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Abstract

In this note we study the numerical stability problem that may take
place when calculating the cumulative distribution function of the Hypo-
exponential random variable. This computation is extensively used during
the execution of Monte Carlo network reliability estimation algorithms.
In spite of the fact that analytical formulas are available, they can be
unstable in practice. This instability occurs frequently when estimating
very small failure probabilities (10−30 − 10−40) that can happen for ex-
ample while estimating the unreliability of telecommunication systems. In
order to address this problem, we propose a simple unbiased estimation
algorithm that is capable of handling a large number of variables. We
show that the proposed estimator has a bounded relative error and that
it compares favorably with other existing methods.

Keywords. Hypoexponential distribution, Monte Carlo, Rare Events, Network
Reliability.

1 Introduction

Network Reliability problem appears in many real life applications such as trans-
portation, social and computer networks, communication, and many more. One
approach to handle this problem is by using a Monte Carlo (MC) technique.
Some MC methods require computation of the Cumulative Distribution Func-
tion (CDF) of the Hypoexponential random variable.

We can state the reliability problem as follows. Suppose we are given an
undirected graph G(V,E, T ) where V and E are the vertex and edge sets respec-
tively and let T ⊆ V be some terminal set of nodes. Suppose also that edges are
subject to failure and for all e ∈ E there is a corresponding failure probability
qe. Under this setting we can ask for the probability that the terminal set T be
connected. We call the latter an UP state.

One of the well-studied approaches to handle this problem is called an Evo-
lution Monte Carlo (EMC) method [4]. The main idea is that at time zero
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no edges are present in the graph. Next, we assign each edge a correspond-
ing exponential random variable that represents the time this edge is “born”.
Naturally, there is a time when the network enters the UP state. The Evolu-
tion Monte Carlo method studies those times and delivers the corresponding
network reliability (for details see [4]). While executing the EMC algorithm,
we need to perform many calculations of the form P(

∑n
i=0Xi ≤ t). Note that

Xi ∼ exp(λi), so this sum is distributed Hypoexponentially and the correspond-
ing complementary CDF can be computed using a matrix exponential:

P(

n∑

i=0

Xi ≥ t) = e1e
Dt1 = e1

∞∑

k=0

Dktk

k!
1 (1)

where e1 = (1, 0, · · · , 0) is a 1 × n vector, 1 is a n × 1 column vector of ones,
and

D =




−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0
...

...
...

. . .
...

0 · · · 0 −λn−1 λn−1

0 · · · 0 0 λn




is a n×n matrix [2]. For the rest of this section we concentrate on the methods
used to perform this computation.

First, we examine the exact algorithms available.

• If λ1 > λ2 > · · · > λn is satisfied, formula (1) can be written as

P(

n∑

i=0

Xi ≤ t) = 1−
n∑

i=0

e−λit
∏

j 6=i

λj

λj − λi
(2)

and computed in O(n2) time following Ross in [8]. Unfortunately, it was
noted that this formula suffers from numerical instability. For example,
consider the following λ values.

λ1 = 10.00, λ2 = 9.99, λ3 = 9.98, λ4 = 9.97, λ5 = 9.96, λ6 = 9.95,
λ7 = 9.94λ8 = 9.93, λ9 = 9.92, λ10 = 9.91, λ11 = 9.9, λ12 = 9.89.

Using a MatLab code proposed in [3] to calculate P(
∑12

i=0 Xi ≤ 1) we
observe that this probability is equal to −134, 217, 727. The result can be
verified using the convolution1 code in Appendix B.

• A much better approach was tested by Botev et al. [2] and exploited a
new matrix exponential algorithm called scaling and squaring that was
introduced by Higham in [5]. The convolution2 MatLab implementation
is attached in Appendix B. This method is very stable but more expensive
in the sense of CPU time when compared to convolution1.

Next, we introduce randomized methods that output the estimation of the
desired value.
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• The Cross Entropy (CE) method is a powerful technique for solving dif-
ficult estimation and optimization problems, based on Kullback-Leibler
(or cross-entropy) minimization [1]. This method was pioneered by Ru-
binstein in 1999 [9] and is based on an adaptive importance sampling
procedure for the estimation of rare-event probabilities.

• The Splitting method is another common technique to deal with counting,
combinatorial optimization and rare-event estimation, but unlike the CE
method that is based on Importance Sampling, the Splitting procedure
relies on the Markov Chain Monte Carlo (MCMC) approach. Splitting

dates back to Kahn and Harris [6] and Rosenbluth and Rosenbluth [7].
The main idea is to partition the state-space of a system into a series
of nested subsets and to consider the rare event as the intersection of a
nested sequence of events.

• The Conditional Monte Carlo Algorithm (G-S) proposed by Gertsbakh
and Shpungin in [4], Section 7.3, p. 91. The main idea of this approach
is to sample the exponential random variables recursively while avoiding
rare-event settings. This technique was especially designed to handle the
numerical problems that may occur during the exponential convolution
calculation.

The rest of the note is organized as follows. In section 2 we introduce our
algorithm and prove that it is unbiased and has a bounded relative error. In
section 3 we present numerical results and show that our approach can be
compared with other methods. Finally, section 4 presents some concluding
remarks.

2 IS Algorithm

Given independent exponential random variables X1, . . . ,Xn such that Xi ∼
exp(λi), we propose to sample from different densities and use likelihood ratios
respectively. The details are presented in the following algorithm.

Algorithm 2.1 IS Algorithm

Input: λ1, · · · , λn

Output: P̂
(∑n

i=1 Xi ≤ 1
)

1: res← 0
2: for i = 1→ N do

3: Sample y1, · · · , yn, such that yi ∼ exp(n)
4: if

∑n
i=1 yi ≤ 1 then

5: res← res+
∏n

i=1
λie−λiyi

∏n
i=1

ne−nyi

6: end if

7: end for

8: return res
N
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Let us define

ℓ = P
( n∑

i=1

Xi ≤ 1
)
. (3)

Note that the algorithm outputs an estimator to E(Z), where

Z = 1{
∑n

i=1
Yi≤1}

∏n
i=1 λie

−λiYi

∏n
i=1 ne

−nYi
. (4)

For a formal proof that E[Z] is an unbiased estimator of P
(∑n

i=1 Xi ≤ 1
)
see

Lemma A.1.

The following corollary immediately follows from the definition of a relative
error and from Theorem A.2.

Corollary 2.1 The relative error of the IS Algorithm satisfies

RE ≤

√√
ne2(λ̄−λ)+1

N
(5)

where n is a number of exponential random variables in the sum, λ̄ = maxi=1,...,n{λi},
λ = mini=1,...,n{λi}, and N is the sample size.

3 Numerical Results

We conducted many numerical experiments using all the algorithms mentioned
earlier. In general, we came to the conclusion that for most practical purposes,
the exact algorithm convolution2 should be preferred. Unfortunately, when
rare event settings are involved the latter may fail. In this section we consider
the performance of the proposed algorithms on 3 models. We performed all
computations on an Intel Core i5 laptop with 4GB RAM. We use the same
algorithm parameters for all models.

• IS: N = 100n sample size

• Cross Entropy: ρ = 0.3, α = 0.5 and N = 100n sample size both for
parameter estimation and final sampling

• Splitting: ρ = 0.3 and N = 1, 000 sample size

• G-S: N = 100, 000 sample size

• The relative error (R̂E) calculation is based on K = 10 independent

runs.The R̂E was calculated as

R̂E =
S

ℓ̃
, (6)

where

ℓ̂ = P̂
( n∑

i=1

Xi ≤ 1
)
, S2 =

1

K − 1

K∑

i=1

(ℓ̂i − ℓ̃)2 and ℓ̃ =
1

K

K∑

i=1

ℓ̂i.
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• R̂TV - relative time variance is used to compare different algorithms; it
is defined as the simulation time in seconds multiplied by the squared
relative error.

We consider the following models.

• Model 1:
∑10

i=1 Xi where Xi ∼ exp(λ) are i.i.d exponential random
variables with λ = 0.03.

• Model 2:
∑10

i=1 Xi where Xi ∼ exp(λ) are i.i.d exponential random
variables with λ = 0.01.

• Model 3:
∑10

i=1Xi where Xi ∼ exp(λi). The corresponding λ values are
given below.

λ1 = 0.01, λ2 = 0.011, λ3 = 0.009, λ4 = 0.01, λ5 = 0.011,
λ6 = 0.009, λ7 = 0.01λ8 = 0.011, λ9 = 0.009, λ10 = 0.01.

The following tables summarize our results.

Table 1: Average performance of 10 runs of the algorithms for Model 1

Algorithm P̂(
∑

Xi ≤ 1) R̂E R̂TV CPU

IS 1.61 × 10−22 5.98 × 10−2 3.38 × 10−4 0.094

Cross Entropy 1.58 × 10−22 9.24 × 10−2 1.90 × 10−3 0.222

Splitting 1.32 × 10−22 5.53 × 10−1 1.37 4.501

G-S 1.44 × 10−22 3.94 × 10−1 2.85 × 10−2 0.184

The exact convolution2 algorithm delivers P(
∑

Xi ≤ 1) = 1.1102 × 10−16

as an output. Unfortunately, Algorithm convolution1 cannot be used for equal
λ values.

Table 2: Average performance of 10 runs of the algorithms for Model 2

Algorithm P̂(
∑

Xi ≤ 1) R̂E R̂TV CPU

IS 2.75 × 10−27 6.05 × 10−2 3.50 × 10−4 0.096

Cross Entropy 2.74 × 10−27 6.73 × 10−2 5.82 × 10−4 0.128

Splitting 2.97 × 10−27 5.55 × 10−1 1.74 5.667

G-S 2.35 × 10−27 3.77 × 10−1 2.57 × 10−2 0.181

The exact convolution2 algorithm delivers P(
∑

Xi ≤ 1) = 1.1102 × 10−16

as an output. Note that the algorithm outputs the same value for both Model

1 and Model 2.
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Table 3: Average performance of 10 runs of the algorithms for Model 3

Algorithm P̂(
∑

Xi ≤ 1) R̂E R̂TV CPU

IS 2.56 × 10−27 3.19 × 10−2 9.75 × 10−5 0.096

Cross Entropy 2.60 × 10−27 3.42 × 10−2 1.61 × 10−4 0.138

Splitting 2.35 × 10−27 4.18 × 10−1 9.75 × 10−1 5.588

G-S 2.14 × 10−27 2.47 × 10−1 1.10 × 10−2 0.180

Algorithm convolution1 cannot deliver a meaningful answer and convolu-
tion2 algorithm delivers P(

∑
Xi ≤ 1) = −2.2204 × 10−16 as an output. Note

that in this case the stability is lost and the algorithm outputs P(
∑

Xi ≥ 1) > 1.

4 Conclusions

In this note, we developed a new importance sampling algorithm for computing
the CDF of the Hypoexponential random variable. We proved that the proposed
estimator is efficient and its performance compares favorably with other exist-
ing methods. Based on our numerical results we conclude that in situations
with no rare events involved, one should prefer to use the exact convolution2
method that is still relatively fast and very stable. Naturally, when the exact
method fails, which may happen in case of very small probabilities, one should
apply some Monte Carlo approximation. MCMC based Splitting is too slow to
be used in reliability applications. The G-S has a good performance and very
easy to implement but it seems that its relative error is inferior when compared
to IS. The Cross Entropy and the proposed IS algorithm are comparable, but
IS is much simpler to implement.
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Appendix A Proofs

Lemma A.1 The output of IS Algorithm 2.1 is unbiased.

Proof. Let Yi ∼ exp(n) , i = 1, 2, ..., n be independent exponentially dis-
tributed random variables. Recall that we are looking for an unbiased estimator
of P (X1 + X2 + ... + Xn ≤ 1), where Xi are independent and Xi ∼ exp(λi).
Our estimator is

Z = 1{
∑n

i=1
Yi≤1}

∏n
i=1 λie

−λiYi

∏n
i=1 ne

−nYi
. (7)

Note that the joint density function ofY = (Y1, Y2, ..., Yn) is Ψ(v) =
∏n

i=1 ne
−nvi .

Now

E[Z] =

∫
(n)

∫

vi≥0,v1+...+vn≤1

∏n
i=1 λie

−λivi
∏n

i=1 ne
−nvi

n∏

i=1

ne−nvidv1dv2...dvn =

∫
(n)

∫

vi≥0,v1+...+vn≤1

n∏

i=1

λie
−λividv1dv2...dvn = P (X1+X2+...+Xn ≤ 1). Q.E.D.

Theorem A.2 Let Z be defined as in (4). Then we have,

E(Z2)

(E(Z))2
≤
√
ne2(λ̄−λ)+1, (8)

where λ̄ = maxi=1,...,n{λi} and λ = mini=1,...,n{λi}.

Proof. Denote by

Y :=

n∑

i=1

Yi. (9)

By the definition of the random variables yi, i = 1, ..., n, we have that Y is
distributed Erlang(n, n) and therefore it has the following probability density

fY (y) =
nn

(n− 1)!
yn−1e−ny, y > 0. (10)

Define

I(n, x) :=

∫ x

0
tn−1etdt. (11)
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From (11),(4),(9) and (10) we have,

E(Z2) =

(∏n
i=1 λi∏n
i=1 n

)2

E

(
1{

∑n
i=1

Yi≤1}

∏n
i=1 e

−2λiYi

∏n
i=1 e

−2nYi

)
(12)

≤
(∏n

i=1 λi∏n
i=1 n

)2

E

(
1{

∑n
i=1

Yi≤1}
e−2λ

∑n
i=1

Yi

e−2n
∑n

i=1
Yi

)

=

(∏n
i=1 λi∏n
i=1 n

)2

E

(
1{Y≤1}e

2(n−λ)Y

)

=

(∏n
i=1 λi∏n
i=1 n

)2
nn

(n − 1)!

∫ 1

0
xn−1e(n−2λ)xdx

=

(∏n
i=1 λi∏n
i=1 n

)2
nn

(n − 1)!

1

(n − 2λ)n

∫ n−2λ

0
xn−1exdx

=

(∏n
i=1 λi∏n
i=1 n

)2
nn

(n − 1)!

1

(n − 2λ)n
I(n, n− 2λ).

Recall the definition of the lower incomplete gamma function,

γ(n, x) :=

∫ x

0
tn−1e−tdt. (13)

Use (13),(4),(9) and (10) to get,

E(Z) =

∏n
i=1 λi∏n
i=1 n

E

(
1{

∑n
i=1

Yi≤1}
e−

∑n
i=1

λiYi

e−n
∑n

i=1
Yi

)
(14)

≥
∏n

i=1 λi∏n
i=1 n

E

(
1{

∑n
i=1

Yi≤1}
e−λ̄

∑n
i=1

Yi

e−n
∑n

i=1
Yi

)

=

∏n
i=1 λi∏n
i=1 n

E

(
1{Y≤1}e

(n−λ̄)Y

)

=

∏n
i=1 λi∏n
i=1 n

· nn

(n− 1)!

∫ 1

0
xn−1e−λ̄xdx

=

∏n
i=1 λi∏n
i=1 n

· nn

(n− 1)!

1

λ̄n

∫ λ̄

0
xn−1e−xdx

=

∏n
i=1 λi∏n
i=1 n

· nn

(n− 1)!

1

λ̄n
γ(n, λ̄).

From (12) and (14) we get

E(Z2)

(E(Z))2
≤ (n− 1)!

nn

λ̄2n

(n− 2λ)n
I(n, n− 2λ)

(γ(n, λ̄))2
. (15)

By a simple calculation we obtain the following bounds on the functions I and
γ,

I(n, x) ≤ xnen

n
, ∀x ∈ [0,∞), n ∈ N, (16)

γ(n, x) ≥ xn

nex
, ∀x ∈ [0,∞), n ∈ N. (17)
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Recall Stirling’s formula

n! ≤ nn+1/2e−n+1, ∀ n ∈ N. (18)

Apply (16)–(18) on (15) to get

E(Z2)

(E(Z))2
≤ e−n+1

√
n

λ̄2n

(n− 2λ)n
I(n, n− 2λ)

(γ(n, λ̄))2

≤ e−n+1

√
n

λ̄2n

(n− 2λ)n

1
n(n− 2λ)nen−2λ

λ̄2n

n2e2λ̄

=
√
ne2(λ̄−λ)+1, (19)

and we get (8).

Appendix B MatLab code for exact computation

1 function ell=convolution1(t,nu)

2 % computes P(A 1+...+A b>t) exactly,

3 % where A i distributed Exp(nu(i)) independently;

4 % nu has to be decreasing (sorted) sequence

5 b=length(nu); % parameters of the waiting times

6 w=zeros(b,b); % b is critical number

7 w(l,l)=l;

8 for k=l:b−l

9 for j=l:k

10 w(k+l,j)=w(k,j)*nu(b−k)/(nu(b−k)−nu(b−j+l));

11 w(k+l,k+l)=l−sum(w(k+l,1 :k));

12 end

13 end

14 ell=w(b,:)*exp(−nu(end:−l: 1) *t); % probability

15 end

1 function ell=convolution2(t,nu)

2 % computes P(A 1+...+A b>t) exactly,

3 % where A i ¬ Exp(nu(i)) independently;

4 % nu has to be decreasing (sorted) sequence

5 b=length(nu); % parameters of the waiting times

6 A=diag(−nu)+diag(nu(1:b−1),1);

7 A=expm(A*t);

8 ell=sum(A(1,:));

9 end
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