoretical
√
V ar (π̂p) 0.0216 0.0216 0.0215 0.0215 0.0214

Optimal n1 845 844 843 842 842

Optimal n2 155 156 157 158 158
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Table 4: Simulation Results for π̂p (π = 0.8)

π = 0.8, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.8 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (π̂p) 0.7997 0.7999 0.7994 0.8002 0.8005

p-value of Shapiro-Wilk Normality Test on π̂p 0.6968 0.9073 0.2319 0.0969 0.2437

Simulated
√
V ar (π̂p) 0.0186 0.0184 0.0185 0.0178 0.0183

Theoretical
√
V ar (π̂p) 0.0185 0.0185 0.0184 0.0184 0.0183

Optimal n1 842 843 844 845 845

Optimal n2 158 157 156 155 155

0.3 Simulated Mean (π̂p) 0.7995 0.8002 0.8000 0.8000 0.7997

p-value of Shapiro-Wilk Normality Test on π̂p 0.0210 0.8930 0.2113 0.1912 0.9710

Simulated
√
V ar (π̂p) 0.0192 0.0186 0.0185 0.0193 0.0196

Theoretical
√
V ar (π̂p) 0.0192 0.0191 0.0190 0.0189 0.0188

Optimal n1 833 834 836 837 838

Optimal n2 167 166 164 163 162

0.5 Simulated Mean (π̂p) 0.8002 0.8000 0.7997 0.7999 0.8006

p-value of Shapiro-Wilk Normality Test on π̂p 0.6400 0.2635 0.9466 0.7093 0.4467

Simulated
√
V ar (π̂p) 0.0204 0.0198 0.0200 0.0192 0.0188

Theoretical
√
V ar (π̂p) 0.0198 0.0196 0.0195 0.0193 0.0192

Optimal n1 830 831 831 832 834

Optimal n2 170 169 169 168 166

(Continued on next page.)
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π = 0.8, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.8 0.1 0.2 0.3 0.4 0.5

0.7 Simulated Mean (π̂p) 0.8010 0.8004 0.7997 0.8003 0.7998

p-value of Shapiro-Wilk Normality Test on π̂p 0.8112 0.5191 0.1500 0.2790 0.0430

Simulated
√
V ar (π̂p) 0.0205 0.0200 0.0199 0.0191 0.0192

Theoretical
√
V ar (π̂p) 0.0202 0.0200 0.0199 0.0197 0.0195

Optimal n1 832 831 830 830 831

Optimal n2 168 169 170 170 169

0.9 Simulated Mean (π̂p) 0.7992 0.7998 0.7997 0.7995 0.8006

p-value of Shapiro-Wilk Normality Test on π̂p 0.6447 0.5576 0.5268 0.0140 0.9122

Simulated
√
V ar (π̂p) 0.0200 0.0204 0.0198 0.0211 0.0197

Theoretical
√
V ar (π̂p) 0.0204 0.0203 0.0202 0.0200 0.0198

Optimal n1 838 835 832 831 830

Optimal n2 162 165 168 169 170
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5.2 Simulation of E (ω̂p) and V ar (ω̂p)

In this section, the setup for simulation is the same as in Secion 5.1. Three

parameters—T , π, and ω—were allowed to vary while all the other variables were

fixed; n = 1000, p1 = 0.85, p2 = 0.15, and 1000 trials per simulation. Then, n1 and n2

were chosen to minimize the variance of π̂p for each case. The theoretical values of the

variance of ω̂p are estimated by the first order Taylor approximation.

For the simulation of E (ω̂p), E (ω̂1), V ar (ω̂p), and V ar (ω̂1), the value of T varied

from 0.1 to 0.5 in steps of 0.1, while ω varying from 0.1 to 0.9 in increments of 0.2. π

values are 0.1, 0.2, 0.3 and 0.8. Table 5 is for π = 0.1, Table 6 for π = 0.2, Table 7 for

π = 0.3, and Table 8 for π = 0.8.

As indicated in Section 3.3, empirical means are very close to corresponding true

parameter value of ω. Simulated values of E (ω̂p) and E (ω̂1) are very close to ω as

shown in Tables 5, 6, 7, and 8. It can be shown that T causes bigger bias for E (ω̂p) and

E (ω̂1) as T approaches 1 further. However, in practice T will remain small. Theoretical

values of V ar (ω̂1) are in agreement with simulated values of V ar (ω̂p) and V ar (ω̂1).

One may note that V ar (ω̂1) increases as T increases, but that is only natural since

the sample pool which provides randomized responses shrinks as T increases.

In Theorems III.2, we proved that ω̂1 is asymptotically normal. In Tables 5, 6, 7,

and 8, only 4 out of 100 simulations display p-values less than 0.05 for the Shapiro-Wilk

normality test on ω̂1. Also notice that we don’t have any p-value less than 0.01 for

ω̂1, indicating there is not much evidence that the samples of ω̂1 are from non-normal

distributions. For ω̂p, the p-values in Tables 5, 6, 7, and 8 show strong evidence of
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non-normality as π approaches 0.5 and T approaches 1. However, there is no longer

evidence of non-normality of ω̂p if we assign large number to n (n = 105 will suffice.).

Also notice that n1 and n2 are calculated to have minimum variance of π̂p—not

ω̂1—as estimating π̂p is of greater importance than estimating any other parameters.
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Table 5: Simulation Results for ω̂p (π = 0.1)

π = 0.1, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.1 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (ω̂p) 0.0973 0.0988 0.0930 0.0926 0.0981

p-value of Shapiro-Wilk Normality Test on ω̂p 0.2773 0.6990 0.8563 0.1831 0.4735

Simulated
√
V ar (ω̂p) 0.0590 0.0642 0.0770 0.0812 0.0994

Simulated Mean (ω̂1) 0.0989 0.1003 0.0951 0.0946 0.1004

p-value of Shapiro-Wilk Normality Test on ω̂1 0.8101 0.2138 0.3047 0.8762 0.2350

Simulated
√
V ar (ω̂1) 0.0587 0.0641 0.0765 0.0806 0.0993

Theoretical
√
V ar (ω̂1) 0.0573 0.0639 0.0725 0.0839 0.1001

0.3 Simulated Mean (ω̂p) 0.2992 0.3030 0.3000 0.3032 0.2976

p-value of Shapiro-Wilk Normality Test on ω̂p 0.5105 0.3564 0.7671 0.6585 0.8058

Simulated
√
V ar (ω̂p) 0.0618 0.0689 0.0804 0.0906 0.1046

Simulated Mean (ω̂1) 0.3007 0.3048 0.3021 0.3054 0.3001

p-value of Shapiro-Wilk Normality Test on ω̂1 0.0313 0.0832 0.2003 0.9224 0.3071

Simulated
√
V ar (ω̂1) 0.0618 0.0689 0.0804 0.0904 0.1045

Theoretical
√
V ar (ω̂1) 0.0610 0.0683 0.0775 0.0897 0.1064

0.5 Simulated Mean (ω̂p) 0.4954 0.4957 0.5067 0.4991 0.4941

p-value of Shapiro-Wilk Normality Test on ω̂p 0.7299 0.3150 0.0994 0.8581 0.8645

(Continued on next page.)
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π = 0.1, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.1 0.1 0.2 0.3 0.4 0.5

Simulated
√
V ar (ω̂p) 0.0627 0.0703 0.0770 0.0904 0.1081

Simulated Mean (ω̂1) 0.4969 0.4974 0.5086 0.5012 0.4969

p-value of Shapiro-Wilk Normality Test on ω̂1 0.8923 0.1945 0.7300 0.2590 0.0555

Simulated
√
V ar (ω̂1) 0.0622 0.0700 0.0772 0.0907 0.1082

Theoretical
√
V ar (ω̂1) 0.0608 0.0687 0.0788 0.0918 0.1094

0.7 Simulated Mean (ω̂p) 0.7017 0.7000 0.6962 0.6920 0.6924

p-value of Shapiro-Wilk Normality Test on ω̂p 0.4762 0.0102 0.0461 0.1887 0.0659

Simulated
√
V ar (ω̂p) 0.0561 0.0664 0.0811 0.0939 0.1104

Simulated Mean (ω̂1) 0.7026 0.7014 0.6979 0.6943 0.6951

p-value of Shapiro-Wilk Normality Test on ω̂1 0.5993 0.1886 0.3647 0.9175 0.6092

Simulated
√
V ar (ω̂1) 0.0560 0.0661 0.0807 0.0932 0.1094

Theoretical
√
V ar (ω̂1) 0.0586 0.0672 0.0778 0.0915 0.1103

0.9 Simulated Mean (ω̂p) 0.8960 0.8983 0.8994 0.9026 0.9040

p-value of Shapiro-Wilk Normality Test on ω̂p 0.2880 0.5640 0.0244 0.0054 0.8989

Simulated
√
V ar (ω̂p) 0.0560 0.0656 0.0792 0.0947 0.1086

Simulated Mean (ω̂1) 0.8967 0.8994 0.9008 0.9048 0.9063

p-value of Shapiro-Wilk Normality Test on ω̂1 0.7018 0.5112 0.6784 0.4416 0.6700

Simulated
√
V ar (ω̂1) 0.0558 0.0652 0.0787 0.0939 0.1087

(Continued on next page.)
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π = 0.1, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.1 0.1 0.2 0.3 0.4 0.5

Theoretical
√
V ar (ω̂1) 0.0551 0.0642 0.0754 0.0899 0.1094
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Table 6: Simulation Results for ω̂p (π = 0.2)

π = 0.2, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.2 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (ω̂p) 0.0967 0.0992 0.1025 0.0927 0.0975

p-value of Shapiro-Wilk Normality Test on ω̂p 0.2267 0.0734 0.0315 0.1178 0.0302

Simulated
√
V ar (ω̂p) 0.0949 0.1016 0.1272 0.1488 0.1720

Simulated Mean (ω̂1) 0.1007 0.1034 0.1083 0.0995 0.1050

p-value of Shapiro-Wilk Normality Test on ω̂1 0.6371 0.6830 0.4509 0.0916 0.1503

Simulated
√
V ar (ω̂1) 0.0942 0.1011 0.1266 0.1475 0.1715

Theoretical
√
V ar (ω̂1) 0.0936 0.1054 0.1206 0.1408 0.1687

0.3 Simulated Mean (ω̂p) 0.2976 0.2936 0.2987 0.2988 0.2892

p-value of Shapiro-Wilk Normality Test on ω̂p 0.1666 0.0082 0.0011 0.0378 0.1905

Simulated
√
V ar (ω̂p) 0.0901 0.1014 0.1158 0.1441 0.1723

Simulated Mean (ω̂1) 0.3010 0.2977 0.3032 0.3049 0.2965

p-value of Shapiro-Wilk Normality Test on ω̂1 0.7142 0.8480 0.4990 0.9836 0.3822

Simulated
√
V ar (ω̂1) 0.0892 0.0997 0.1148 0.1427 0.1707

Theoretical
√
V ar (ω̂1) 0.0913 0.1033 0.1190 0.1393 0.1675

0.5 Simulated Mean (ω̂p) 0.5010 0.4978 0.4949 0.4991 0.4957

p-value of Shapiro-Wilk Normality Test on ω̂p 0.7304 0.0127 0.0001 0.0000 0.0102

(Continued on next page.)
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π = 0.2, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.2 0.1 0.2 0.3 0.4 0.5

Simulated
√
V ar (ω̂p) 0.0894 0.1041 0.1132 0.1423 0.1730

Simulated Mean (ω̂1) 0.5040 0.5015 0.4993 0.5048 0.5027

p-value of Shapiro-Wilk Normality Test on ω̂1 0.1959 0.9715 0.3543 0.3487 0.7544

Simulated
√
V ar (ω̂1) 0.0892 0.1028 0.1116 0.1404 0.1703

Theoretical
√
V ar (ω̂1) 0.0874 0.0998 0.1154 0.1361 0.1652

0.7 Simulated Mean (ω̂p) 0.6956 0.6951 0.6969 0.6872 0.6848

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0103 0.0083 0.0608 0.0023 0.0310

Simulated
√
V ar (ω̂p) 0.0833 0.0961 0.1066 0.1369 0.1694

Simulated Mean (ω̂1) 0.6980 0.6979 0.7000 0.6922 0.6920

p-value of Shapiro-Wilk Normality Test on ω̂1 0.3789 0.2298 0.6144 0.3732 0.6654

Simulated
√
V ar (ω̂1) 0.0823 0.0955 0.1060 0.1347 0.1674

Theoretical
√
V ar (ω̂1) 0.0827 0.0952 0.1110 0.1321 0.1615

0.9 Simulated Mean (ω̂p) 0.8972 0.8951 0.8976 0.8989 0.8920

p-value of Shapiro-Wilk Normality Test on ω̂p 0.2114 0.7450 0.0235 0.0017 0.0074

Simulated
√
V ar (ω̂p) 0.0808 0.0899 0.1077 0.1269 0.1560

Simulated Mean (ω̂1) 0.8984 0.8972 0.9003 0.9024 0.8972

p-value of Shapiro-Wilk Normality Test on ω̂1 0.5852 0.4135 0.8261 0.2664 0.5849

Simulated
√
V ar (ω̂1) 0.0801 0.0890 0.1071 0.1252 0.1547

(Continued on next page.)
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π = 0.2, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.2 0.1 0.2 0.3 0.4 0.5

Theoretical
√
V ar (ω̂1) 0.0782 0.0906 0.1064 0.1278 0.1573
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Table 7: Simulation Results for ω̂p (π = 0.3)

π = 0.3, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.3 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (ω̂p) 0.0856 0.0878 0.0873 0.0847 0.0701

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0000 0.0016 0.0000 0.0000 0.0001

Simulated
√
V ar (ω̂p) 0.1701 0.1708 0.2079 0.2322 0.2842

Simulated Mean (ω̂1) 0.0984 0.1000 0.1032 0.1012 0.0904

p-value of Shapiro-Wilk Normality Test on ω̂1 0.7258 0.2640 0.7515 0.9179 0.5745

Simulated
√
V ar (ω̂1) 0.1627 0.1668 0.2012 0.2257 0.2770

Theoretical
√
V ar (ω̂1) 0.1562 0.1767 0.2024 0.2368 0.2849

0.3 Simulated Mean (ω̂p) 0.2933 0.2876 0.3011 0.2793 0.3066

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0000 0.0000 0.0015 0.0049 0.0000

Simulated
√
V ar (ω̂p) 0.1522 0.1666 0.1838 0.2268 0.2835

Simulated Mean (ω̂1) 0.3034 0.2986 0.3135 0.2954 0.3256

p-value of Shapiro-Wilk Normality Test on ω̂1 0.6215 0.1317 0.4477 0.0734 0.8956

Simulated
√
V ar (ω̂1) 0.1477 0.1627 0.1827 0.2227 0.2770

Theoretical
√
V ar (ω̂1) 0.1466 0.1666 0.1928 0.2270 0.2756

0.5 Simulated Mean (ω̂p) 0.5003 0.4904 0.4944 0.4841 0.5000

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0002 0.0000 0.0025 0.0000 0.0038

(Continued on next page.)

58



π = 0.3, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.3 0.1 0.2 0.3 0.4 0.5

Simulated
√
V ar (ω̂p) 0.1400 0.1688 0.1899 0.2204 0.2771

Simulated Mean (ω̂1) 0.5089 0.4997 0.5055 0.4983 0.5181

p-value of Shapiro-Wilk Normality Test on ω̂1 0.6729 0.7136 0.6895 0.2229 0.0370

Simulated
√
V ar (ω̂1) 0.1360 0.1623 0.1859 0.2137 0.2753

Theoretical
√
V ar (ω̂1) 0.1368 0.1567 0.1829 0.2171 0.2657

0.7 Simulated Mean (ω̂p) 0.6995 0.6880 0.7032 0.6859 0.6771

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0008 0.1381 0.0000 0.0000 0.0000

Simulated
√
V ar (ω̂p) 0.1231 0.1538 0.1801 0.2162 0.2593

Simulated Mean (ω̂1) 0.7037 0.6956 0.7135 0.6984 0.6921

p-value of Shapiro-Wilk Normality Test on ω̂1 0.6318 0.0942 0.4382 0.5706 0.9906

Simulated
√
V ar (ω̂1) 0.1202 0.1501 0.1753 0.2098 0.2516

Theoretical
√
V ar (ω̂1) 0.1285 0.1478 0.1733 0.2074 0.2560

0.9 Simulated Mean (ω̂p) 0.9007 0.9001 0.8853 0.8738 0.8745

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0000 0.0100 0.0346 0.0001 0.0000

Simulated
√
V ar (ω̂p) 0.1193 0.1472 0.1688 0.2035 0.2657

Simulated Mean (ω̂1) 0.9030 0.9047 0.8932 0.8835 0.8902

p-value of Shapiro-Wilk Normality Test on ω̂1 0.0328 0.4356 0.6157 0.1560 0.4850

Simulated
√
V ar (ω̂1) 0.1164 0.1436 0.1644 0.1964 0.2517

(Continued on next page.)

59



π = 0.3, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.3 0.1 0.2 0.3 0.4 0.5

Theoretical
√
V ar (ω̂1) 0.1218 0.1405 0.1652 0.1985 0.2462
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Table 8: Simulation Results for ω̂p (π = 0.8)

π = 0.8, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.8 0.1 0.2 0.3 0.4 0.5

0.1 Simulated Mean (ω̂p) 0.0955 0.0941 0.0900 0.0957 0.0919

p-value of Shapiro-Wilk Normality Test on ω̂p 0.4862 0.2306 0.0264 0.0295 0.1136

Simulated
√
V ar (ω̂p) 0.0953 0.1093 0.1237 0.1438 0.1674

Simulated Mean (ω̂1) 0.0997 0.0988 0.0953 0.1017 0.0986

p-value of Shapiro-Wilk Normality Test on ω̂1 0.4785 0.9118 0.4188 0.5492 0.9310

Simulated
√
V ar (ω̂1) 0.0946 0.1083 0.1216 0.1422 0.1660

Theoretical
√
V ar (ω̂1) 0.0936 0.1054 0.1206 0.1408 0.1687

0.3 Simulated Mean (ω̂p) 0.2943 0.2975 0.2959 0.2912 0.2938

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0218 0.5220 0.0098 0.0001 0.0204

Simulated
√
V ar (ω̂p) 0.0914 0.1000 0.1197 0.1431 0.1690

Simulated Mean (ω̂1) 0.2980 0.3012 0.3004 0.2972 0.3014

p-value of Shapiro-Wilk Normality Test on ω̂1 0.4003 0.1983 0.8416 0.4635 0.6186

Simulated
√
V ar (ω̂1) 0.0900 0.0996 0.1180 0.1404 0.1671

Theoretical
√
V ar (ω̂1) 0.0913 0.1033 0.1190 0.1393 0.1675

0.5 Simulated Mean (ω̂p) 0.4963 0.4949 0.4944 0.4960 0.4952

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0002 0.0000 0.0267 0.1210 0.6562

(Continued on next page.)
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π = 0.8, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.8 0.1 0.2 0.3 0.4 0.5

Simulated
√
V ar (ω̂p) 0.0918 0.1009 0.1181 0.1358 0.1654

Simulated Mean (ω̂1) 0.4997 0.4986 0.4986 0.5012 0.5014

p-value of Shapiro-Wilk Normality Test on ω̂1 0.3245 0.0683 0.6687 0.4085 0.2826

Simulated
√
V ar (ω̂1) 0.0905 0.0991 0.1169 0.1344 0.1651

Theoretical
√
V ar (ω̂1) 0.0874 0.0998 0.1154 0.1361 0.1652

0.7 Simulated Mean (ω̂p) 0.7003 0.6990 0.6964 0.6951 0.6955

p-value of Shapiro-Wilk Normality Test on ω̂p 0.0097 0.0001 0.0000 0.5440 0.2388

Simulated
√
V ar (ω̂p) 0.0816 0.0986 0.1150 0.1328 0.1652

Simulated Mean (ω̂1) 0.7024 0.7021 0.6999 0.6992 0.7013

p-value of Shapiro-Wilk Normality Test on ω̂1 0.2366 0.0638 0.0234 0.6874 0.7710

Simulated
√
V ar (ω̂1) 0.0811 0.0977 0.1132 0.1321 0.1640

Theoretical
√
V ar (ω̂1) 0.0827 0.0952 0.1110 0.1321 0.1615

0.9 Simulated Mean (ω̂p) 0.9019 0.8962 0.8977 0.8934 0.8969

p-value of Shapiro-Wilk Normality Test on ω̂p 0.6381 0.0293 0.0062 0.0000 0.6961

Simulated
√
V ar (ω̂p) 0.0778 0.0914 0.1071 0.1344 0.1597

Simulated Mean (ω̂1) 0.9029 0.8983 0.9005 0.8983 0.9019

p-value of Shapiro-Wilk Normality Test on ω̂1 0.9229 0.4182 0.4801 0.0537 0.3503

Simulated
√
V ar (ω̂1) 0.0774 0.0903 0.1057 0.1322 0.1594

(Continued on next page.)
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π = 0.8, n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

ω π = 0.8 0.1 0.2 0.3 0.4 0.5

Theoretical
√
V ar (ω̂1) 0.0782 0.0906 0.1064 0.1278 0.1573
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5.3 Calculation of n1

n2

In this section, the setup for calculating the optimal sample ratios is the same as

in Secions 5.1 and 5.2. The value of T varied from 0.1 to 0.5 in steps of 0.1, while ω

varied from 0.1 to 0.9 in increments of 0.2. π values are 0.1, 0.2, 0.3 and 0.8. All the

optimal values of n1

n2
are shown in Table 9.

Notice that there are two optimal values of n1

n2
for each set of T , π, and ω values.

One is to minimize V ar(π̂p) and another is to minimize V ar (ω̂1). For π̂p, the ratio is

usually in the range between 4.1 and 5.6. For ω̂1, the ratio ranges from 0.04 to 0.92. As

discussed in Section 4.1 in more detail, these two optimal values behave in an opposite

way to each other.

As estimating π̂p is the most important task in this analysis, the optimal ratios

to minimize V ar(π̂p) were chosen first. Then, n1 and n2 were calculated and used

accordingly in each simulation in Secions 5.1 and 5.2.
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Table 9: Calculation of Optimal Values of n1

n2

π = (.1, .2, .3 & .8), n = 1000, p1 = 0.85, p2 = 0.15, and trials = 1000

T

π ω 0.1 0.2 0.3 0.4 0.5

0.1 0.1
(
n1

n2

)
opt(π̂p)

4.837 4.899 4.967 5.040 5.121(
n1

n2

)
opt(ω̂1)

0.743 0.765 0.789 0.813 0.839

0.3
(
n1

n2

)
opt(π̂p)

4.261 4.310 4.374 4.453 4.553(
n1

n2

)
opt(ω̂1)

0.443 0.485 0.530 0.577 0.627

0.5
(
n1

n2

)
opt(π̂p)

4.165 4.163 4.181 4.223 4.293(
n1

n2

)
opt(ω̂1)

0.200 0.267 0.334 0.401 0.471

0.7
(
n1

n2

)
opt(π̂p)

4.319 4.232 4.180 4.162 4.181(
n1

n2

)
opt(ω̂1)

0.067 0.043 0.144 0.240 0.334

0.9
(
n1

n2

)
opt(π̂p)

4.730 4.486 4.319 4.214 4.165(
n1

n2

)
opt(ω̂1)

0.416 0.226 0.067 0.073 0.200

0.2 0.1
(
n1

n2

)
opt(π̂p)

5.342 5.372 5.402 5.435 5.469(
n1

n2

)
opt(ω̂1)

0.821 0.839 0.858 0.877 0.897

0.3
(
n1

n2

)
opt(π̂p)

4.998 5.035 5.080 5.131 5.192

(Continued on next page.)
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T

π ω 0.1 0.2 0.3 0.4 0.5(
n1

n2

)
opt(ω̂1)

0.519 0.567 0.615 0.664 0.715

0.5
(
n1

n2

)
opt(π̂p)

4.893 4.904 4.928 4.967 5.022(
n1

n2

)
opt(ω̂1)

0.235 0.315 0.394 0.472 0.551

0.7
(
n1

n2

)
opt(π̂p)

4.955 4.912 4.893 4.898 4.928(
n1

n2

)
opt(ω̂1)

0.077 0.050 0.169 0.283 0.394

0.9
(
n1

n2

)
opt(π̂p)

5.183 5.046 4.955 4.904 4.893(
n1

n2

)
opt(ω̂1)

0.455 0.254 0.077 0.085 0.235

0.3 0.1
(
n1

n2

)
opt(π̂p)

5.548 5.560 5.572 5.584 5.597(
n1

n2

)
opt(ω̂1)

0.852 0.869 0.885 0.901 0.917

0.3
(
n1

n2

)
opt(π̂p)

5.398 5.416 5.436 5.460 5.486(
n1

n2

)
opt(ω̂1)

0.561 0.610 0.658 0.707 0.755

0.5
(
n1

n2

)
opt(π̂p)

5.340 5.348 5.362 5.382 5.410(
n1

n2

)
opt(ω̂1)

0.256 0.343 0.428 0.511 0.593

0.7
(
n1

n2

)
opt(π̂p)

5.362 5.345 5.339 5.344 5.362(
n1

n2

)
opt(ω̂1)

0.083 0.054 0.184 0.309 0.428

0.9
(
n1

n2

)
opt(π̂p)

5.463 5.403 5.362 5.342 5.340

(Continued on next page.)
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T

π ω 0.1 0.2 0.3 0.4 0.5(
n1

n2

)
opt(ω̂1)

0.480 0.272 0.083 0.092 0.256

0.8 0.1
(
n1

n2

)
opt(π̂p)

5.342 5.372 5.402 5.435 5.469(
n1

n2

)
opt(ω̂1)

0.821 0.839 0.858 0.877 0.897

0.3
(
n1

n2

)
opt(π̂p)

4.998 5.035 5.080 5.131 5.192(
n1

n2

)
opt(ω̂1)

0.519 0.567 0.615 0.664 0.715

0.5
(
n1

n2

)
opt(π̂p)

4.893 4.904 4.928 4.967 5.022(
n1

n2

)
opt(ω̂1)

0.235 0.315 0.394 0.472 0.551

0.7
(
n1

n2

)
opt(π̂p)

4.955 4.912 4.893 4.898 4.928(
n1

n2

)
opt(ω̂1)

0.077 0.050 0.169 0.283 0.394

0.9
(
n1

n2

)
opt(π̂p)

5.183 5.046 4.955 4.904 4.893(
n1

n2

)
opt(ω̂1)

0.455 0.254 0.077 0.085 0.235
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CHAPTER VI

CONCLUDING REMARKS

In this thesis, a new RRT model is proposed by combining the two previous models

from Mangat and Singh 1990 [14], which introduced the Two-Stage (or Partial) RRT

models, and Gupta 2001 [4], which introduced the concept of optional scrambling.

Partial RRT models are expected to be more efficient because they introduce an element

of truthful reporting in the survey in a random fashion. Optional models provide

greater efficiency by incorporating truthful reporting from those respondents who do

not consider the underlying question to be sensitive and are willing to provide a truthful

response.

In Chapter III, we derive estimators for the prevalence of the sensitive character-

istic (π) and the optionality parameter (ω). We show that π̂p is unbiased and has

asymptotically normal distribution. We also discuss in detail the properties of ω̂p and

show that it too is unbiased and has asymptotically normal distribution if we use first

order approximation of ω̂p.

The main focus in Chapter IV is on showing that introduction of truth element T

in a binary optional RRT model may not always produce greater efficiency, as shown in

Gupta et al 2012 [6] in the quatitative setting. In an optional RRT model, introduction

of truth element T has to be weighed against the shrinking pool of respondents who

provide a scrambled response. We discuss in detail how to select an optimal value of
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the truth parameter T so that the proposed Two-Stage Binary Optional RRT model

performs better than the corresponding One-Stage model.

In Chapter V, we present results of an extensive simulation study and show that

empirical mean and variance of π̂p are in good agreement with the corresponding theo-

retical values. Asymptotic normality of π̂p is also demonstrated. It is also shown that

first order approximation of ω̂p works very well. The theoretical approximate variance

of ω̂1 was very close to the corresponding simulated variance while simulated means of

ω̂p and ω̂1 were also close to the true parameter value of ω. Asymptotic normality of

ω̂1 was also clear in our simulations with n = 1000 in Section 5.2. However, normality

of ω̂p couldn’t be observed unless the sample size is very large. In general, T tends to

cause bigger bias in ω̂p as T → 1 and π tends to cause bigger bias as π → 0.5. We used

optimal n1 and n2 to have minimum variance of π̂p in each simulation. In every RRT

model, the utmost importance should be given to the estimation of π̂ and its variance

because they are directly related to the survey question.

In summary, the proposed Two-Stage Binary Optional RRT model will be more

effective research tool than the Gupta 2001 [4] model because the variance of π̂p in the

proposed model can be made smaller than the variance of the Gupta 2001 [4] model.
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APPENDIX A

[R-CODE] PROPOSED MODEL

#########################################################################

# #

# TITLE: TWO -STAGE BINARY OPTIONAL RRT MODEL #

# DATE: 2012 -06 -15 #

# AUTHOR: J. SIHM #

# DESCRIPTION: APPENDIX TO SIHM ’S MASTER ’S #

# THESIS AT UNC -GREENSBORO , SUMMER 2012 #

# THESIS ADVISOR: DR. SAT N. GUPTA #

# DEPARTMENT OF MATHEMATICS & STATISTICS #

# UNIVERSITY OF NORTH CAROLINA AT GREENSBORO #

# #

#########################################################################

# #

# R VERSION: 2.15.0 (2012 -03 -30) #

# PLATFORM: x86 -64-pc -mingw32/x64 (64-bit) #

# PACKAGES USED: "nortest" #

# BY JUERGEN GROSS , 2012 -04 -24 #

# #

# Please install & include "nortest" package before running this code. #

# > install.packages (" nortest ") #

# > library(nortest) #

# #

# REMARKS: NOTICE THAT THE OUTPUT OF 2ND ORDER APPROXIMATION OF #

# W.hat WAS NOT PRESENTED IN TABLES 5 6 7 AND 8. #

# ALSO NOTICE THAT A SEPERATE PYTHON PROGRAM TO CONVERT #

# THE OUTPUT OF THIS PROGRAM INTO LaTeX SCRIPTS FOR #

# TABLES 1 ~ 9 EXISTS AND WILL BE INCLUDED IN AUTHOR ’S #

# FUTURE PHD PROGRAMMING PROJECT AT UNCG #

# #

#########################################################################
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p1 <- 0.85; p2 <- 0.15;

n <- 1000; trials <- 1000

lambda <- (1-p1)/(1-p2)

# nt = 9 from 0.1 to 0.9

nt <- 9

# npi = 9 from 0.1 to 0.9

npi <- 9

# nw = 9 from 0.1 to 0.9

nw <- 9

# Create a Matrix with nrow = nt*npi*nw & ncol = 29

# (1) t, (2) pi, (3) mean(pi.hat), (4) var(pi.hat),

# (5) Theoretical Var[pi.hat], (6) n, (7) n1 , (8) n2,

# (9) trials , (10) p1 , (11) p2, (12) lambda

# (13) py1 , (14) mean(py1.hat), (15) var(py1.hat),

# (16) py2 , (17) mean(py2.hat), (18) var(py2.hat)

# (19) w, (20) mean(w.hat), (21) var(w.hat),

# (22) opt_ratio_pi.hat

# 6 Columns Added on Feb 9, 2012: thus , 22 + 6 = 28

# (23) Theoretical E[pi.hat], (24) theta1 , (25) theta2

# (26) Theoretical E[w.hat],

# (27) Theoretical 1st order Taylor Var[w.hat],

# (28) opt -ratio_w.hat

# 1 Column Added on Mar 29, 2012: thus , 28 + 1 = 29

# (29) Theoretical 2nd order Taylor Var[w.hat]

# 12 Columns Added on Jun 1, 2012: thus , 29 + 12 = 41

# (30) mean(theta1.hat), (31) var(theta1.hat)

# (32) mean(theta2.hat), (33) var(theta2.hat)

# (34) mean(w.hat1), (35) var(w.hat1)

# (36) mean(w.hat2), (37) var(w.hat2)

# (38) p-value for Normality Test sf.test on pi.hat

# (39) p-value for Normality Test sf.test on w.hat
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# (40) p-value for Normality Test sf.test on w.hat1

# (41) p-value for Normality Test sf.test on w.hat2

# 41 columns , we have.

ncolumns <- 41

mdat <- matrix(rep(0,nt*npi*nw*ncolumns), nrow=nt*npi*nw,

ncol=ncolumns)

i <- j <- k <- l <-0

ni <- nt; nj <- npi; nk <- nw; nl <- trials

for (i in 1:ni)

{

for (j in 1:nj)

{

for (k in 1:nk)

{

mdat[k+nk*(nj*(i -1)+(j-1)) ,1] <- (1/(nt+1))*i # t

mdat[k+nk*(nj*(i -1)+(j-1)) ,2] <- (1/(npi +1))*j # pi

mdat[k+nk*(nj*(i -1)+(j-1)) ,6] <- n

## mdat[k+nk*(nj*(i-1)+(j-1)) ,7] <- n1

## mdat[k+nk*(nj*(i-1)+(j-1)) ,8] <- n2

mdat[k+nk*(nj*(i -1)+(j-1)) ,9] <- trials

mdat[k+nk*(nj*(i -1)+(j-1)) ,10] <- p1

mdat[k+nk*(nj*(i -1)+(j-1)) ,11] <- p2

mdat[k+nk*(nj*(i -1)+(j-1)) ,12] <- lambda

mdat[k+nk*(nj*(i -1)+(j-1)) ,19] <- (1/(nw+1))*k # w

# (13) py1 <- t*pi+(1-t)*((1-w)*pi+w*(pi*p1+(1-pi)*(1-p1)))

mdat[k+nk*(nj*(i -1)+(j-1)) ,13] <- mdat[k+nk*(nj*(i-1)+(j-1)) ,1]*

mdat[k+nk*(nj*(i -1)+(j-1)) ,2]+

(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,1])*((1-mdat[k+nk*(nj*(i-1)+(j-1)),

19])*mdat[k+nk*(nj*(i -1)+(j-1)) ,2]+

mdat[k+nk*(nj*(i -1)+(j-1)) ,19]*(mdat[k+nk*(nj*(i -1)+(j-1)) ,2]*
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mdat[k+nk*(nj*(i -1)+(j-1)) ,10]+

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,2])*(1-mdat[k+nk*(nj*(i-1)+

(j -1)) ,10])))

# (16) py2 <- t*pi+(1-t)*((1-w)*pi+w*(pi*p2+(1-pi)*(1-p2)))

mdat[k+nk*(nj*(i -1)+(j-1)) ,16] <- mdat[k+nk*(nj*(i-1)+(j-1)),

1]*mdat[k+nk*(nj*(i-1)+(j-1)) ,2]+

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,1])*((1-mdat[k+nk*(nj*(i-1)+(j-

1)) ,19])*mdat[k+nk*(nj*(i -1)+(j-1)) ,2]+

mdat[k+nk*(nj*(i -1)+(j-1)) ,19]*(mdat[k+nk*(nj*(i -1)+(j-1)),

2]*mdat[k+nk*(nj*(i-1)+(j-1)) ,11]+

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,2])*(1-mdat[k+nk*(nj*(i-1)+

(j -1)) ,11])))

# (24) theta1 <- (2py1 - 1)

mdat[k+nk*(nj*(i -1)+(j-1)) ,24] <- 2*mdat[k+nk*(nj*(i-1)+

(j-1)) ,13] - 1

# (25) theta2 <- (2py2 - 1)

mdat[k+nk*(nj*(i -1)+(j-1)) ,25] <- 2*mdat[k+nk*(nj*(i-1)+

(j-1)) ,16] - 1

# Theoretical Part #

# (22) opt_ratio_pi.hat <- (1/lambda)*sqrt(py1*(1-py1)/

# (py2*(1-py2)))

mdat[k+nk*(nj*(i -1)+(j-1)) ,22] <- (1/mdat[k+nk*(nj*(i-1)+

(j-1)) ,12])*

sqrt(mdat[k+nk*(nj*(i -1)+(j-1)) ,13]*(1-mdat[k+nk*(nj*(i-

1)+(j-1)) ,13])/
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(mdat[k+nk*(nj*(i -1)+(j-1)) ,16]*(1-mdat[k+nk*(nj*(i-

1)+(j -1)) ,16])))

# (8) n2 <- n/( ratio + 1 )

mdat[k+nk*(nj*(i -1)+(j-1)) ,8] <-

round(mdat[k+nk*(nj*(i -1)+(j-1)) ,6]/

( mdat[k+nk*(nj*(i-1)+(j-1)) ,22] + 1 ),0)

# (7) n1 <- n - n2

mdat[k+nk*(nj*(i -1)+(j-1)) ,7] <-

mdat[k+nk*(nj*(i -1)+(j-1)) ,6] - mdat[k+nk*(nj*(i -1)+(j-1)) ,8]

# (5) Var(pi.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,5] <- (mdat[k+nk*(nj*(i-1)+(j-1)),

12] -1)^( -2)*

(mdat[k+nk*(nj*(i -1)+(j-1)) ,12]^2*(mdat[k+nk*(nj*(i-1)+

(j-1)) ,16]*

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,16])/mdat[k+nk*(nj*(i-1)+

(j-1)) ,8]) +

mdat[k+nk*(nj*(i -1)+(j-1)) ,13]*(1-mdat[k+nk*(nj*(i-1)+

(j-1)) ,13])/mdat[k+nk*(nj*(i-1)+(j-1)) ,7])

# (23) Theoretical E(pi.hat) <- (lambda*Py2 - Py1)/(lambda -1)

mdat[k+nk*(nj*(i -1)+(j-1)) ,23] <- (mdat[k+nk*(nj*(i-1)+(j-1)) ,12]*

mdat[k+nk*(nj*(i -1)+(j-1)) ,16] -

mdat[k+nk*(nj*(i -1)+(j-1)) ,13])/(mdat[k+nk*(nj*(i -1)+(j-1)) ,12] -1)

# (26) Theoretical E(w.hat) <- (theta1 -theta2)/(2*(1-T)*

# ((1-p2)*theta1 -(1-p1)*theta2 ))
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mdat[k+nk*(nj*(i -1)+(j-1)) ,26] <- (mdat[k+nk*(nj*(i-1)+(j-

1)),24]- mdat[k+nk*(nj*(i-1)+(j-1)) ,25])/

(2*(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,1])*

((1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i-

1)+(j-1)),24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-

1)+(j -1)) ,25]))

# (27) Theoretical 1st Var(w.hat) <- (p1 -p2)^2*

# ( theta2 ^2*(Py1*(1-Py1)/n1) + theta1 ^2*(Py2*(1-Py2)/n2) )/

# ( (1-t)^2*( (1-p2)*theta1 - (1-p1)*theta2 )^4 )

mdat[k+nk*(nj*(i -1)+(j-1)) ,27] <- (mdat[k+nk*(nj*(i-1)+(j-

1)),10]- mdat[k+nk*(nj*(i-1)+(j -1)) ,11])^2*

( mdat[k+nk*(nj*(i-1)+(j -1)) ,25]^2*(mdat[k+nk*(nj*(i-1)+(j-

1)) ,13]*(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,13])/

mdat[k+nk*(nj*(i -1)+(j-1)) ,7]) + mdat[k+nk*(nj*(i-1)+(j-

1)) ,24]^2*(mdat[k+nk*(nj*(i-1)+(j-1)) ,16]*

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,16])/mdat[k+nk*(nj*(i-1)+(j-

1)) ,8]) )/

( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,1])^2*( (1-mdat[k+nk*(nj*(i-

1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24] - (1-mdat[k+nk*(nj*(i -1)+(j-

1)) ,10])*mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^4 )

# (28) opt_ratio_w.hat <- abs ((2*Py2 -1)/(2*Py1 -1))*

# sqrt((Py1*(1-Py1))/(Py2*(1-Py2)))

mdat[k+nk*(nj*(i -1)+(j-1)) ,28] <- abs((2*mdat[k+nk*

(nj*(i-1)+(j-1)) ,16] -1)/

(2*mdat[k+nk*(nj*(i-1)+(j-1)) ,13] -1))*sqrt((mdat[k+nk*

(nj*(i-1)+(j-1)) ,13]*

(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,13]))/(mdat[k+nk*(nj*

(i-1)+(j-1)) ,16]*(1-mdat[k+nk*(nj*(i-1)+(j -1)) ,16])))
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# (29) Theoretical 2nd Var(w.hat) <- (p1 -p2)^2*

# ( theta2 ^2*(Py1*(1-Py1)/n1) +

# theta1 ^2*(Py2*(1-Py2)/n2) +

# ((1-p2)^2*theta2 ^2*(8*Py1^2*(1-Py1 )^2)/n1^2)/( (1-

# p2)*theta1 - (1-p1)*theta2 )^2 +

# ((1-p1)^2*theta1 ^2*(8*Py2^2*(1-Py2 )^2)/n2^2)/( (1-

# p2)*theta1 - (1-p1)*theta2 )^2 +

# ((1-p2)*theta1 +(1-p1)*theta2 )^2 *(4*Py1*Py2*(1-

# Py1)*(1-Py2)/(n1*n2))/( (1-p2)*theta1 - (1-p1)*theta2 )^2 )/

# ( (1-t)^2*( (1-p2)*theta1 - (1-p1)*theta2 )^4 )

mdat[k+nk*(nj*(i -1)+(j-1)) ,29] <- (mdat[k+nk*(nj*(i-1)+

(j-1)) ,10]- mdat[k+nk*(nj*(i-1)+(j -1)) ,11])^2*

( mdat[k+nk*(nj*(i-1)+(j -1)) ,25]^2*(mdat[k+nk*(nj*(i-1)+

(j-1)) ,13]*(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,13])/mdat[k+nk*(nj*(i -1)+(j-1)) ,7]) +

mdat[k+nk*(nj*(i -1)+(j-1)) ,24]^2*(mdat[k+nk*(nj*(i-1)+

(j-1)) ,16]*(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,16])/mdat[k+nk*(nj*(i -1)+(j-1)) ,8]) +

( 8*(1-mdat[k+nk*(nj*(i-1)+(j -1)) ,11])^2*mdat[k+nk*(nj*(i-

1)+(j -1)) ,25]^2*mdat[k+nk*(nj*(i -1)+(j-1)) ,13]^2*(1-

mdat[k+nk*(nj*(i -1)+(j -1)) ,13])^2/mdat[k+nk*(nj*(i-1)+(j-1)) ,7]^2 +

8*(1-mdat[k+nk*(nj*(i -1)+(j -1)) ,10])^2*mdat[k+nk*(nj*

(i-1)+(j-1)) ,24]^2*mdat[k+nk*(nj*(i-1)+(j -1)) ,16]^2*(1-

mdat[k+nk*(nj*(i -1)+(j -1)) ,16])^2/mdat[k+nk*(nj*(i-1)+(j-1)) ,8]^2 +

4*( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*

(i-1)+(j-1)) ,24] + (1-mdat[k+nk*(nj*(i-1)+(j-1)) ,10])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^2*mdat[k+nk*(nj*(i-1)+(j-1)) ,13]*

mdat[k+nk*(nj*(i -1)+(j-1)) ,16]*(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,13])*

(1-mdat[k+nk*(nj*(i-1)+(j-1)) ,16])/(mdat[k+nk*(nj*(i -1)+(j-1)) ,7]*

mdat[k+nk*(nj*(i -1)+(j-1)) ,8]) )/

( (1-mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*mdat[k+nk*(nj*(i-1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^2 )/

( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,1])^2*( (1-mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24] - (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^4 )
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}

}

}

pi.hat <- w.hat <- w.hat1 <- w.hat2 <-

py1.hat <- py2.hat <- theta1.hat <- theta2.hat <-

a <- b1 <- b2 <- c <- d1 <- d2 <- e <- numeric(trials)

set.seed (76)

## for (i in 1:ni)

for (i in c(1,2,3,4,5))

{

## for (j in 1:nj)

for (j in c(1,2,3,8))

{

## for (k in 1:nk)

for (k in c(1,3,5,7,9))

{

for (l in 1:nl)

{

# Group 1

a <- rbinom(mdat[k+nk*(nj*(i -1)+(j-1)),7],1, mdat[k+nk*(nj*(i -1)+(j-1)) ,2]) # pi

b1 <- rbinom(mdat[k+nk*(nj*(i-1)+(j-1)),7],1, mdat[k+nk*(nj*(i-1)+(j-1)) ,10]) # p1

c <- rbinom(mdat[k+nk*(nj*(i -1)+(j-1)),7],1, mdat[k+nk*(nj*(i -1)+(j-1)) ,19]) # w

d1 <- rbinom(mdat[k+nk*(nj*(i-1)+(j-1)),7],1, mdat[k+nk*(nj*(i-1)+(j-1)) ,1]) # t

e <- d1*a+(1-d1)*((1-c)*a + c*(a*b1 + (1-a)*(1-b1)))

# Py1.hat <- Sum(e)/n1
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py1.hat[l] <- sum(e)/mdat[k+nk*(nj*(i-1)+(j-1)) ,7]

# theta1.hat <- 2*Py1.hat - 1

theta1.hat[l] <- 2*py1.hat[l] - 1

a <- c <- e <- c(rep(NA,trials ))

# Group 2

a <- rbinom(mdat[k+nk*(nj*(i -1)+(j-1)),8],1, mdat[k+nk*(nj*(i -1)+(j-1)) ,2]) # pi

b2 <- rbinom(mdat[k+nk*(nj*(i-1)+(j-1)),8],1, mdat[k+nk*(nj*(i-1)+(j-1)) ,11]) # p2

c <- rbinom(mdat[k+nk*(nj*(i -1)+(j-1)),8],1, mdat[k+nk*(nj*(i -1)+(j-1)) ,19]) # w

d2 <- rbinom(mdat[k+nk*(nj*(i-1)+(j-1)),8],1, mdat[k+nk*(nj*(i-1)+(j-1)) ,1]) # t

e <- d2*a+(1-d2)*((1-c)*a + c*(a*b2 + (1-a)*(1-b2)))

# Py2.hat <- Sum(e)/n2

py2.hat[l] <- sum(e)/mdat[k+nk*(nj*(i-1)+(j-1)) ,8]

# theta2.hat <- 2*Py2.hat - 1

theta2.hat[l] <- 2*py2.hat[l] - 1

a <- c <- e <- b1 <- b2 <- d1 <- d2 <- c(rep(NA,trials ))

# Calculation of Estimators

# pi.hat & w.hat #

pi.hat[l] <- (mdat[k+nk*(nj*(i-1)+(j-1)) ,12]*py2.hat[l] -

py1.hat[l])/(mdat[k+nk*(nj*(i-1)+(j-1)) ,12] -1)

w.hat[l] <- (1/(2*pi.hat[l]-1))*(py1.hat[l]-py2.hat[l])/
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((1-mdat[k+nk*(nj*(i -1)+(j-1)) ,1])*

(mdat[k+nk*(nj*(i -1)+(j-1)) ,10]- mdat[k+nk*(nj*(i-1)+(j-1)) ,11]))

# w.hat1: First Order Approximation #

# w.hat1 <- (1/(2*(1-t)))*(

# (theta1 -theta2)/( (1-p2)*theta1 - (1-p1)*theta2 )

# + ((p1-p2)*theta2*(theta1.hat -theta1 ))/( (1-p2)*theta1 - (1-p1)*theta2 )^2

# - ((p1-p2)*theta1*(theta2.hat -theta2 ))/( (1-p2)*theta1 - (1-p1)*theta2 )^2

# )

w.hat1[l] <- (1/(2*(1-mdat[k+nk*(nj*(i-1)+(j -1)) ,1])))*

((mdat[k+nk*(nj*(i-1)+(j-1)),24] - mdat[k+nk*(nj*(i-1)+(j-1)) ,25])/

( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] ) +

((mdat[k+nk*(nj*(i-1)+(j-1)),10] - mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25]*(theta1.hat[l]-mdat[k+nk*(nj*(i-1)+(j-1)) ,24]))/( (1-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] )^2 -

((mdat[k+nk*(nj*(i-1)+(j-1)),10] - mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24]*(theta2.hat[l]-mdat[k+nk*(nj*(i-1)+(j-1)) ,25]))/( (1-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] )^2 )

# w.hat2: Second Order Approximation #

# w.hat2 <- (1/(2*(1-t)))*(

# (theta1 -theta2)/( (1-p2)*theta1 - (1-p1)*theta2 )

# + ((p1-p2)*theta2*(theta1.hat -theta1 ))/( (1-p2)*theta1 - (1-p1)*theta2 )^2

# - ((p1-p2)*theta1*(theta2.hat -theta2 ))/( (1-p2)*theta1 - (1-p1)*theta2 )^2

# - ((1-p2)*(p1 -p2)*theta2*(theta1.hat -theta1 )^2)/( (1-p2)*theta1 - (1-p1)*theta2 )^3

# - ((1-p1)*(p1 -p2)*theta1*(theta2.hat -theta2 )^2)/( (1-p2)*theta1 - (1-p1)*theta2 )^3

# + ((p1-p2)*((1-p2)*theta1 +(1-p1)*theta2)*(theta1.hat -theta1)*(theta2.hat -theta2 ))

# /( (1-p2)*theta1 - (1-p1)*theta2 )^3

# )
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w.hat2[l] <- (1/(2*(1-mdat[k+nk*(nj*(i-1)+(j -1)) ,1])))*

((mdat[k+nk*(nj*(i-1)+(j-1)),24] - mdat[k+nk*(nj*(i-1)+(j-1)) ,25])/

( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] ) +

((mdat[k+nk*(nj*(i-1)+(j-1)),10] - mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25]*(theta1.hat[l]-mdat[k+nk*(nj*(i-1)+(j-1)) ,24]))/( (1-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] )^2 -

((mdat[k+nk*(nj*(i-1)+(j-1)),10] - mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24]*(theta2.hat[l]-mdat[k+nk*(nj*(i-1)+(j-1)) ,25]))/( (1-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] )^2 -

((1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*(mdat[k+nk*(nj*(i-1)+(j-1)),10]-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,25]*(theta1.hat[l]-

mdat[k+nk*(nj*(i -1)+(j -1)) ,24])^2)/( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24] - (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^3 -

((1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*(mdat[k+nk*(nj*(i-1)+(j-1)),10]-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24]*(theta2.hat[l]-

mdat[k+nk*(nj*(i -1)+(j -1)) ,25])^2)/( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,24] - (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*

mdat[k+nk*(nj*(i -1)+(j-1)) ,25] )^3 +

((mdat[k+nk*(nj*(i-1)+(j-1)),10] - mdat[k+nk*(nj*(i-1)+(j-1)) ,11])*((1-

mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24]+(1 -

mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i -1)+(j-1)) ,25])*(theta1.hat[l]-

mdat[k+nk*(nj*(i -1)+(j-1)) ,24])*(theta2.hat[l]-mdat[k+nk*(nj*(i-1)+(j -1)) ,25]))/

( (1-mdat[k+nk*(nj*(i -1)+(j-1)) ,11])*mdat[k+nk*(nj*(i -1)+(j-1)) ,24] -

(1-mdat[k+nk*(nj*(i -1)+(j-1)) ,10])*mdat[k+nk*(nj*(i-1)+(j-1)) ,25] )^3 )

}

# Simulation Part #

mdat[k+nk*(nj*(i -1)+(j-1)) ,14] <- mean(py1.hat)
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mdat[k+nk*(nj*(i -1)+(j-1)) ,15] <- var(py1.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,17] <- mean(py2.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,18] <- var(py2.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,30] <- mean(theta1.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,31] <- var(theta1.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,32] <- mean(theta2.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,33] <- var(theta2.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,3] <- mean(pi.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,4] <- var(pi.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,20] <- mean(w.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,21] <- var(w.hat)

mdat[k+nk*(nj*(i -1)+(j-1)) ,34] <- mean(w.hat1)

mdat[k+nk*(nj*(i -1)+(j-1)) ,35] <- var(w.hat1)

mdat[k+nk*(nj*(i -1)+(j-1)) ,36] <- mean(w.hat2)

mdat[k+nk*(nj*(i -1)+(j-1)) ,37] <- var(w.hat2)

# Normality Test

# Anderson -Darling Test: ad.test(x) (# of (x) > 7)

# Cramer -von Mises test: cvm.test(x) (# of (x) > 7)

# Kolmogorov -Smirnov Test: lillie.test(x)

# Shapiro -Francia Test: sf.test(x) (Only for 5 -5000)

mdat[k+nk*(nj*(i -1)+(j-1)) ,38] <- round(sf.test(pi.hat)$p.value ,6)

mdat[k+nk*(nj*(i -1)+(j-1)) ,39] <- round(sf.test(w.hat)$p.value ,6)

mdat[k+nk*(nj*(i -1)+(j-1)) ,40] <- round(sf.test(w.hat1)$p.value ,6)

mdat[k+nk*(nj*(i -1)+(j-1)) ,41] <- round(sf.test(w.hat2)$p.value ,6)
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pi.hat <- py1.hat <- py2.hat <- w.hat <- c(rep(NA,trials ))

a <- b1 <- b2 <- c <- d1 <- d2 <- e <- c(rep(NA,trials ))

}

}

}

# -----------------------------------------------------------

# Export the matrix of "mdat" as csv format

write.csv(mdat , file="2012-JUN -15. SIHM.RRT.csv")
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