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ABSTRACT

The aim of the paper is to propose a Bayesian estimation through Markov chain Monte
Carlo of a multidimensional item response theory model for graded responses with an additive
structure with correlated latent traits. A simulation study is conducted to evaluate the model
parameter recovery under different conditions (sample size, test and subtest length, number
of response categories, and correlation structure). The results show that the parameters
are well reproduced when the sample size is sufficiently large (n = 1000), while the worst
recovery is observed for small sample size (n = 500), and 4 response categories with a short

number of test items.

1. INTRODUCTION

In the field of educational and psychological measurement, typically a test consisting of
a set of items is submitted to a sample of individuals to infer the subjects’ unobservable
characteristics. To this aim, item response theory (IRT) (Hambleton and Swaminathan,
1985; van der Linden and Hambleton, 1997) represents the main methodological approach
that allows to estimate both the item psychometric properties and the subjects’ scores. In

the past, one of the most common assumption was unidimensionality, i.e. the presence of a
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single latent trait, commonly denoted ability in the IRT literature, underlying the response
process. However, real data often suggest a multidimensional structure and, consequently,
tests should be composed of different subtests in order to infer several latent traits.

For this reason, the attention has been recently devoted to models that include more than
one latent trait, the so called multidimensional IRT (MIRT) models (see e.g., Reckase, 2009).
These models perform better than separate unidimensional models in fitting the subtests
because they are able to describe the data complexity, taking into account correlated traits
and also a possible hierarchical structure of abilities.

Within the multidimensional context, different approaches are possible: explorative mod-
els where all latent traits are allowed to load on all item response variables or confirmatory
models where the relations between the observed and the latent variables are specified in
advance. By adopting a confirmatory approach, it is also possible to assume the concur-
rent presence of general and specific latent traits underlying the response process (Sheng
and Wikle, 2008). Another distinction is among non compensatory and compensatory mod-
els, where in the compensatory model a lack in one trait can be compensated by another
(Reckase, 2009).

Moreover, in many studies, data show a hierarchical structure with dimensions on differ-
ent levels that vary in their degree of generality and abstraction. On the highest levels of
these hierarchies, dimensions represent overall trait levels while, on lower levels of the hier-
archy, dimensions represent more specific traits. Additive models and higher-order models
are two alternative approaches for dealing with items that assess several related domains
that are hypothesized to comprise a general structure. Additive models are potentially ap-
plicable when there is a general factor and there are multiple domain specific factors, each
of which is hypothesized to account for the unique influence of the specific domain over the
general factor (Chen et al., 2006). In addition, researchers may be interested both in the
domain specific factors as well as in the general factor. Higher-order models are potentially
applicable when the lower-order factors are substantially correlated with each other and

there is a higher-order factor that is hypothesized to account for the relationship among
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the lower-order factors. In the additive model, we can directly examine the strength of the
relationship between the domain specific constructs and their associated items, as the rela-
tionship is reflected in the loadings, whereas these relationships cannot be directly tested in
the higher-order model as the domain specific factors are represented by the disturbances of
the first-order factors (Chen et al., 2006).

Finally, different models can be distinguished according to the nature of the observable
variables. In educational testing, there are typically dichotomous items (correct/wrong)
while in psychological and behavioral researches the item scores are often ordinal, expressing
a judge or an agreement. Different models have been developed according to the number of
estimated parameters (partial credit models, graded response models, etc...). In a multidi-
mensional context, while models for binary data are frequently applied, models for ordinal
data are still uncommon and unfortunately were developed only for uncorrelated traits.

For these reasons, in this work we propose an extension of the unidimensional graded
response model (Samejima, 1969) for ordinal data to a multidimensional additive structure
with correlated traits. A further innovative and important aspect of our proposal deals with
the estimation procedure, in fact, we propose a Markov chain Monte Carlo (MCMC) proce-
dure for parameter estimation which has been implemented by using the software OpenBUGS
(Lunn et al., 2000).

For years, the standard methodology has been mainly involving marginal maximum like-
lihood (MML). Unfortunately, this estimation method may be computational heavy due to
the approximation of integrals involved in the likelihood function, especially for increasingly
complex models. Moreover, the success of MML estimation based on the EM algorithm
strongly depends on the choice of starting values. On the other hand, MCMC in a fully
Bayesian framework is powerful for complicated models where the probabilities or expecta-
tions are intractable by analytical methods or other numerical approximation. Moreover,
it has the advantage of estimating item parameters and individual abilities jointly and it is
proved to be more accurate and efficient in parameter estimation compared with the usual

MML method for IRT models (Albert, 1992). Lastly, the method is suitable to model the
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dependencies among parameters and sources of uncertainty and, at the end of the analysis,
the user has access to the entire posterior distribution of every parameter, not just to a point
estimate and standard error.

In order to study the performance of the additive graded response model, we conducted
a simulation study by varying different conditions (sample size, test and subtest lengths,
number of response categories, and correlation structure).

The paper is structured as follows. In Section 2, we introduce MIRT models and especially
the new additive graded response model with correlated traits. In Section 3, we describe the

simulation study conditions and the results. A discussion in Section 4 concludes the paper.

2. MULTIDIMENSIONAL ITEM RESPONSE THEORY MODELS

Multidimensional item response theory (MIRT) models are used whenever two or more
latent traits are encompassed in the observed response for a test item, reflecting a complex
latent space. Depending on the specification of the relationship among the latent and the
observed variables, MIRT models can be classified by using different criteria.

With reference to the available information at the model specification step, exploratory
or confirmatory multidimensional models can be developed. By following an exploratory
approach, no prior knowledge in terms of relationship between items and latent traits is
included in the model. Conversely, when the number of latent abilities is specified in advance,
the method is not merely explorative and we are in a confirmatory context. In line with the
confirmatory approach, not only the number of latent variables is pre-specified but also their
relationships with the items: the researcher uses prior knowledge to define which items load
on which traits.

Another classification criterion of MIRT models depends on the way the elements of
the @-vector of latent abilities are combined to obtain the probability of response to the
items. In compensatory models, a linear combination of latent ability values is used in the
specification of the response probabilities. This approach implies that different combinations

of elements in the ability vector can yield the same sum, raising a compensation effect: if a
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f-value is low, but another one is appropriately high, the sum can be the same. Differently,
in noncompensatory models, distinct latent abilities used to solve an item are separated and
each part is used as an unidimensional model. The global probability is then obtained as
the product of the probabilities of each unidimensional part, nonlinearity raises in relation
to the use of the product of such probabilities and the compensation property does not hold
(Reckase, 2009).

By adopting a confirmatory approach, three most common multidimensional underlying
latent structures can be distinguished. These structures are illustrated in Figure 1 for a
bidimensional case, where circles represent latent traits, squares represent observed item

responses and subtests are indicated with dashed lines.
[FIGURE 1]

When each latent ability affects only the response to items belonging to its specific
subset, and the abilities are allowed to correlate, we are in the context of the so called
multiunidimensional models (Sheng and Wikle, 2007), represented in Figure 1 (a). Letters
(b) and (c) in Figure 1 show the latent structure assumed for MIRT hierarchical models,
where a general ability is introduced in the framework: items in the same subtest measure a
specific ability and, in turn, each specific ability is influenced by a general ability or viceversa,
constituting an actual hierarchy. These kind of models have been widely applied within the
economic and social fields, where typical examples are customer satisfaction and attitude
studies. Different hierarchical models can be specified depending on the relation between
specific and overall abilities: if each specific ability is a linear function of the overall ability
we are in the case illustrated in (b), while if each specific ability linearly combines to form the
overall ability we are in the case showed in (c¢) (Schmid and Leiman, 1957; Sheng and Wikle,
2008). Finally, the additive model is presented in Figure 1 (d). In this model, the response
to a test item is directly affected by both the general and the specific latent traits, that
are allowed to correlate, resulting in a compensatory, additive structure (Sheng and Wikle,

2009). An additive structure is quite common in psychological and educational contexts,
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where the existence of a dominant trait and several specific traits can be assumed at the
same time (e.g. general and specific abilities or cognitive factors). The additive model has
an high capability of fitting the data well, thanks to its general structure. In the following,

the additive models for binary and polytomous ordinal data are presented.

2.1 Additive Model for Binary Data

Given a sample of n subjects responding to a test consisting of p items, we assume that
the test is divided into m subtests each containing p, binary items (e.g. correct-incorrect
response). The additive model for binary data describes the probability of a correct response
for the individual ¢ to item j belonging to the subtest v (Y,;; = 1), with v = 1,...,m,

1=1,....,nand j =1,...,p, as follows
P(Ym‘j = 1|90i76vi7 Qoujy Aoy 5uj) = q)(aow'@o:' + avjevi - 5vj)> (1)

where 0y; and 6, are the overall and the m specific abilities for individual 4, respectively, agy;,
ayj, and d,; are the item parameters for item j, and @ is the standard normal cumulative
distribution function.

In model (1) it is assumed that the general ability directly affects the candidates re-
sponses, and that this effect is summed to the effect of specific factors in order to determine
the probability of success to a given test item. For each item j of the subtest v, the additive
model involves the estimation of a general and a specific discrimination parameter ayg,; and
auj, respectively, and a threshold (or difficulty) parameter 6,;. It is also possible to score
subjects on both general and specific dimensions and the abilities are allowed to correlate.

MCMC estimation of the additive model for binary data with correlated abilities was
proposed by Sheng and Wikle (2009) and implemented in the software MATLAB by Sheng
(2010).

By adopting a fully Bayesian approach, the first step is the specification of the prior
distributions. Given the vector of the abilities 8; = (0y;, 014, ..., 0pni)’ for the i-th individual,
a multivariate normal prior distribution 8; ~ N,,1(0,P) is assumed, where 0 is a vector of

length m+-1 of zeros and P is the constrained covariance matrix with diagonal elements being
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1 and off-diagonals elements being the ability correlations. The joint posterior distribution

of interest becomes
P(Z,6,€,%[Y) o< f(Y|Z)P(Z]0,§)P(§)P(6|P)P(X), (2)

where ¥ is the unconstrained variance-covariance matrix of abilities.

The posterior distribution (2) has an intractable form so the resort to simulation through
the Gibbs sampler is needed. The algorithm simply works by sampling iteratively until
convergence from the tractable conditional distribution of each variable. Details on the
parameter estimation procedure for the additive model for binary data can be found in

Sheng and Wikle (2009) and Sheng (2010).

2.2 Additive Model for Ordinal Data

The additive model presented in the previous section is referred to dichotomous responses.
Nevertheless items with multiple response options exist and their use is quite common in
educational assessment and psychological field. The interest in adopting MIRT models for
ordinal data raises to face the widespread use of Likert items (Likert, 1932), and in general
other ordered scales, on questionnaires in sociological and psychological measurement.

A multidimensional generalization of the IRT graded response model can be obtained
from its unidimensional counterpart, first introduced by Samejima (1969). Let consider: (i)
n individuals; (i7) a set of p ordinal items where the response Y;; of the i-th subject to the
Jj-th item can take values in the set {1,..., K;}, where the lowest score on item j is 1 and
the highest score is K;. Each item thus has K; — 1 thresholds kji, ..., kj ;-1 that have to
satisfy the order constraint rj; < --- < kj,-1; and (71i) the existence of multiple, say m,
latent abilities 8; = (61, . .., 0;) underlying the responses to the items.

It is assumed that an individual can reach a specific category level of an ordinal test item
only if he/she is also able to reach all the lower categories on the same item, i.e. the item
necessitates an amount of steps and the accomplishment of a step requires the achievement
of the previous one. This type of model is then appropriate for rating scales where a rating

category includes all previous categories (Reckase, 2009).

7
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We use a procedure adapted from the Samejima’s approach. Our model is specified on the
basis of the probability that an item response will fall in ‘category k or lower’: the probability
;% that the i-th subject will select the k-th category on item j is equal to the probability of
answering below the upper boundary for the category (k) minus the probability of answering
below the category’s lower boundary (xx_1). Generalizing, probabilities 7;;;, are built on the

basis of the cumulative probabilities P = P(Y;; < k|6;), for k=2,..., K; — 1:
Tijk = Pije — Pijr—1 = P(Yy; < k|0;) — P(Y;; < k—1]6;), (3)

where 751 = Pyj1 = P(Yy; < 116;) and mjk, = 1 — Pijx,-1 = 1 — P(Y;; < K; —1]6;), to
guarantee that the probability of each category can be determined from (3).

The confirmatory model for graded responses we propose is characterized by the multi-
dimensional additive latent structure, that leads to the existence of an added overall ability,
denoted by #y. Thus the vector of latent traits is represented by 6; = (0o;, 014, - - -, Omi)-
Assuming that the test is divided into m subtests each containing p, ordinal items, the cu-
mulative probability that the individual ¢ will select the k-th category or lower on item j

belonging to the v-th subtest (v =1,...,m) can be expressed as:

Pijk = P(Yaij < k|00, Ovis qon, Cjy Kji) =

K jk—00u;00i —Cyj0ui

1
v 2T

where y; represents the i-th overall ability and #,; represent the specific ability. For each

= (I)(lijk — Oéovje()z‘ — ozvjﬁm) = €_t2/2dt, (4)

—0o0

item j of the subtest v: ag,; reflects the item discrimination with reference to the overall
ability, c,; reflects the item discrimination with reference to the specific ability and & is
an item parameter representing the threshold between categories k and k4 1. The predictor
becomes K, — oyl — tyj0yi, and the probability 7,5, that the i-th examinee will select the
k-th category on item j in subtest v is obtained recursively from the cumulative probabilities:
Twijl = LTwij1
Toijk = Poijk — Poije—1 for k=2 K;—1

TvijK; = 1— Pv,Lj,Kj—l-
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It has to be noticed that both general and specific abilities are involved in determining
the response probability by following a compensatory approach.

The estimation of model (2) involves item parameters, person parameters and correlations
between the latent traits. In a fully Bayesian approach, the application of the Gibbs sampler
(Geman and Geman, 1984) can be successfully carried out through the well known open-
source software OpenBUGS (http://openbugs.net). Briefly, this software permits a flexible
and easy implementation of the algorithm (Lunn et al., 2000). The process requires the
definition of four steps in the model building phase (Ntzoufras, 2011): identify the main
variable of interest and the corresponding (observed) data, find a distribution that adequately
describes the observed data and formulate the likelihood of the model, build a structure for
the distribution parameters, and specify the prior distributions. The manifest variables are
the responses given by a group of subjects to a test consisting of graded responses items, and
a categorical (or generalized Bernoulli) distribution of parameters my;j1, . . ., Tuijx; is assumed

for responses, thus forv=1,....m, j=1,...,pand i =1,...,n, it holds that:

k=1 k=2 k=K;
P(Yyi; = kle) :Wq[;z‘ﬂ] : 771[;@2] BRI Wz[;injj]a

where the e represents all the parameters.
The model specification is developed according to expression (2), hence, the unknown

parameters for those we need to specify a prior distribution are the person parameters

0; = (0oi, 014, - . ., Omi) and the item parameters agy;, oy and Kjy, ..., Kj k-1
In the additive graded response model, we assume that the latent traits @y,...,0, are
independent among units and multivariate normally distributed. For ¢ =1, ... n, the prior

distributions are defined as:
0; ~ N1 (1, %), ()
where g is the (m + 1)-dimensional ability mean vector and 3 is the (m + 1) x (m + 1)
fixed correlation matrix with diagonal elements being 1 and off-diagonal elements being the
ability correlations.
Moreover, considering that the parameters which reflect the power of an item to discrim-

inate between examinees are evidently positive, truncated normal distributions are assumed
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for item discrimination parameters ag,; and o, forv=1,...,mand j=1,...,p:
Qyj ™ N(gao,aio) ](Oéow' > 0) Qlyj ™~ N(,umai) I(avj > 0) ) (6)

where [(e) is the indicator function which, in this case, ensures positive discrimination
parameters.

The prior distributions for the threshold parameters must take into account the order

constraint xj; < --- < Kjg;—1. Curtis (2010) and Plummer (2010) suggest to introduce
priors on unconstrained auxiliary variables £7, ..., &7 -y, such that:
Kk ~ N(pix, o), (7)

forj=1,...,pand k =1,...,K; — 1. Then, thresholds for the j-th item can be obtained

considering the order statistics for the auxiliary variables, that is:

%
Rj1t = Kjn

R
Rj2 = R

%
K’]ijfl N H;j,[Kj—l]’

where with «*, is denoted the s-th order statistic of x%,,..., k% _;.
.77[5} ,]1 ],KJ 1
Particular attention should be paid to the restrictions that have to be imposed on hyper-
parameters in order to ensure the model identification. In general, Bayesian item response
models can be identified by imposing restrictions on the hyperparameters or via a scale
transformation in the estimation procedure (Fox, 2010).

According to the first approach, for identification purposes we set g = 0, fio, = o =

2

2 = g2 = 1. Moreover, a multivariate normal prior distribution with a

e =0, and 03 =0
fixed correlation structure is assumed for abilities: 8; ~ N,,,(0, %), for i = 1,... ,n, where X
is the fixed correlation matrix defined before. Considering these identification constraints,

expressions (5), (6) and (7) are replaced by (8), (9) and (10):

0; ~ Np,11(0,%) (8)

10
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Qoyj ™~ N(O, 1) I(Oé()vj > 0) Qyj ~ N(O, 1) I<avj > 0) (9)
Koy~ N(0,1) . (10)

Even if this choice can be viewed as very restrictive, it reflects the common beliefs and usual
assumptions we find in literature. In fact, a point of strength of the Bayesian approach is the
possibility to formulate particular prior distributions depending on the information available
a priori.

Once the the model is fully specified, we can perform the Bayesian estimation of the
parameters of interest through an easy implementation in OpenBUGS, which automatically
runs the Gibbs sampler algorithm. In particular, the main advantage is due to the fact
that we do not have to deal directly with the joint posterior distribution, which presents
an untractable form: P(8,a,k,X|Y) x f(Y|0,a,k)P(0|X)P(a)P(k), where f is the

likelihood function and 0, a and k are assumed to be independent.

3. SIMULATION STUDY

Several works on MIRT models focus on the accuracy of parameter estimation under
different simulation conditions (Sheng, 2008; Sheng, 2010; Edwards, 2010; Matteucci, 2014).
In this work, a simulation study has been designed with reference to the additive graded

response model.

3.1 Simulation study design

In the present study, the assessment of parameter recovery focuses on the case of two
specific latent traits, i.e. m = 2 and 8 = (0y,0y,6;), by varying the number of response
categories, the sample size, the test and subtest lengths and the ability correlation structure.

The scheme used for each simulation is the following:

e simulate the vectors of ‘real’ parameters, taking into account the conditions we are

testing. We perform this step using an R procedure;

e perform () = 10 replications of the computation procedure. In each replication we

11
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sample the data matrix using the parameters obtained at the previous step, and we
run OpenBUGS through the R package BRugs (Thomas et al., 2006), which basically
permits to recall OpenBUGS automatically from R;

e proceed to the evaluation of parameter recovery and the computation of the reproduced
correlations between the latent traits by using the () estimates gained at the previous

step.

In order to evaluate the recovery of the generated item parameters, we compute the bias
and the root mean square error (RMSE) for each estimated parameter, taking into account
the @ replications for each simulation. If we denote with @ a generic parameter estimate,
i.e. the mean of the posterior distribution gained in each replication, and with w* the real

generated value, biases and RMSE are computed as follow:

1 Q
Bias(w) = Z (W —w™)

RMSE(w) = d D (@ —wh)?

Lower levels of bias and RMSE indicate better precision in parameter recovery.

Moreover, considering that in our additive model the latent traits are allowed to corre-
late, leading to different variance/covariance matrices 3, we are interested not only in item
parameters recovery, but also in the way the models are able to reproduce such ability corre-
lations. For each simulation, we thus report also the estimated ability Pearson correlations

To1,To2 and 715, computed from the values 91, o ,én.
3.2 Simulation conditions
In every replication performed, we considered a chain length of 30,000 iterations, with a

burn-in phase of 15,000 iterations. Moreover, two chains were generated for each unknown

model parameter to check the chains convergence through the R diagnostic statistics of

12
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Gelman and Rubin (Gelman and Rubin, 1992; Brooks and Gelman, 1998). The chosen
chain length and burn-in period widely ensure the convergence of all the generated chains.

We consider n individuals and a test consisting of p ordinal items, divided into 2 subtests,
each one containing p; and py items. According to the bidimensional additive latent trait
structure, we assume the existence of an overall ability, which influences the responses to
all the test items p, and 2 specific abilities, that affect, respectively, the responses to the p;
items (Subtest 1), and the responses to the py items (Subtest 2).

We start from a first block of simulations referred to the case where a test length of p = 15
is divided into a first subtest made of p; = 5 items and a second subtest made of p, = 10
items. A further distinction has been made about the number of item categories, varying
in the first block from K = 3 to K = 4. Furthermore, each case was analyzed by using
two different correlation matrices among the abilities: 34 and Xg. X4 is a 3 x 3 identity
matrix, where all the correlations among the abilities are set to zero (rg; = 792 = r12 = 0).
In this case, the additive model with orthogonal traits has the same latent structure of the
well known bi-factor model and the three latent traits (the general and specific abilities) are
separate and well distinguished from each other. The second correlation matrix ¥z introduce
moderate correlations between all the latent abilities (ro; = 0.4, rg2 = 0.3, 72 = 0.2).
The choice to consider not particularly high levels of correlation has been driven by the
consideration that high correlations among the latent abilities may lead to the existence
of a dominant latent trait, redirecting to a unidimensional model. Moreover, in addition
to the two correlation matrices taken into account and described in this simulation study,
other correlation matrices for abilities have been considered in order to perform a sensitivity
analysis, leading to similar results.

In order to investigate further conditions, we designed a second block of simulations,
where we increase both the length of the test and the number of item categories. We
consider a case characterized by a test length of p = 50 (divided into p; = 20 and p; = 30
items for subtest 1 and 2, respectively) and K = 4 categories for each test item; and a last

case where the test length is p = 30 (p; = 10 and p, = 20) and items have K = 5 categories.

13
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Again, with respect to the correlation matrix, the two cases of ¥ 4 and X5 are distinguished
as above.

A final varying condition is the sample size n: for each case considered we perform two
simulations, setting the sample size at n = 500 and n = 1000. Considering the simulation
conditions, we refer to 16 different scenarios to investigate the parameter recovery for the

proposed model. The simulation conditions are reported in Table 1.
[TABLE 1]

As the number of parameters is quite large, for each scenario, we summarize the results on

the item parameters within each subtest by using median absolute bias and median RMSE.

3.3 Results

The average computation time for each replication is about 16 hours and the convergence
of each Markov chain for every parameter is reached. The diagnosis of convergence has
been performed through the calculation of the Gelman and Rubin statistic, available in
OpenBUGS.

Tables 2 and 3 show the item parameter recovery for the first block of simulations where
p =15 (p1 = 5 and py = 10), respectively for subset 1 and subtest 2. It emerges that all
parameters are quite well recovered when the number of categories for each item is K = 3
and a sample size of n = 500 is enough to get accurate estimates. Results are slightly better
for the ¥4 correlation matrix, rather than Xp.
On the other hand, when the number of item categories is K = 4 we obtain less accurate
estimates, for both ¥, and Y ability correlation structures. Estimates get better after
increasing the sample size, but median RMSEs and biases remain rather high, especially for
ap and «, discrimination parameters. Considering that this result is more evident for the
first subtest where p; = 5, rather than the second one where p; = 10, this may be due to

the small number of items compared to the increased number of categories.

[TABLE 2]
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[TABLE 3]

Results about the second block of simulations are reported in Tables 4 and 5. Focusing
on the case where p = 50 (p; = 20 and p, = 30) and K = 4, we observe that in both sub-
tests the item parameters are not well recovered, particularly the discrimination parameters.
Nevertheless, these shortcomings are overtaken by increasing the sample size. In fact, when
n = 1000 all the parameters are recovered very precisely. Different correlation structures
seem not to affect parameter recovery, with an exception of the discrimination parameters
for the second subtest, where we register higher median RMSEs in association to the more
complex correlation structure.

Analogously, the cases where p = 30 (p; = 10 and py = 20) and K = 5 benefit from the
enlarged sample size. For n = 1000, item parameters are recovered with extreme care, with

slightly better accuracy with respect to 24 correlation matrix.
[TABLE 4]
[TABLE 5]

Table 6 illustrates the estimated ability correlations for each scenario. Their correspon-
dent true values are also reported and we can observe how the correlations are reproduced.
In particular, the results are coherent with the ones observed in relation to the item parame-
ters: the best performance is associated to the cases of the highest sample size, a reasonable
number of items (totally 50) and a number of categories equal to 4, even in case of slightly

high correlations.
[TABLE 6]

5. ILLUSTRATIVE EXAMPLE
As illustrative example with real data, we implemented our proposed model on data
collected with the aim to investigate the residents’ perception and attitudes towards the

tourism industry in the Romagna area and in the State of San Marino (Italy). Data analyzed
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are a subset of results of a research conducted by the University of Bologna with the aim
to study the subjective well-being (Bernini et al., 2013). A total of 794 questionnaires were
collected. In particular, we focus on the perception of benefits and costs associated to the
tourism industry. The perceived benefits of tourism were assessed by five items: the support
in local economic development [B1], quality of life [B2], public services improvement [B3],
employment prospects [B4], and opportunities for cultural activities [B5]. Respondents were
asked to indicate whether those items would improve for their community as a result of
increasing tourism activity on a 7-point anchor scale, from ‘strongly disagree’ to ‘strongly
agree’. On the other hand, the perceived costs of tourism were assessed by other five items:
the cost of living [C1], crime [C2], environment damage [C3], traffic congestion [C4], and
pollution [C5]. In this case residents were asked to express if those aspects would worsen for
their community as a result of increasing tourism activity on the 7-point scale mentioned
above. Scales of the items with respect to costs were inverted in order to eliminate reverse
scoring and make the low and high scores be associated with high and low perceptions of

costs, respectively (see Table 7 for response frequencies for items on benefits and costs).
[TABLE 7]

In this context, latent traits can be defined as ‘perceptions’. The investigation involves
two distinct aspects of the phenomenon. Therefore, it is possible to identify two specific
perceptions (0 for benefits and 0y for costs) and the overall attitude towards tourism (6y)
of respondents as latent variables. Within this framework, discrimination parameters rep-
resent the capability of the items to differentiate between respondents with different levels
of agreement, whereas the threshold parameters can be interpreted as ‘criticity levels” of the
corresponding item. For a given item, high values for the criticity parameters correspond to

lower probabilities to observe responses in positive categories.

4.1 Main results
We estimated the additive graded response model by using the proposed OpenBUGS

estimation procedure (Table 8).
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[TABLE 8]

Results show that items B3, B4 and B5 are characterized by high specific discrimination
parameters, hence they represent the most informative items on the perception of the tourism
advantages. On the other hand, items C2, C4 and C5 are the most informative items on
the perception of the tourism costs. Concerning the general latent trait, items B3, B5, C4
and C5 principally influence the general residents’ attitude towards tourism (high general
discrimination parameters).

With reference to the items’ criticity levels, within the group of items on benefits, items
B1 and B4 are associated with higher probabilities of responses in higher categories, because
the corresponding estimates for the criticity levels are generally lower than for the remaining
items. This means that residents who have an average attitude toward tourism ((% =0) and
an average specific perception of advantages (él = 0) consider the economic development and
the job opportunities as the main advantages of tourism. Among the items on costs, item C1
is characterized by generally lower thresholds’ parameters in comparison to the estimated
criticity levels of other items, especially with reference to higher categories. Hence, for a
typical respondent characterized now by o = 0 and y = 0, the cost of life can be regarded
as a marginal negative aspect of tourism in comparison with the other issues.

Finally, the estimated correlations between the latent traits are 7o; = 0.03, 792 = 0.18
and 715 = —0.62. It has to be noticed that the estimated correlation between the two specific
latent traits is negative and relatively high, indicating that the perception of a high economic

advantage of tourism is associated with a strongly negative environmental impact.

5. CONCLUSIONS

In this paper, we proposed a MIRT model for ordinal data where both a general and
specific latent traits are assumed to explain the item responses, and correlation among the
traits is allowed. In particular, we proposed a MCMC procedure to estimate the item
parameters, the ability scores, and the trait correlations jointly. Despite the computational

heaviness of the estimation procedure, MCMC is very effective in dealing with complex data
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in comparison to traditional maximum likelihood estimation techniques. The parameter
recovery for the model was investigated through a simulation study where different conditions
are tested. Within an approach with two specific and one general factors, we considered
different sample sizes (n = 500 and n = 1000), test lengths (p = 15, p = 30, p = 50) with
different combinations for the subtest lengths, number of response categories (K = 3, K = 4,
K =5), and correlation matrices (identity matrix or low-moderate correlations among the
traits). Overall 16 distinct scenarios were taken into account. The main results showed that
the algorithm is particularly sensitive to the sample size due to the model complexity and
the high number of parameters to be estimated. In fact, when the sample size is sufficiently
large (n = 1000), all the parameters are well reproduced. The results are also affected by
the trade-off between the test length and the number of categories: the worst results are
associated to an high number of categories and a low test length. Analogous evidences apply
for the correlation estimates.

Because the MIRT additive graded response model is very complex, it is very sensible
to several issues conditioning the estimation, such as sample size, test and subtest length,
number of response categories, and correlations among the traits. From an applicative point
of view, the additive model is very attractive to analyse data coming from the behavioral and
social sciences, where the manifest variables are often in a ordinal scale. Usually, models for
binary data are used because the estimation procedure is simple. However, the dichotomiza-
tion of the variables causes a considerable loss of information and the resort to graded
response models should be preferred. Moreover, within social phenomena, the presence of
an hierarchy among the constructs is very common and the analysis can be considerably
improved by applying an additive graded model.

In order to verify the performance of the additive graded model in an empirical setting,
we reported an illustrative example in which we investigate the residents’ perception and
attitudes towards the tourism industry.

With this article we would like to encourage the diffuse use of MIRT models among

social researchers and practitioners. In particular, the MCMC estimation method in a fully
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Bayesian approach offers many advantages, which include, from a practical point of view,
the relative ease of implementation and the availability of free software.

Concerning the estimation procedure, a crucial issue is represented by the use of a fixed
correlation matrix as a prior distribution for abilities. Considering that the additive graded
model is highly complex, notwithstanding this choice may be very restrictive, it reasonably
works. The introduction of a prior distribution for the variance/covariance matrix charac-
terizing the prior distribution on abilities, e.g. an inverse Wishart distribution, represents
an appropriate future development.

Future developments could include the extension of the simulation study to test the sen-
sitivity to different prior distributions and to a larger number of specific dimensions. Finally,
further application fields could be examined, for example in educational and psychological

assessments.
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Additive model: simulation conditions

Simulation P p1 Do K; n by
f1 15 5 10 3 500 YA
2 15 5 10 3 500 Yp
13 15 5 10 4 500 YA
t4 15 5 10 4 500 YB
15 15 5 10 3 1000 YA
16 15 5 10 3 1000 YB
87 15 5 10 4 1000 A
18 15 5 10 4 1000 YB
19 50 20 30 4 500 YA
110 50 20 30 4 500 XB
g 11 30 10 20 5 500 YA
f12 30 10 20 5 500 XB
£13 50 20 30 4 1000 A
f14 50 20 30 4 1000 ¥B
115 30 10 20 5 1000 YA
116 30 10 20 5 1000 YB

Table 1: Varying conditions for the simulation study.
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Simulations block 1 - Subtest 1

(o)) o1 K1 Ko K3 Rgq
n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
¥4 0.08 005 0.08 003 008 001 0.07 0.04
(5,10) 3
500 g 0.09 002 0.15 0.13 0.09 003 0.09 0.02
( ) 4 ¥4 013 0.07 0.12 0.09 0.15 0.12 0.15 0.10 0.13 0.04
5,10
s 017 005 0.23 0.10 0.16 0.16 0.09 002 0.15 0.03
( ) 4 007 003 009 003 008 0.06 0.07 0.03
5,10) 3
¥p 0.09 003 0.14 0.07 008 0.03 0.06 0.03
1000
(5.10) 4 >4 009 002 0.16 0.12 0.15 0.05 006 0.03 0.16 0.10
’ ¥p 0.14 0.08 0.16 0.12 0.08 0.05 0.08 0.04 0.15 0.10

Table 2: Additive model: block 1 simulation results for subtest 1 (median RMSEs and median absolute biases).
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Simulations block 1 - Subtest 2
%) o K1 K2 K3 Kq
n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Yao 0.09 0.05 0.10 0.02 0.08 0.02 0.08 0.03
(5,10) 3
X 0.11 0.04 0.00 0.05 0.09 0.04 0.10  0.00
500
(5.10) 4 4 012 0.02 0.14 0.05 0.10 0.03 0.10 0.04 0.13 0.06
’ g 0.14 0.04 0.14 0.04 0.10 0.10 0.09 0.02 0.11 0.03
(5.10) 3 4 0.09 0.04 0.09 0.05 0.06 0.02 0.06 0.02
’ g 0.15 0.06 0.18 0.03 0.05 0.02 0.05  0.01
1000
( ) 4 4 0.16 0.12 0.16 0.09 0.07 0.03 0.07  0.03 0.08 0.03
5,10
¥p 0.23 0.13 0.19 0.11 0.07 0.04 0.06 0.03 0.09 0.04

Table 3: Additive model: block 1 simulation results for subtest 2 (median RMSEs and median absolute biases).
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Simulations block 2 - Subtest 1

ap a K1 K2 K3 Ka
n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
>4 014 0.07 0.14 0.08 010 0.06 0.10 0.05 0.10 0.04
(20,30) 4
¥ 0.15 0.07 0.18 0.10 0.09 0.03 0.08 0.03 0.09 0.03
500
(10.20) 5 ¥4 0.20 005 0.21 0.06 0.09 001 009 003 008 004 0.09 0.04
’ g 0.17 0.07 0.22 0.07 0.10 0.02 0.09 002 0.08 002 0.08 0.02
¥4 007 005 008 004 006 001 006 001 005 0.01
(20,30) 4
1000 ¥p 006 002 008 004 0.06 0.04 006 0.04 0.06 0.03
(10.20) Ya o 0.07 0.04 0.07 0.04 0.08 0.02 0.06 0.02 0.05 002 0.05 0.01
10,20) 5
Yp 0.19 004 0.27 0.05 0.07 003 006 003 005 003 007 0.02

Table 4: Additive model: block 2 simulation results for subtest 1 (median RMSEs and median absolute biases).
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Simulations block 2 - Subtest 2

Page 30 of 33

(o7} (o) K1 K2 K3 Ka
n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Y4 0.16 0.07 0.20 0.08 0.10 0.03 0.09 0.03 0.10  0.03
(20,30) 4
Y  0.07 0.02 0.10 0.05 0.10 0.06 0.10 0.06 0.10 0.05
500
(10.20) 5 ¥4 0.23 0.08 0.18 0.05 0.09 003 007 003 0.07 002 009 0.03
’ ¥p 0.20 0.09 0.19 0.08 0.08 0.03 007 0.03 0.08 0.02 008 0.02
¥4 006 005 006 002 006 002 006 002 006 0.01
(20,30) 4
1000 ¥p 0.14 006 0.17 0.03 0.07 0.02 0.05 002 007 0.02
(10.20) Ya o 0.07 0.05 0.07 0.03 0.05 0.01 0.05 0.01 0.05 0.01 0.06  0.02
10,20) 5
Yp 006 001 0.08 0.03 006 002 005 002 005 001 006 0.02

Table 5: Additive model: block 2 simulation results for subtest 2 (median RMSEs and median absolute biases).
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Real and estimated ability correlations

To1 To1 T02 702 T12 12
YA 0.00 0.07 0.00 0.16 0.00 -0.07
>R 0.40 0.62 0.30 0.49 0.20 0.24

(5,10) 3

500

10 4 000 009 000 029 000 -0.07
Iy (5,10) 4

1 p 040 060 030 056 020 0.27

O©CoONOOOAPRWN -

14 I 0.00 0.11 0.00 0.16 0.00 -0.05
15 (5,10)3

16 >R 0.40 0.60 0.30 0.54 0.20 0.27
17 1000

18 4 000 013 000 036 000 -0.05
19 (5,10) 4
20 g 040 058 030 0.65 020 0.30

22 Y4+ 000 000 000 029 0.00 -0.05
23 (20,30) 4

24 Y5 0.40 0.50 0.30 0.36 0.20 0.21
25 500

57 4 000 002 000 015  0.00 -0.03
(10,20) 5
Yp 040 051 030 048 020 0.24

31 YA 0.00 0.03 0.00 0.07 0.00 -0.02
32 (20,30)4

33 B 0.40 0.45 0.30 0.37 0.20 0.20
34 1000

35 YA 0.00 0.06 0.00 0.11 0.00 -0.05
36 (10,20) 5
37 Yp 0.40 0.52  0.30 0.41 0.20 0.24

39 Table 6: Real (r) and estimated (7) ability correlations.
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Responses

Low benefits «— — High benefits

Item Item description 1 2 3 4 ) 6 7
B1 Econ. support 12 51 58 157 149 235 132
B2 Quality of life 24 49 78 184 227 155 U7
B3 Public services 16 45 97 186 190 171 &9
B4 Job opportunities 16 36 69 157 187 198 131
B5 Cultural act. 30 54 76 186 188 157 103

Responses
High costs +— — Low costs

Item  Item description 1 2 3 4 5 6 7
C1 Cost of life 64 151 182 139 119 100 39
C2 Crime rate 145 169 157 155 69 71 28
C3 Env. damage 117 151 166 187 96 59 18
C4  Traffic 193 152 158 130 89 45 27
Ch Pollution 158 173 164 136 63 81 19

Table 7: Response frequencies for items about tourism benefits (B1-B5)

and items about tourism costs (C1-C5).
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1
2

3

4 Ttem description &y SD(6w) MCSE(4,) & SD(k1) MCSE(k1) s SD(f2) MCSE(fs) ks SD(ks) MCSE(#s)
2 Bl Econ. support  1.047 0.074 0.001 -3.049 0.169 0.002 -2.014 0.105 0.001 - 1.469 0.087 0.001

7 B2 Quality of life 0.946 0.063 0.001 -2.539 0.125 0.001 - 1.789 0.090 0.001 - 1.176 0.073 0.001

g B3 Public services 1.247 0.082 0.001 -3.278 0.188 0.002 -2.200 0.119 0.001 - 1.306 0.088 0.001
10 B4 Job opportunity 1.290 0.082 0.001  -3.342 0.187 0.002 -2.390 0.125 0.001 - 1.595 0.094 0.001
::; B5 Cultural act. 1.194 0.077 0.001 -2.713 0.141 0.001 -1.901 0.103 0.001 -1.256 0.084 0.001
:I]Z C1 Cost of life 0.284 0.042 0.000 - 1.491 0.069 0.000 -0.644 0.049 0.000 -0.002 0.046 0.000
15 C2 Crime rate 1.534 0.109 0.002 -1.824 0.123 0.002 -0.534 0.085 0.002 0.461  0.083 0.001
:113 C3 Env. damage 1.343  0.090 0.001 -1.901 0.114 0.002 -0.745 0.080 0.001 0.205 0.073 0.001
18 C4  Traflic 1.487 0.126 0.004 - 1.509 0.134 0.005 - 0.397 0.092 0.003 0.700  0.098 0.002
;g C5 Pollution 1.425 0.103 0.002 -1.646 0.114 0.003 - 0.452 0.083 0.002 0.548  0.085 0.002

21 Ttem description &y SD(éw) MCSE(&o) ks SD(Ry) MCSE(ks) ks SD(is) MCSE(ks) ke SD(ke) MCSE(ke)
gg Bl Econ. support  0.013 0.012 0.000 - 0.507 0.066 0.001 0.204 0.064 0.001 1.458 0.086 0.001
5‘5‘ B2 Quality of life 0.250 0.073 0.001 -0.250 0.061 0.001 0.802 0.067 0.001 1.871  0.094 0.001
26 B3 Public services  0.446 0.095 0.002 -0.264 0.071 0.001 0.760  0.078 0.001 2.066 0.116 0.002
gg B4 Job opportunity 0.144 0.083 0.002 - 0.560 0.073 0.001 0.405 0.071 0.001 1.644 0.097 0.002
29 B5 Cultural act. 0.343 0.094 0.002 -0.228 0.069 0.001 0.732  0.074 0.001 1.856 0.103 0.001
g? C1 Cost of life 0.017 0.016 0.000 0.470 0.048 0.000 0.964 0.054 0.000 1.676  0.075 0.000
32 C2 Crime rate 0.074 0.060 0.001 1.470  0.106 0.002 2.068 0.128 0.002 3.083  0.179 0.003
32 C3 Env. damage 0.051 0.049 0.001 1.299 0.091 0.001 2.093 0.116 0.002 3.089 0.167 0.002
gg C4 Traflic 0.906 0.144 0.005 1.660 0.137 0.004 2.566  0.186 0.006 3.381  0.240 0.007
37 C5 Pollution 0.668 0.113 0.003 1.520 0.110 0.002 2.102  0.133 0.003 3.413  0.200 0.004
gg NOTE: v =1 for the items on benefits and v = 2 for the items on costs, SD = standard deviation, MCSE = Monte Carlo standard error.
1? Table 8: Item parameter estimates for the additive graded response model.
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