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Abstract: In this paper we generalize four tests of multivariate linear hypothesis to panel data 

unit root testing. The test statistics are invariant to certain linear transformations of data and 

therefore simulated critical values may conveniently be used. It is demonstrated that all four 

tests remains well behaved in cases of where there are heterogeneous alternatives and cross-

correlations between marginal variables. A Monte Carlo simulation is included to compare 

and contrast the tests with two well-established ones.  
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1.  Introduction 

In order to assess stationarity of a process, it is common to express it by means of a statistical 

model. Traditionally this has been done using a first-order autoregression model where the 

stationarity is assessed through tests of the linear restrictions on the autoregression parameter 

– see, for example, Fuller (1996), Dickey and Fuller (1979), Said and Dickey (1984) and Ng 

and Perron (1995). These tests, however, are designed for univariate processes, and it is by no 

means obvious how to extend a univariate test to a multivariate setting of, say, N variables 

such as in a panel data context, though some tests of different origin have been considered in 

the literature. Breitung and Meyer (1994) suggested a panel data unit root test valid for a fixed 

number of observations T and N  . Apart from the assumption of increasing N, their test, 

as well as the test proposed by Levin, Lin and Chu (2002), assumes a common scalar 

parameter, which does not allow some marginal series to be unit roots and others not. Im, 

Pesaran and Shin (2003) relaxed the assumption of a common parameter and proposed a test 

based on averaging the test statistics from the N cross-section units. Another test which allows 

for heterogeneous parameters over the N units was introduced by Maddala (1977), who used 

Fishers p-value statistic 
1

2 log
N

ii
P


   where iP  is the p-value of any univariate test of the ith 

marginal process. This, as well as the other panel data tests above, does not allow for cross-

sectional correlations, which in turn appear to be present in most cases met in practice. In 

such cases, Maddala and Wu (1999) suggest using ‘bootstrap’ methods to obtain fair, critical 

values of Fisher’s test. A somewhat different test was proposed by Moon and Perron (2004), 

who assumed a factor structure of the cross-covariances and suggested pooling defactored 

variables to construct a unit root test. Other factor-based methods for cross-correlated data 

have been proposed by Phillips and Sul (2003), Bai and Ng (2004), Choi (2002) and Pesaran 

(2003).  

 

In this paper, we will take a different approach to panel data unit root testing, which 

simultaneously allows for heterogeneous unit roots – in the sense that some series may be 

stationary and others not – and cross-correlations of the residuals without assuming a factor 

structure. We specify the panel unit root problem in the form of a multidimensional restriction 

on a linear, but (possibly) non-stationary, vector process and four invariant statistics for 

testing the hypothesis. As each of the proposed statistics is invariant to linear transformations, 

the critical values may be simulated by computers with arbitrary precision, thereby avoiding 

the problem of deriving the complicated null distribution, so that completely feasible 
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procedures are available. The power properties of the four tests are investigated through 

Monte Carlo simulations, and, for the purpose of comparison, the frequently used test 

proposed by Im, Pesaran, Shin (2003) is included. The tests are applied to panels of 5, 10, 15 

and 20 units with samples ranging from 30 to 500 observations under different null [OK?] and 

alternative parameter settings.  

The paper is arranged as follows. In the next section we specify the model under investigation 

with the corresponding null and alternative hypotheses along with the proposed tests. The 

Monte Carlo simulations are presented in Section 3. In Section 4 we present the results as 

regards the size and power of the tests and finally, a conclusive summary is presented in 

Section 5. 

 

2.  Panel unit root testing 

In this section we present the model and outline of the hypothesis tests. Since nearly all 

previously proposed successful unit root tests involved a first-order autoregressive model, 

with possible extensions thereof, we will follow that principle here (for a survey of 

approaches, see Pesaran 2007). Consider a multivariate, possibly non-stationary process 

defined by 

1t t t Y ρY u                 (2.1)  

 

where 1,...,t T ,  ~ ,t Nu 0 Σ  and : N NΣ  is a positive semi-definite (psd) matrix of 

residual covariances, and : N Nρ  is a parameter matrix where 0ij   for i j  by 

assumption. The null and alternative hypothesis of (multivariate) unit root may then be 

expressed by 

0 11: ... 1

: 1,  

NN

A ii i

H

H

 



  

 
.    

In order to test this hypothesis it is convenient to take the first difference of the observable 

variable to get 

      1 1 .t t t t t      Y Y Y ρ I Y u                                     (2.2)  

On the difference form, the hypothesis may be expressed as  

 

             

   

 

0 11: 1 ... 1 0

: 1 0,  

NN

A ii i

H

H

 



    

  
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or equivalently, 

                                                               

 

 

0 :

:A

H

H

 

 

ρ I 0

ρ I 0
 .                                                  (2.3) 

 

Note that, in view of (2.2), this is simply a hypothesis of N restrictions in a linear model, 

which in turn is a well-established problem in multivariate analysis where test statistics are 

usually computed through functions of the restricted and unrestricted residual sum-of-square 

matrixes. A common procedure may be described as follows. Let  and R US S  denote the 

restricted and unrestricted residual covariance matrixes of (2.2) and define  R UT H S S  

and UTE S  where T is the total number of available observations after the differentiation 

where, by assumption, 2T N  . These statistics are known as the hypothesis and error 

matrixes in the literature, and are the main ingredients within several well-known test 

statistics. Some options are presented below: 

                                                     2 1

0T T trace   HE                 (2.4) 

             1
V T trace


  H H E              (2.5) 

                                                      det det  E H E                                    (2.6) 

                                                       
1 2

4 21
4 2 5,  .s

N NsR 
              (2.7) 

The 2

0T  statistic was initially proposed by Lawley (1938) and Hotelling (1947), and is also 

sometimes labeled as the ‘Wald statistic’. For a one-dimensional variable this statistic is 

proportional to the standard Dickey-Fuller t statistic. The V  statistic is known as the ‘Pillai´s 

trace’ (Pillai, 1955, 1956) and has also been derived through a Lagrangean multiplier 

prespective (e.g. Judge et. al. 1985). The   statistic is known as ‘Wilks lambda’, while the R  

statistic was introduced by Rao (1973). Further references concerning their origin, inequality 

ordering and null- and alternative distributions may be found in Muirhead (2005), Rao (1973), 

Judge et. al. (1985), Anderson (2003), Bewley (1986), Fujikoshi (1970, 1988), Kibria and 

Saleh (2005) and Lee (1971). These four statistics were originally derived for the purpose of 

testing linear hypothesis in contexts of multivariate linear models such as MANOVA and 

other multivariate settings. But they have also proven to be useful for testing distributional 

assumptions in multivariate econometric models. For example, Edgerton and Shukur (1999) 

and Holgersson (2004) used them to assess autocorrelation in multivariate regression and 

seemingly unrestricted regression (SUR) models, while Holgersson and Shukur (2004) used 
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them to test for multivariate heteroscedastricity. In these cases, the authors used tabulated or 

asymptotical critical values obtained within the references above. For non-stationary 

processes these critical values are not valid. But each of the four statistics is invariant to linear 

transformations of the kind Y BY  for any non-singular matrix B , and the critical values 

may be simulated with arbitrary precision by computers. However, unit root tests in 

econometrics are frequently conducted on a series of logarithms, which are not invariant to 

such transformations (i.e. to changes from measures using one currency to another) since the 

logarithm would add a constant to the series. It is therefore common to add a constant to the 

model to also make the statistic invariant to these changes. For example, we may write 

1 where t t t t t   Y a Z Z ρZ u . By eliminating tZ  from this model we get
 

  *

1 ,t t t  Y a ρY u
       *

11 11 ,..., 1 .NN Na a    a              (2.8)   

Note that the : thi  element of *
a  is zero when ii  is zero. In other words, the joint hypothesis 

of    1 0ii ia     rules out the possibility that tY  is a random walk with drift. Any of the 

statistics (2.4) to (2.7) may be used for testing the extended hypothesis after appropriate 

degrees of freedom adjustments. It is also possible to construct other tests based on the 

eigenvalues of   1 of  n


HE . Perlman and Olkin (1980) showed that any test with an 

acceptance region  1,..., Ng c    where g is non-decreasing in each argument, is unbiased. 

These authors also supplied monotonicity results for the power functions of such tests. In this 

paper, however, we will restrict ourselves to those of (2.4) to (2.7) due to their simple 

functional form. In order to obtain these statistics the restricted and unrestricted sum-of-

square residual matrixes need to be estimated. The most efficient way to do this is through the 

SUR version of model (2.2). This is defined as follows: 

 

 

   

   

1, 11, 1 1

, , 11

,

,

tt

N t N t N NNT





      
      

       
              

1 Y 0Y β u

Y 0 1 Y β u

where   *, 1n n n  
 β , 1,...,n N ,  

 

or more compactly,  1t t t  Y Y β u .               (2.9) 

 

The tests are then conducted as follows. 
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i. Apply the ordinary least squares (OLS) to (2.2) and obtain the OLS residuals, tnu  

say. 

ii. Calculate 
1

ˆ :
T

N N t tt
T 

σ u u   where  1...t t tNu u u  and define  1 2ˆ: T

 P σ I .  

iii. Transform (2.9) by the pre multiplication:
 1t t t  Y Y β u

 

1t t t  P Y PY β Pu .  

iv. Apply OLS to the transformed model and calculate the unrestricted residual sum- 

of-square matrix US  from the model 1t t t  P Y PY β Pu  and calculate the 

restricted residual sum-of-square matrix RS  from the null model t t P Y Pu . 

 

The  and H E  matrixes and the test statistics are then calculated as described above. In 

addition, note that this method readily extends to a model including which includes a constant 

term. When it comes to obtaining critical values at desired test level, these may be tabulated 

through simulations. However, that method is somewhat inconvenient, especially in a panel 

data context, since the tables would have to be constructed at two indexes (i.e. the number of 

cross sections and time observations respectively). An equivalent but more convenient 

method may be conducted through parametric bootstrap technique, described as follows. 

 

Let  0D X  be a test statistic, such as 2

0 ,  ,   or T V R , calculated from an original sample 

0 :T NX  (here 0X  will represent tY ) and suppose that B independent realizations of 0X  

(say  
1

B

b b
X ) are available with distributions determined by 0H  and (2.1) with the 

corresponding test statistics   
1

B

b b
D


X . The empirical p-values are then determined by 

  
 0

0

ˆ 1
ˆ

1

B

B

BD
p D

B






X
X  , where                                                            (2.10) 

        1

0 00,
1

1, if 
ˆ 1 , 1 ( )

0, if 

B

B b A

b

A
D B D D

A












   


X X X .                           

Hence  0
ˆ

BD X  is the proportion of times that    1 ,...,B B BD DX X  exceeds  0D X . The 

critical region of the test at significance level   is: 

     0
ˆ

Bp D X .                                                                    (2.11) 

The null hypothesis of panel unit roots is rejected on the   level when the empirical p-value 

is less than  . Hence, once this fairly simple algorithm is defined in appropriate software, 

there is no need for tabulated critical values for each  ,N T  pairing.  
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To sum up the discussion so far, any of these four statistics may be used to test the hypothesis 

of the panel data unit root of (2.8) in a sense way that simultaneously allows cross-equation 

correlations and heterogeneous unit roots among the different units. Critical values and/or p-

values may be obtained by tabulation of critical values or, preferably, by (2.11) to obtain 

empirical p-values, so that the tests are indeed feasible. But there is also an issue of the power 

properties of the tests, in particular when they are compared with other previously proposed 

tests for multivariate unit roots. The most commonly used test is probably that suggested by 

Im, Pesaran and Shin (2003) whose test statistic is formed by averaging individual 

(univariate) Dickey-Fuller t-test statistics. Their test can be described as follows. Let the ith 

marginal model be determined by 

, , 1 , ,i t i i i t i ty a y u       

with the hypothesis 

0

i

: 0 

: 0 

i i

A i

H

H





 

 
. 

The test statistic proposed by Im, Pesaran and Shin (2003) (IPS test) is then  

1 2

1

( , )
N

NT iT i i

i

t N t p 



   where ( , )iT i it p   is the ith individual (marginal) Dickey Fuller t -test 

statistic for testing 0i  .  Under the restriction of cross-sectional independence, the authors 

also derive the asymptotical distribution of the test with 

   
1 2

( ) (0,1)NT iT iTZ N t E t Vart N


    as ,T N  , and  iTE t   and iTVart  are 

tabulated by Monte Carlo experiments.  

 

Where there is cross-sectional dependency, an alternative to the IPS test is the CIPS test 

proposed by Pesaran (2007). However, it should be noted that the CIPS test was proposed 

under the assumption that the cross-sectional dependency occurs due to a common factor 

affecting all of the variables in the panel, which may be a limitation of the test in cases where 

this assumption is not valid. But since these two tests are frequently used in applied analyses 

we will include them in the study. 

The above tests, including the IPS/CIPS tests, could also be extended to allow for serially 

correlated errors, but here we will restrict ourselves to model (2.8) since there are already a 

substantial number of parameters in the model.  

 

3. The Monte Carlo simulations 
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In this section we will present the data-generating process and outcomes of the experiments. 

The data will be generated according to the following model. 

* 1 2

1 ,t t t  Y a ρY Σ u       1,t T               (3.1) 

where : 1t N u  is an error term. In order to obtain the appropriate properties of the process, it 

has been simulated with T+200 observations and then the first 200 start-up values have been 

deleted. : 1t N Y
 
is then a vector, consisting of variables that are integrated of order 1, i.e. 

I(1), if the coefficients 
ii  equals one and     *

11 11 ,..., 1 .NN Na a    a  If 
ii  is less than 

one the corresponding marginal variable is stationary. Our main interest lies in settings where 

the number of variables is rather large relative to the number of observations. We therefore 

use models consisting of  5,  10,  15,  20N
 

and  30,  50,  100,  200,  500T  . These 

combinations of  and N T  include cases when the number of variables is comparable to the 

number of observations as well as the large sample cases (i.e. when T N ). We set 

11 ... 1NN     when the size is calculated, while for the power calculations the vector  

 11,..., NN   will be less than unity for some or all marginal variables. This will be done by 

using values relatively close to the null values (0.95 and 0.9 respectively). Moreover, since we 

are testing unit roots from a systemwize perspective, we will consider power simulations 

where all N marginal variables are stationary as well as cases when only a portion of the 

variables ( , say) is stationary. Specifically, we will consider  1,  0.6,  0.2  . In addition, in 

order to impose cross dependencies we will generate the error term through the relation 

t u Lη  where  ,iidNη 0 I , ' LL Σ  and Σ  is a circulant
*
 matrix. This format allows for 

determining covariance matrixes in a high-dimensional space without having to set every ij
 

individually. (Note that none of the proposed test statistics (2.4) – (2.7) depends on this 

specific functional form of the covariance matrix. This form is merely used to conveniently 

generate a general, non-scalar psd covariance matrix.) 

 

The following parameter settings generate positive definite covariance matrixes. 

 
5 5

1, 0.7, 0.5, 0.3, 0.1circ


 
 

 
10 10

1, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01circ


 

 
10 10

1, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05circ


 

 
20 20

circ 1, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.3, 0.25, 0.25, 0.2, 0.2, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05


    
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*
The circulant class matrixes used here have the form of  1 2 3circ a a a = 

1 2 3

2 1 2

3 2 1

a a a

a a a

a a a

 
 
 
 
 

. 

 

In order to evaluate the size of the tests, the following confidence interval is calculated. 

 0 0

0

1
2

M

 



 ,              (3.2) 

where M is the number of Monte Carlo replications (equal to 10, 000) and 0  
is the nominal 

size which is equal to 0.05. The number of replicates used to determine the critical region 

(2.1) is set to 30,000. 

 

 

4. Results 

In our Monte Carlo study we calculate the estimated size by simply observing how many 

times the null is rejected in repeated samples under conditions where the null is true. By 

varying factors like those described in the previous section, we can obtain a succession of 

estimated sizes under different conditions. In general, the closer an estimated size is to the 

nominal size the better we consider a test to be. In this section the results from the Monte 

Carlo experiment are presented. The estimated sizes of the tests are presented in Table 1. The 

confidence interval in equation (3.2) is doubled in magnitude in order to emphasize the 

pattern of well-performing tests more clearly. Therefore, if the actual size of a test exhibits a 

rejection frequency significantly below 0.06 it is considered as fair, which is marked out as 

shaded cells in the tables (here we do not consider low type-I error as a weakness of the test). 

 

4.1 Analysis of the Estimated Size  

 

The sizes of the different unit root tests are presented in Table 1. The statistical tests have fair 

size properties in the absence of cross-sectional dependency, which is expected since it is 

under this circumstance that the new critical values are generated. When adding some cross-

sectional dependency, the estimated type-I errors of the IPS and CIPS tests increase 

extremely. The results from our study indicate that the CIPS test may not account for a non-

homogeneous cross-sectional dependency. The actual size does not converge toward the 

nominal size either, so even in large samples one should be careful when applying the IPS and 
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CIPS tests. Hence, pre-tests of correlation should always be used before applying any of these 

tests. The Lawley-Hotelling trace, Pillai´s trace, Wilk´s lambda and Rao´s multivariate F-test 

( 0 ,  ,   and T V R ) are much more robust, and they are almost always unbiased. In particular, 

when looking at the size of the tests, the V  test has shown to be very robust in all studied 

cases and hence should be the preferred option.  

 

4.2 Analysis of the Estimated Power 

The analysis of the power of the test is of central importance, since a test will be of little use if 

it does not have enough power to reject a false null hypothesis. Even if a correctly given size 

is a necessary prerequisite to ensure the good performance of a test, the tests should have 

enough power to reject a false null hypothesis. In our tables, however, we presented the power 

functions for all the tests though we put cross on the power results for the test with sever 

overrejection of the size. In this section we discuss the most interesting results of our Monte 

Carlo experiment; those concerning the power of the various versions of the tests. The power 

functions were estimated by calculating the rejection frequencies in 10,000 replications when 

100%, 60% and 20% of the time series are stationary, according to the settings described in 

the previous section. The results of the power calculations are presented in Tables 2 to 4. In 

Tables 2a and 2b, we present the results of the power functions in the cases when 100% of the 

time series are stationary for =0.90 and 0.95, respectively. For the cases when 60% and 20% 

of the time series are stationary, the results are presented in Tables 3a and 3b, and 4a and 4b 

respectively. 

 

The tables show that the power functions satisfy the expected properties of increasing with the 

sample size and the percentage of the stationary time series in the data. The power decreases, 

however, when the number of equations, and the strength of dependency among the 

equations, increases. The power functions are very low in small samples and large numbers of 

equations. In cases when 20% of the time series are stationary and small samples there is very 

little difference between the estimated size and the estimated power. 

 

For the IPS and CIPS tests, introducing cross-sectional dependency also has an impact on the 

power properties of the tests. However, due to the fact that these tests are not robust in this 

situation and have improper sizes, the results of the power should not be considered any more 
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in the analysis. In situations where there is cross-sectional dependency, the LM test should be 

preferred since, in general, it has the highest power among the tests for unit roots. 
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Table 1: Sizes of the tests 
 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.048 0.048 0.051 0.050 0.048 0.050 0.106 0.194 0.059 0.059 0.057 0.059 

50 0.050 0.049 0.049 0.049 0.049 0.049 0.106 0.215 0.053 0.054 0.055 0.054 

100 0.051 0.052 0.049 0.048 0.050 0.048 0.114 0.232 0.055 0.057 0.057 0.057 

200 0.048 0.047 0.052 0.052 0.051 0.052 0.109 0.230 0.059 0.059 0.058 0.059 

500 0.051 0.050 0.053 0.052 0.052 0.052 0.110 0.230 0.060 0.059 0.059 0.059 

T N=10 

30 0.051 0.048 0.061 0.062 0.058 0.062 0.144 0.242 0.051 0.047 0.051 0.047 

50 0.045 0.049 0.045 0.045 0.052 0.045 0.148 0.264 0.059 0.057 0.060 0.057 

100 0.048 0.056 0.049 0.049 0.047 0.049 0.145 0.261 0.061 0.062 0.063 0.062 

200 0.055 0.049 0.058 0.058 0.055 0.058 0.153 0.280 0.060 0.060 0.060 0.060 

500 0.055 0.055 0.055 0.056 0.056 0.056 0.158 0.284 0.069 0.069 0.069 0.069 

T N=15 

30 0.050 0.049 0.048 0.045 0.048 0.045 0.196 0.312 0.061 0.037 0.052 0.037 

50 0.052 0.053 0.051 0.050 0.051 0.050 0.202 0.318 0.055 0.048 0.054 0.048 

100 0.048 0.052 0.055 0.054 0.053 0.005 0.199 0.338 0.059 0.060 0.062 0.007 

200 0.046 0.047 0.043 0.043 0.045 0.043 0.193 0.338 0.057 0.058 0.059 0.058 

500 0.051 0.054 0.050 0.050 0.050 0.050 0.204 0.352 0.068 0.069 0.070 0.069 

T N=20 

30 0.051 0.053 0.049 0.050 0.046 0.050 0.208 0.299 0.085 0.029 0.046 0.029 

50 0.047 0.047 0.047 0.047 0.048 0.047 0.207 0.317 0.053 0.037 0.047 0.037 

100 0.049 0.050 0.050 0.050 0.049 0.050 0.212 0.335 0.050 0.048 0.053 0.048 

200 0.052 0.047 0.050 0.050 0.052 0.050 0.203 0.330 0.064 0.064 0.060 0.064 

500 0.051 0.050 0.050 0.050 0.050 0.050 0.208 0.335 0.064 0.066 0.067 0.066 

 

Table 2a: Power when 100% of the time series are stationary where =0.90 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.198 0.209 0.124 0.151 0.172 0.151 x x 0.139 0.165 0.186 0.165 

50 0.471 0.477 0.319 0.354 0.390 0.354 x x 0.333 0.369 0.406 0.369 

100 0.975 0.963 0.919 0.929 0.939 0.929 x x 0.922 0.934 0.941 0.934 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

T N=10 

30 0.374 0.395 x x 0.279 0.220 x x 0.137 0.211 0.261 0.211 

50 0.777 0.787 0.445 0.552 0.620 0.552 x x 0.467 0.565 0.615 0.565 

100 1.000 1.000 0.996 0.998 0.998 0.998 x x 0.997 0.997 0.998 0.997 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=15 

30 0.504 0.530 0.105 0.227 0.275 0.227 x x 0.125 0.201 0.238 0.201 

50 0.926 0.924 0.483 0.663 0.741 0.663 x x 0.481 0.633 0.640 0.633 

100 1.000 1.000 1.000 1.000 1.000 0.994 x x 1.000 1.000 1.000 0.993 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=20 

30 0.635 0.643 0.067 0.228 0.202 0.228 x x x 0.166 0.139 0.166 

50 0.978 0.973 0.464 0.710 0.749 0.710 x x 0.468 0.650 0.582 0.650 

100 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x x x 1.000 x 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 
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 Table 2b: Power when 100% of the time series are stationary where =0.95 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.097 0.098 0.073 0.083 0.087 0.083 x x 0.084 0.094 0.104 0.094 

50 0.162 0.170 0.114 0.125 0.139 0.125 x x 0.130 0.141 0.154 0.141 

100 0.457 0.462 0.352 0.368 0.384 0.368 x x 0.363 0.380 0.397 0.380 

200 0.973 0.961 0.931 0.935 0.938 0.935 x x 0.939 0.944 0.948 0.944 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

T N=10 

30 0.145 0.157 0.074 0.104 0.121 0.104 x x 0.086 0.102 0.126 0.102 

50 0.272 0.296 0.152 0.183 0.211 0.183 x x 0.162 0.198 0.234 0.198 

100 0.773 0.785 0.560 0.603 0.637 0.603 x x 0.585 0.628 0.663 0.628 

200 0.820 0.820 0.817 0.817 0.818 0.817 x x 0.998 0.999 0.999 0.999 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=15 

30 0.185 0.195 0.069 0.110 0.131 0.110 x x 0.084 0.093 0.117 0.093 

50 0.378 0.407 0.164 0.227 0.270 0.227 x x 0.169 0.220 0.254 0.220 

100 0.921 0.923 0.690 0.749 0.791 0.350 x x 0.700 0.753 0.784 0.358 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=20 

30 0.228 0.235 0.055 0.106 0.106 0.106 x x x 0.072 0.088 0.072 

50 0.497 0.503 0.160 0.265 0.299 0.265 x x 0.168 0.213 0.227 0.213 

100 0.975 0.974 0.748 0.831 0.874 0.831 x x 0.773 0.838 0.852 0.838 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x x x 1.000 x 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

 

Table 3a: Power when 60% of the time series are stationary where =0.90 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.120 0.124 0.092 0.103 0.108 0.103 x x 0.103 0.108 0.113 0.108 

50 0.226 0.226 0.170 0.184 0.197 0.184 x x 0.228 0.234 0.240 0.234 

100 0.577 0.599 0.568 0.572 0.580 0.572 x x 0.745 0.743 0.741 0.743 

200 0.968 0.980 0.995 0.996 0.995 0.996 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

T N=10 

30 0.187 0.196 0.091 0.129 0.148 0.129 x x 0.112 0.131 0.143 0.131 

50 0.360 0.381 0.228 0.272 0.301 0.272 x x 0.282 0.314 0.329 0.314 

100 0.858 0.861 0.820 0.837 0.846 0.837 x x 0.908 0.913 0.912 0.913 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=15 

30 0.228 0.245 0.074 0.121 0.139 0.121 x x 0.112 0.117 0.119 0.117 

50 0.503 0.523 0.252 0.340 0.367 0.340 x x 0.312 0.350 0.327 0.350 

100 0.958 0.965 0.923 0.938 0.940 0.664 x x 0.964 0.969 0.959 0.785 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=20 

30 0.295 0.301 0.067 0.133 0.113 0.133 x x x 0.094 0.070 0.094 

50 0.621 0.618 0.247 0.371 0.378 0.371 x x 0.305 0.339 0.276 0.339 

100 0.991 0.990 0.955 0.968 0.969 0.968 x x 0.981 0.982 0.967 0.982 

200 1.000 1.000 1.000 1.000 1.000 1.000 x x x x 1.000 x 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 
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Table 3b: Power when 60% of the time series are stationary where =0.95 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.077 0.077 0.067 0.071 0.074 0.071 x x 0.068 0.073 0.078 0.073 

50 0.097 0.102 0.079 0.082 0.086 0.082 x x 0.104 0.107 0.109 0.107 

100 0.215 0.219 0.183 0.187 0.195 0.187 x x 0.104 0.107 0.109 0.107 

200 0.568 0.576 0.569 0.574 0.578 0.574 x x 0.766 0.766 0.763 0.766 

500 0.993 0.998 1.000 1.000 1.000 1.000 x x 1.000 1.000 1.000 1.000 

T N=10 

30 0.092 0.100 0.063 0.079 0.087 0.079 x x 0.072 0.077 0.085 0.077 

50 0.151 0.159 0.105 0.120 0.131 0.120 x x 0.118 0.132 0.144 0.132 

100 0.352 0.370 0.270 0.291 0.308 0.291 x x 0.344 0.356 0.367 0.356 

200 0.844 0.848 0.837 0.841 0.846 0.841 x x 0.919 0.920 0.921 0.920 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=15 

30 0.117 0.125 0.061 0.085 0.091 0.085 x x 0.074 0.060 0.074 0.060 

50 0.191 0.202 0.109 0.136 0.154 0.136 x x 0.116 0.129 0.138 0.129 

100 0.498 0.512 0.359 0.392 0.413 0.105 x x 0.434 0.457 0.462 0.137 

200 0.949 0.952 0.943 0.948 0.951 0.948 x x 0.978 0.978 0.978 0.978 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

T N=20 

30 0.136 0.133 0.056 0.081 0.080 0.081 x x x 0.053 0.057 0.053 

50 0.234 0.240 0.104 0.141 0.155 0.141 x x 0.120 0.113 0.114 0.113 

100 0.621 0.613 0.401 0.459 0.493 0.459 x x 0.466 0.499 0.496 0.499 

200 0.987 0.985 0.983 0.984 0.986 0.984 x x x x 0.994 x 

500 1.000 1.000 1.000 1.000 1.000 1.000 x x x x x x 

 

Table 4a: Power when 20% of the time series are stationary where =0.90 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS Wald LR LM Rao 

30 0.065 0.062 0.060 0.061 0.063 0.061 x x 0.071 0.070 0.069 0.070 

50 0.085 0.087 0.079 0.080 0.084 0.080 x x 0.112 0.106 0.103 0.106 

100 0.134 0.141 0.146 0.145 0.146 0.145 x x 0.314 0.296 0.280 0.296 

200 0.269 0.278 0.390 0.382 0.371 0.382 x x 0.814 0.797 0.777 0.797 

500 0.652 0.681 0.980 0.977 0.974 0.977 x x 1.000 1.000 1.000 1.000 

T N=10 

30 0.084 0.087 0.057 0.069 0.077 0.069 x x 0.072 0.068 0.070 0.068 

50 0.106 0.110 0.092 0.099 0.105 0.099 x x 0.126 0.126 0.122 0.126 

100 0.142 0.140 0.148 0.151 0.150 0.151 x x 0.374 0.360 0.340 0.360 

200 0.438 0.433 0.631 0.615 0.596 0.615 x - 0.901 0.885 0.866 0.885 

500 0.955 0.964 1.000 1.000 1.000 1.000 x x x x x x 

T N=15 

30 0.092 0.094 0.064 0.071 0.073 0.071 x x 0.082 0.057 0.057 0.057 

50 0.133 0.133 0.092 0.108 0.115 0.108 x x 0.127 0.119 0.110 0.119 

100 0.261 0.263 0.271 0.277 0.276 0.062 x x 0.452 0.425 0.390 0.131 

200 0.564 0.561 0.772 0.759 0.741 0.759 x x 0.964 0.953 0.936 0.953 

500 0.974 0.974 1.000 1.000 1.000 1.000 x x x x x x 

T N=20 

30 0.104 0.101 0.056 0.070 0.063 0.070 x x x 0.048 0.043 0.048 

50 0.152 0.150 0.095 0.115 0.108 0.115 x x 0.130 0.106 0.088 0.106 

100 0.317 0.312 0.308 0.321 0.310 0.321 x x 0.465 0.440 0.382 0.440 

200 0.684 0.645 0.874 0.860 0.837 0.860 x x x x 0.959 x 

500 0.994 0.992 1.000 1.000 1.000 1.000 x x x x x x 
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Table 4b: Power when 20% of the time series are stationary where =0.95 

 Uncorrelated error terms Cross-correlated error terms 

 N=5 

T IPS CIPS 
0T    V  R  IPS CIPS 

0T    V  R  

30 0.058 0.057 0.060 0.060 0.058 0.060 x x 0.063 0.061 0.062 0.061 

50 0.065 0.064 0.058 0.059 0.060 0.059 x x 0.071 0.069 0.070 0.069 

100 0.082 0.082 0.076 0.078 0.079 0.078 x x 0.117 0.113 0.112 0.113 

200 0.140 0.144 0.151 0.152 0.150 0.152 x x 0.317 0.310 0.299 0.310 

500 0.334 0.346 0.524 0.518 0.513 0.518 x x 0.924 0.921 0.915 0.921 

T N=10 

30 0.068 0.070 0.053 0.058 0.064 0.058 x x 0.063 0.057 0.060 0.057 

50 0.072 0.070 0.064 0.066 0.072 0.066 x x 0.075 0.072 0.076 0.072 

100 0.105 0.108 0.097 0.099 0.100 0.099 x x 0.137 0.136 0.132 0.136 

200 0.199 0.194 0.213 0.212 0.212 0.212 x x 0.364 0.355 0.347 0.355 

500 0.708 0.728 0.908 0.913 0.920 0.911 x x x x x x 

T N=15 

30 0.063 0.063 0.051 0.057 0.058 0.057 x x 0.068 0.043 0.056 0.043 

50 0.081 0.084 0.060 0.069 0.073 0.069 x x 0.070 0.064 0.070 0.064 

100 0.126 0.132 0.114 0.120 0.123 0.018 x x 0.156 0.156 0.152 0.026 

200 0.249 0.251 0.264 0.265 0.266 0.265 x x 0.458 0.446 0.434 0.446 

500 0.695 0.683 0.935 0.930 0.925 0.930 x x x x x x 

T N=20 

30 0.069 0.069 0.052 0.058 0.059 0.058 x x x 0.032 0.044 0.032 

50 0.089 0.088 0.061 0.068 0.074 0.068 x x 0.075 0.057 0.061 0.057 

100 0.145 0.153 0.113 0.122 0.128 0.122 x x 0.153 0.154 0.148 0.154 

200 0.314 0.292 0.335 0.334 0.337 0.334 x x x x 0.491 x 

500 0.792 0.767 0.975 0.972 0.969 0.972 x x x x x x 

 

 

5. Summary and Conclusions 

 

In this paper we propose four tests for unit roots from panel data perspectives. These tests are 

generalized from traditional multivariate tests for linear restrictions and have the properties of 

being valid even under unknown cross-sectional dependence, a property that is present in 

many real applications. In fact, the test statistics known as Hotellings trace, Lawley-

Hotellings trace, Wilks lambda and Rao´s multivariate F-test were developed in the early and 

mid-nineteen hundreds to deal with precisely these matters. The tests do not, in contrast to 

previously introduced panel data unit root tests, assume a common (homogeneous) unit root 

parameter in each marginal model or cross-sectional independence. Moreover, the fact that 

the test statistics are invariant under certain linear transformations, enables the use of Monte 

Carlo critical values so that there is no need to derive null distributions of the test statistics. 

Arbitrary size precision is therefore available through computer simulations. In these ways, 

the proposed tests are universally valid and rely on a minimum of distributional assumptions. 

However, before a new statistical method can be considered useful, its properties should be 

examined and contrasted to existing, previously proposed methods. In this perspective, we 
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have conducted a Monte Carlo simulation of the four tests as well as the common tests labeled 

as IPS and CIPS respectively. A large number of models were investigated in the simulations, 

where the number of observations, the number of equations and the degree of dependency 

between equations were varied. For the power calculations, the deviation from the null 

hypothesis was varied through different percentages of stationary marginal variables and 

different sizes of the autoregressive parameter. The results have shown that IPS and CIPS are 

non-robust to cross-sectional dependency. These tests considerably over-reject the null 

hypothesis when it is true. The tests of Hotellings trace, Lawley-Hotellings trace, Wilks 

lambda and Rao´s multivariate F-test are demonstrated to have stable size properties in the 

sense that they remain close to the nominal size even under heterogeneous alternatives and the 

presence of cross-correlations.  

 

The power functions have been shown to increase with the sample size and the percentage of 

the stationary time series in the data, but decrease when the number of equations and strength 

of dependency among the equations increases, as expected. Since the IPS and CIPS tests do 

not have fair size properties, their power properties cannot be judged in an appropriate way 

under a general covariance matrix. However, in cases where the number of cross units N is 

proportional to, or even exceeds, the number of observations T, some sorts of parameter 

restriction, such as those of the CIPS or IPS test, need to be imposed in order to obtain a 

consistent test. In other words, hypothesis testing of multivariate unit roots is concerned with 

a trade-off between on the one hand requiring high power in cases where N and T are 

proportional (which requires strong restrictions on the functional form of the covariance 

matrix and/or the unit root parameter matrix) and on the other hand requiring a test which 

remains well behaved under a general residual covariance matrix of unknown functional form. 

The conclusions of our paper are that in cases where the data-generating process is a priori 

known to follow a simple structure, such as a factor model or a diagonal covariance matrix, 

tests developed under such conditions will be the optimal choice. However, in more general 

contexts usage of these tests may be hazardous and should be abandoned in favor of 

multivariate tests. In particular, this paper shows that the Lawley-Hotelling trace test has the 

greatest size and power properties among other comparable tests and is hence the test to be 

recommended in real applications. 
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