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Abstract

Recent developments in engineering techniques for spatial data collection such as
geographic information systems have resulted in an increasing need for methods to
analyze large spatial data sets. These sorts of data sets can be found in various fields
of the natural and social sciences. However, model fitting and spatial prediction using
these large spatial data sets are impractically time-consuming, because of the necessary
matrix inversions. Various methods have been developed to deal with this problem,
including a reduced rank approach and a sparse matrix approximation. In this paper,
we propose a modification to an existing reduced rank approach to capture both the
large- and small-scale spatial variations effectively. We have used simulated examples
and an empirical data analysis to demonstrate that our proposed approach consistently
performs well when compared with other methods. In particular, the performance of
our new method does not depend on the dependence properties of the spatial covariance
functions.

Key words : Covariance tapering, Gaussian process, Geostatistics, Markov chain Monte

Carlo, Reduced rank approximation, Stochastic matrix approximation

1 Introduction

Spatial data set analysis has been attracting an increasing amount of attention from various

fields such as environmental science and economics, but is often impractical for large spatial

data sets. This is because model fitting and spatial prediction in a Gaussian process model

involve the inversion of an n× n covariance matrix for a data set of size n, which typically

requires O(n3) operations. There is a rich literature regarding efficient computation for large

spatial data sets (e.g., Stein et al. 2004; Fuentes 2007; Matsuda and Yajima 2009; Lindgren

et al. 2011).
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In this paper, we consider two recently developed approaches that appeal as general

purpose methodologies. The first approach is based on a reduced rank approximation of the

underlying process. Cressie and Johannesson (2008) considered fixed rank approaches for

kriging in large spatial data sets. Banerjee et al. (2008) proposed a predictive process that

used a finite number of knots and Finley et al. (2009) corrected a bias in the predictive

process. Recently, Banerjee et al. (2013) developed a linear projection approach in the

literature of Gaussian process regression (see, e.g., Rasmussen and Williams 2006). As in

Banerjee et al. (2013), this is an extension of the predictive process and has the advantage

of avoiding the complicated knot selection problem.

The second approach is covariance tapering proposed by Furrer et al. (2006). The basic

idea of the covariance tapering is to reduce a spatial covariance function to zero beyond some

range by multiplying the true spatial covariance function by a positive definite, compactly

supported function. Then, the resulting covariance matrix is sufficiently sparse to achieve

computational efficiency with the sparse matrix algorithm (see, e.g., Davis 2006). Furrer et

al. (2006) proved the asymptotic efficiency of the best linear unbiased predictor (BLUP)

using the covariance tapering which is called the tapered BLUP for the original BLUP.

Kaufman et al. (2008) applied the covariance tapering to the log-likelihood function and

showed that the estimators maximizing the tapered approximation of the log-likelihood are

strongly consistent. Hirano and Yajima (2013) investigated the asymptotic property of the

prediction by the covariance tapering in a transformed random field.

Sang and Huang (2012) demonstrated that the predictive process fails to accurately

approximate the small-scale dependence structure and the covariance tapering fails at large-

scales. They proposed a combination of the predictive process and the covariance tapering,

which is called a full scale approximation. Our paper confirms the same approximation

property for the linear projection as the predictive process through some examples. We

will show only one example in this paper. To deal with this problem, we propose a modified

linear projection using the covariance tapering based on the work of Sang and Huang (2012).

The main contributions of this paper are to propose a linear projection using a modifica-

tion by the compactly supported correlation function and investigate theoretical justification.

Furthermore, we have used simulated examples and an empirical analysis based on the air

dose rate data to demonstrate that our proposed method works well when compared with

the linear projection and the covariance tapering, regardless of the strength of spatial cor-

relation and nonstationarity. Our work can be regarded as an extension of Banerjee et al.

(2008), Finley et al. (2009), Sang and Huang (2012), and Banerjee et al. (2013). However,

we have only focused on the linear projection approach proposed by Banerjee et al. (2013)
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for comparison purposes because it outperformed the predictive process in the simulations

and empirical studies of Banerjee et al. (2013) and the methods proposed by Finley et al.

(2009) and Sang and Huang (2012) are a modification of the predictive process by the in-

dicator function and the compactly supported correlation function respectively. Moreover,

the selection of tuning parameters and many indices such as the accuracy of the estimation

and prediction and computational time make fair comparisons difficult.

The remainder of this paper is organized as follows. We introduce a linear regression

model and Bayesian analysis for spatial data sets in Section 2. In Section 3, we review

the linear projection approach and its algorithm. Section 4 presents our proposed modified

linear projection. In Section 5, we present the results of computer experiments that compared

the performance of our method with that of the linear projection and covariance tapering.

Section 6 provides an empirical analysis based on the air dose rate in Chiba prefecture of

eastern Japan. Our conclusions and future studies are discussed in Section 7. Technical

proofs of the propositions are given in the Appendix.

2 Linear regression model and Bayesian analysis for

spatial data sets

For s = (s1, . . . , sd)
′

(∈ D ⊂ R
d), consider the linear regression model of the form

Y (s) = x(s)
′

β +W (s) + ǫ(s), (1)

where Y (s) is a dependent variable at a location s, x(s) = (x1(s), . . . , xp(s))
′

is a p-vector of

nonstochastic regressors, β = (β1, . . . , βp)
′

is a vector of unknown regression coefficients, and

the prime denotes the transposition. The residual of this regression is decomposed into a zero-

mean Gaussian processW (s) with a valid covariance function CW (s, s∗) = cov(W (s),W (s∗))

(s, s∗ ∈ D) and ǫ(s) which is a zero-mean independent process following a normal distri-

bution with a variance τ 2 for any location s. ǫ(s) represents the possibility of measurement

error and/or microscale variability and is often referred to as a nugget effect (see, e.g.,

Cressie 1993). It is assumed that {W (s)} and {ǫ(s)} are independent. We specify that

CW (s, s∗) = σ2ρW (s, s∗; θ) where σ2 = var(W (s)), ρW is a correlation function of the spa-

tial process W (s), and θ is a vector of correlation parameters.

Along with a p×1 vector of spatially referenced regressors x(s), we observe the dependent

variable Y (s) at given sampling locations s1, . . . , sn ∈ D. Denote Y = (Y (s1), . . . , Y (sn))
′
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and Ω = (β, τ 2, σ2, θ). Then, the probability density function of Y is

f(Y |Ω) = (2π)−
n
2

∣

∣ΣW + τ 2I
∣

∣

− 1

2 exp

{

−1

2
(Y −Xβ)′

(

ΣW + τ 2I
)−1

(Y −Xβ)

}

,

where (ΣW )ij = σ2ρW (si, sj; θ) (i, j = 1, . . . , n), I is an n × n identity matrix, and X =

(x(s1), . . . ,x(sn))
′. The goal is to estimate the parameters Ω = (β, τ 2, σ2, θ) and predict

Y (s0) at an unobserved location s0 ∈ D based on Y . Note that x(s0) is observed.

In this paper, we take a Bayesian approach and use a simulation method, namely, the

Markov chain Monte Carlo (MCMC) method to generate samples from the posterior dis-

tribution and conduct the statistical inference with respect to the model parameters. The

Bayesian approach assigns prior distributions to Ω = (β, τ 2, σ2, θ) and the MCMC method

is used to draw samples of the model parameters from the posterior distribution

π(Ω|Y ) ∝ f(Y |Ω)π(β)π(τ 2)π(σ2)π(θ).

For prior distributions of β, σ2, and τ 2, we assume

β ∼ N (µβ,Σβ), τ 2 ∼ IG(a1, b1), σ2 ∼ IG(a2, b2), (2)

where N (µβ,Σβ) and IG(ai, bi) (i = 1, 2) respectively denote the multivariate normal dis-

tribution and inverse gamma distributions with probability density functions

π(β) ∝ |Σβ|−
1

2 exp

{

−1

2
(β − µβ)

′Σ−1
β (β − µβ)

}

, π(τ 2) ∝ (τ 2)−(a1+1) exp

(

− b1
τ 2

)

,

π(σ2) ∝ (σ2)−(a2+1) exp

(

− b2
σ2

)

.

Since the prior specifications for θ will depend on the choice of the correlation function

ρW (s, s∗; θ), details of the estimation are discussed in Sections 5 and 6. We implement the

MCMC algorithm in four stages:

1. Generate β|τ 2, σ2, θ,Y .

2. Generate τ 2|β, σ2, θ,Y .

3. Generate σ2|β, τ 2, θ,Y .

4. Generate θ|β, τ 2, σ2,Y .

Note that ΣW depends on σ2 and θ.

Generation of β.
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The conditional posterior probability density function of β is

π(β|τ 2, σ2, θ,Y ) ∼ N (µβ|·,Σβ|·),

where

Σβ|· =
{

Σ−1
β +X ′

(

ΣW + τ 2I
)−1

X
}−1

and

µβ|· = Σβ|·

{

Σ−1
β µβ +X ′

(

ΣW + τ 2I
)−1

Y
}

.

τ 2 and σ2 are updated using Metropolis steps (see, e.g., Gelman et al. 2004). Random-

walk Metropolis steps with normal proposals are typically adopted.

Generation of τ 2.

Given the current value τ 2, propose a candidate τ 2
∗
= τ 2 + z1, z1 ∼ N (0, σ2

1) and accept

it with probability

min





∣

∣ΣW + τ 2
∗
I
∣

∣

− 1

2 exp
{

−1
2
(Y −Xβ)′

(

ΣW + τ 2
∗
I
)−1

(Y −Xβ)− b1
τ2∗

}

(τ 2
∗
)
−(a1+1)

|ΣW + τ 2I|− 1

2 exp
{

−1
2
(Y −Xβ)′ (ΣW + τ 2I)−1 (Y −Xβ)− b1

τ2

}

(τ 2)−(a1+1)
, 1



 .

Generation of σ2.

Given the current value σ2, propose a candidate σ2∗ = σ2+ z2, z2 ∼ N (0, σ2
2) and accept

it with probability

min





|Σ∗
W + τ 2I|−

1

2 exp
{

−1
2
(Y −Xβ)′ (Σ∗

W + τ 2I)
−1

(Y −Xβ)− b2
σ2∗

}

(σ2∗)
−(a2+1)

|ΣW + τ 2I|− 1

2 exp
{

−1
2
(Y −Xβ)′ (ΣW + τ 2I)−1 (Y −Xβ)− b2

σ2

}

(σ2)−(a2+1)
, 1



 ,

where (Σ∗
W )ij = σ2∗ρW (si, sj; θ) (i, j = 1, . . . , n). The tuning parameters σ2

1 and σ2
2 are

chosen such that the average of the acceptance rates in each iteration is approximately

40%. As we have previously mentioned, the generation of θ will be discussed in subsequent

sections.

It is computationally expensive to calculate the determinant and inverse of the n × n

matrix ΣW + τ 2I for large spatial data sets. In particular, the inverse matrix calculation

requires O(n3) operations. For each sampling procedure, we must calculate the determinant

and inverse of the n×n matrix ΣW + τ 2I. Thus, the computational complexity of the above

MCMC algorithm is challenging for large spatial data sets because a large number of samples

from the posterior distribution are usually needed.

5



The Bayesian prediction is to obtain the predictive distribution

π(Y (s0)|Y ) =

∫

π(Y (s0)|Y ,Ω)π(Ω|Y )dΩ.

For a given Ω,

π(Y (s0)|Y ,Ω) ∼ N
(

x(s0)
′β + c′Y,s0

(

ΣW + τ 2I
)−1

(Y −Xβ) , σ2 + τ 2 − c′Y,s0

(

ΣW + τ 2I
)−1

cY,s0

)

,

where cY,s0 = (cov(Y (s0), Y (s1)), . . . , cov(Y (s0), Y (sn)))
′. The predictive distribution is

sampled by composition, drawing Y (l)(s0) ∼ π(Y (s0)|Y ,Ω(l)) for each Ω(l) (l = 1, . . . , L)

where Ω(l) is the lth sample from the posterior distribution π(Ω|Y ) and L is the total number

of samples given in the MCMC algorithm. The mean squared prediction error (MSPE) is

computed using

1

M

M
∑

m=1

(

Y (s0,m)−
1

L

L
∑

l=1

Y (l)(s0,m)

)2

,

where Y (s0,m) (m = 1, . . . ,M) and
∑L

l=1 Y
(l)(s0,m)/L denote the test data sets and the

sample analogue of the mean of the predictive distribution respectively. Since sampling from

π(Y (s0)|Y ,Ω(l)) also involves the inverse of the n × n matrix ΣW + τ 2I, the computation

becomes a more formidable one for large spatial data sets.

Finally, we compare some existing approximation methods using the deviance information

criterion (DIC) (Spiegelhalter et al. 2002). It is used as a Bayesian measure of fit or adequacy

and is defined as

DIC = EΩ|Y [D(Ω)] + pD,

where D(Ω) = −2 log f(Y |Ω) and pD = EΩ|Y [D(Ω)] − D(EΩ|Y [Ω]). EΩ|Y [·] represents the

expectation under the posterior distribution π(Ω|Y ). To compute EΩ|Y [D(Ω)] and EΩ|Y [Ω],

we use the sample analogues

1

L

L
∑

l=1

D(Ω(l)) and
1

L

L
∑

l=1

Ω(l).

DIC also includes the inversion of the n× n matrix.

3 Linear projection approach

In this section, we review the linear projection approach proposed by Banerjee et al. (2013).

This method was developed to efficiently compute Gaussian process regression. However, it

can be applied to the efficient computation of the Bayesian analysis for large spatial data sets
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and the linear projection approach is regarded as an extension of predictive process models

(Banerjee et al. 2013).

As a first step, for s ∈ D, define

Wapprox(s) = E[W (s)|ΦW ] = c′W,sΦ
′(ΦΣWΦ′)−1ΦW ,

where W = (W (s1), . . . ,W (sn))
′, cW,s = (cov(W (s),W (s1)), . . . , cov(W (s),W (sn)))

′ =

(CW (s, s1), . . . , CW (s, sn))
′, and Φ is an m × n matrix with full row-rank (m ≤ n) and a

row-norm equal to unity to avoid scale problems. In this case, for s, s∗ ∈ D,

Capprox(s, s
∗) = cov(Wapprox(s),Wapprox(s

∗)) = c′W,sΦ
′ (ΦΣWΦ′)

−1
ΦcW,s∗ .

Since Capprox underestimates the variance of W (s) from E[(W (s)−E[W (s)|ΦW ])2] =

CW (s, s)− c′W,sΦ
′ (ΦΣWΦ′)−1ΦcW,s ≥ 0, Banerjee et al. (2013) defined

Clp(s, s
∗) = Capprox(s, s

∗) + δ(s, s∗) {CW (s, s∗)− Capprox(s, s
∗)} , (3)

where δ(s, s∗) is 1 if s = s∗, otherwise 0. This modification is based on Finley et al.

(2009). Let {Wlp(s)} be a zero-mean Gaussian random field with the covariance function

Clp. Σapprox, Σdiag, and Σlp denote the n × n covariance matrices with the (i, j)-th element

of Capprox(si, sj), δ(si, sj) (CW (si, sj)− Capprox(si, sj)), and Clp(si, sj) respectively. These

matrix expressions are given by

Σapprox = ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW ,

Σdiag =
{

ΣW − ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW

}

◦ I,

and

Σlp = Σapprox + Σdiag,

where the notation ’◦’ refers to the Hadamard product. Now, we replace W (s) in (1) with

Wlp(s). Consequently, the covariance matrix of Y changes from ΣW + τ 2I to Σlp + τ 2I =

ΣWΦ′ (ΦΣWΦ′)−1ΦΣW +Σdiag+τ 2I and the inverse matrix and determinant of ΣW +τ 2I in

the Bayesian inference and prediction of Section 2 become those of Σlp+ τ 2I. Using Harville

(1997), we obtain

{

ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW + Σdiag + τ 2I
}−1

=
(

Σdiag + τ 2I
)−1 −

(

Σdiag + τ 2I
)−1

ΣWΦ′

×
{

ΦΣWΦ′ + ΦΣW

(

Σdiag + τ 2I
)−1

ΣWΦ′
}−1

ΦΣW

(

Σdiag + τ 2I
)−1

.

(4)

7



Similarly, from Harville (1997), the determinant can be calculated using

∣

∣

∣
ΣWΦ′ (ΦΣWΦ′)

−1
ΦΣW + Σdiag + τ 2I

∣

∣

∣
=
∣

∣Σdiag + τ 2I
∣

∣ |ΦΣWΦ′|−1

×
∣

∣

∣
ΦΣWΦ′ + ΦΣW

(

Σdiag + τ 2I
)−1

ΣWΦ′
∣

∣

∣
. (5)

The right-hand sides of (4) and (5) include the inversion and determinant of the n×n diagonal

matrix Σdiag + τ 2I and the m × m matrices, so that it is faster to conduct the Bayesian

inference and prediction. If Φ is an m × n submatrix of an n × n permutation matrix,

we obtain a predictive process whose knots are an m-dimensional subset of {s1, . . . , sn}.
Therefore, the linear projection is an extension of predictive process models. Additionally,

the linear projection approach avoids the knot selection problem of the predictive process.

Next, we explain the selection of Φ using the stochastic matrix approximation technique in

Banerjee et al. (2013). It follows from Schmidt’s approximation theorem (Stewart 1993; page

563) that U ′
m = argminΦ ‖ΣW − ΣWΦ′(ΦΣWΦ′)−1ΦΣW ‖F for fixed m where ‖ · ‖F denotes

the Frobenius norm for matrices and Um is the n × m matrix whose ith column vector is

the eigenvector corresponding to the ith eigenvalue of ΣW in descending order of magnitude

(i = 1, . . . , n). However, the derivation of eigenvalues and eigenvectors of ΣW involves O(n3)

computations (Golub and Van Loan 1996). From UmU
′
mΣW = ΣWUm(U

′
mΣWUm)

−1U ′
mΣW ,

Banerjee et al. (2013) proposed the following algorithm to find Φ by diminishing ‖ΣW −
Φ′ΦΣW‖F for any target error level on the basis of the appropriate modification of Algorithm

4.2 of Halko et al. (2011).

Algorithm (Banerjee et al. 2013). Given a target error ǫ > 0 and r ∈ N, find the m×n

matrix Φ that satisfies ‖ΣW − Φ′ΦΣW‖F < ǫ with probability 1− n/10r.

Step 1. Initialize j = 0 and Φ(0) = [ ] (the 0× n empty matrix).

Step 2. Draw r length-n random vectors ω(1), . . . ,ω(r) with independent entries fromN (0, 1).

Step 3. Compute κ(i) = ΣWω(i) for i = 1, . . . , r.

Step 4. Check if maxi=1,...,r(‖κ(i+j)‖) < {(π/2)1/2ǫ}/10. If it holds, go to Step 11. Otherwise

go to Step 5.

Step 5. Recompute j = j + 1, κ(j) =
[

I − {Φ(j−1)}′Φ(j−1)
]

κ(j), and φ(j) = κ(j)/‖κ(j)‖.
Step 6. Set Φ(j) =

[

{Φ(j−1)}′ φ(j)
]′
.

Step 7. Draw a length-n random vector ω(j+r) with independent entries from N (0, 1).

Step 8. Compute κ(j+r) =
[

I − {Φ(j)}′Φ(j)
]

ΣWω(j+r).

Step 9. Recompute κ(i) = κ(i) − φ(j){(φ(j))′κ(i)} for i = (j + 1), . . . , (j + r − 1).

Step 10. Go back to the target error check in Step 4.

Step 11. If j = 0, output Φ =
{

κ(1)/‖κ(1)‖
}′
; else output Φ = Φ(j).

8



Here, ‖ · ‖ denotes the Euclidean norm. Step 5 is not essential, but it ensures better

stability when κ(j) becomes very small (see Halko et al. 2011). Step 6 is the concatenation

of the matrix and the vector. Banerjee et al. (2013) evaluated the linear projection approach

using simulations and empirical examples and demonstrated that it achieved the better

performance efficiently than the predictive process of Banerjee et al. (2008).

4 Modified linear projection

As previously mentioned, the linear projection approach is not related to the knot selection

problem unlike the predictive process. However, similarly to the predictive process, the linear

projection approach is inaccurate when approximating local or small-scale dependences of

the true covariance function CW . In contrast, it is effective for the predictive process and

the linear projection to capture large-scale spatial variations of CW .
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(a) Linear Projection
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(b) Covariance Tapering
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(c) Modified Linear Projection

Figure 1: Exponential covariance function CW (s, s∗) = exp(−0.06‖s− s∗‖) (solid line) and
three approximations. The true covariance matrix is generated using 500 random locations
in [0, 100]× [0, 100]. (a) Linear projection approach with ǫ = 200 and r = 4 (points). m = 26
was selected. (b) Covariance tapering using the spherical covariance function with γ = 20
(dotted line). (c) Modified linear projection using the linear projection with ǫ = 200 and
r = 4 and the spherical covariance function with γ = 20 (points).

Figure 1(a) shows a typical example to demonstrate that the improvement such as (3)

is insufficient for modifying the approximation of small-scale dependence in the original

covariance function. Using the linear projection, we obtain similar results for other covariance

functions through some simulations (e.g., Gaussian covariance function and the Cauchy

family (Gneiting and Schlather 2004)).

Our proposed approach is a modification of the linear projection approach by the covari-

ance tapering, which is based on the idea of the full scale approximation in Sang and Huang

(2012). Before introducing our new approach, we review the covariance tapering which gen-
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erates the sparse matrix approximation from the compactly supported correlation function

and achieves the computational efficiency for analyzing large spatial data sets.

Let Kγ(x) (x ≥ 0 and γ > 0) be a compactly supported correlation function with

Kγ(0) = 1 and Kγ(x) = 0 for x ≥ γ. Kγ(x) is called the taper function with a taper range γ.

Some compactly supported correlation functions have been developed (see, e.g., Wendland

1995). For example, there are the spherical covariance function

Kγ(x) =

(

1− x

γ

)2

+

(

1 +
x

2γ

)

and

Kγ(x) =

(

1− x

γ

)6

+

(

1 + 6
x

γ
+

35x2

3γ2

)

. (6)

Now, consider the product of the original covariance function and the taper function, that is

Cct(s, s
∗) = CW (s, s∗)Kγ(‖s− s∗‖).

Let {Wct(s)} be a zero-mean Gaussian random field with the covariance function Cct and

replace W (s) in (1) with Wct(s). Then, ΣW + τ 2I in the Bayesian inference and prediction

of Section 2 becomes ΣW ◦ Σtaper + τ 2I where (Σtaper)ij = Kγ(‖si − sj‖) (i, j = 1, . . . , n).

The resulting matrix ΣW ◦Σtaper+τ 2I has many zero elements and is called a sparse matrix,

so that we can use sparse matrix algorithms to efficiently handle the inverse matrix and

determinant.

From the definition of the covariance tapering, small-scale spatial dependence is well ap-

proximated, but large-scale dependence may not be appropriately accounted for (see Figure

1(b)). We introduce a modified linear projection approach to the covariance function of the

original spatial process. It allows for efficient computations when using large spatial data

sets. Define

Cmlp(s, s
∗) = Capprox(s, s

∗) +Kγ(‖s− s∗‖) {CW (s, s∗)− Capprox(s, s
∗)} .

Cmlp is introduced by replacing the indicator function δ in (3) with the compactly supported

correlation function Kγ to incorporate the small-scale spatial dependence. Now, let Σsparse

and Σmlp be the n × n Gram matrices with respect to s1, . . . , sn for Kγ × (CW − Capprox)

and Cmlp respectively. These matrix expressions are given by

Σsparse =
{

ΣW − ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW

}

◦ Σtaper and Σmlp = Σapprox + Σsparse.
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The following proposition states the associated theoretical properties, which are used as

conditions required in the expansion of the inversion and the determinant.

Proposition 1

(a) ΦΣWΦ′ is positive definite.

(b) Σsparse + τ 2I is positive definite.

(c) Σmlp + τ 2I is positive definite.

(d) ΦΣWΦ′ + ΦΣW (Σsparse + τ 2I)
−1

ΣWΦ′ is positive definite.

In the proof of Proposition 1(c), we prove that Σmlp is positive semidefinite. An additional

assumption on {W (s)} yields the positive definiteness of Σmlp, but its proof is omitted for

brevity. Consider a zero-mean Gaussian random field {Wmlp(s)} with the covariance function

Cmlp and replace W (s) in (1) with Wmlp(s). Consequently, (ΣW + τ 2I)
−1

and |ΣW + τ 2I|
in the Bayesian inference and prediction become the inverse matrix and determinant of

Σmlp + τ 2I = ΣWΦ′ (ΦΣWΦ′)−1ΦΣW +Σsparse + τ 2I respectively. Σmlp includes the original

covariance matrix ΣW because ΣW = Σmlp if m = n. Similarly to the linear projection case,

from Harville (1997) and Proposition 1, we can obtain
{

ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW + Σsparse + τ 2I
}−1

=
(

Σsparse + τ 2I
)−1 −

(

Σsparse + τ 2I
)−1

ΣWΦ′

×
{

ΦΣWΦ′ + ΦΣW

(

Σsparse + τ 2I
)−1

ΣWΦ′
}−1

ΦΣW

(

Σsparse + τ 2I
)−1

(7)

and
∣

∣

∣
ΣWΦ′ (ΦΣWΦ′)

−1
ΦΣW + Σsparse + τ 2I

∣

∣

∣
=
∣

∣Σsparse + τ 2I
∣

∣ |ΦΣWΦ′|−1

×
∣

∣

∣
ΦΣWΦ′ + ΦΣW

(

Σsparse + τ 2I
)−1

ΣWΦ′
∣

∣

∣
.

(8)

Now, we can treat the inverse matrix and determinant more quickly because (7) and (8)

include the n × n sparse matrix Σsparse + τ 2I and m × m matrices. Figure 1(c) describes

the good fitting of the modified linear projection to the original covariance function because

the new approach uses the linear projection to capture large-scale spatial variations and the

covariance tapering to capture small-scale local variations that are unexplained by the linear

projection. In fact, the following proposition shows that the modified linear projection is

superior to the linear projection in a sense of the Frobenius norm.

Proposition 2

Suppose that Kγ1(x) ≤ Kγ2(x) for fixed x ≥ 0. Then,

‖ΣW − Σapprox‖F ≥ ‖ΣW − Σlp‖F ≥ ‖ΣW − Σmlp,γ1‖F ≥ ‖ΣW − Σmlp,γ2‖F ,
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where Σmlp,γi = Σapprox + (ΣW − Σapprox) ◦ Σtaper,γi and (Σtaper,γi)kl = Kγi(‖sk − sl‖) for

k, l = 1, . . . , n and i = 1, 2.

From Proposition 2, the approximation of the modified linear projection is better than

that of the linear projection with respect to the Frobenius norm. Furthermore, it follows that

the condition of Proposition 2 is satisfied for the spherical covariance function and the taper

function (6) when γ1 ≤ γ2. Then, as the taper range γ increases, the approximation accuracy

of the modified linear projection increases in a sense of the Frobenius norm. However, there

is a trade-off between the magnitude of the taper range and the computational burden.

Finally, we now show that the approximation accuracy for the original covariance matrix

controls the error in the probability density function of Y . The next proposition is a corollary

of Theorem 2 in Banerjee et al. (2013).

Proposition 3

Suppose that Σ∗(A) = ΣWΦ′ (ΦΣWΦ′)−1ΦΣW +
{

ΣW − ΣWΦ′ (ΦΣWΦ′)−1ΦΣW

}

◦A and A

is an n × n positive definite matrix. Let f = N (Xβ,ΣW + τ 2I) be the probability density

function of Y under the original model and f∗ = N (Xβ,Σ∗(A) + τ 2I) denotes its linear

projection-type approximation. If ‖ΣW − Σ∗(A)‖F ≤ ǫ for sufficiently small ǫ > 0, then

dKL(f, f∗) ≤
n

2

{ ǫ

τ 2
− log

(

1− ǫ

τ 2

)}

,

where dKL denotes the Kullback-Leibler divergence between probability density functions.

In other words, the Kullback-Leibler divergence is of the same order as the error in the

approximation of the original covariance matrix in terms of the Frobenius norm. Since most

of our derivation is a straightforward application of Banerjee et al. (2013) without a small

gap, we omit the proof of Proposition 3. Note that Σ∗(I) = Σlp and Σ∗(Σtaper) = Σmlp. From

Proposition 3, the error between the original probability density function and that of the

modified linear projection has the sharp bound compared to the linear projection because

‖ΣW − Σlp‖F ≥ ‖ΣW − Σmlp‖F in Proposition 2.

5 Illustrative examples using simulated data

This section illustrates our proposed method using simulated data and examines the effect

of our modification using the compactly supported correlation function by comparing it with

the linear projection and the covariance tapering. All computations were carried out using

MATLAB functions sparse, symamd, and chol on Linux powered 2.50GHz Xeon processor

with 64 Gbytes RAM. The convergence diagnostics and the posterior summarization for

MCMC were implemented by the R package CODA (Plummer et al. 2006). In our simulations
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and the empirical study, the taper function (6) was used for the covariance tapering and

modified linear projection.

First, we investigated the performance of the proposed method through a simple simu-

lation. Let D = [0, 100]2 be the sampling domain and 2000 locations were sampled from

a uniform distribution over D. We randomly selected 1500 locations for the estimation of

parameters and DIC, while the rest were used for the calculation of the MSPE. We employed

the Matérn correlation function

ρW (s, s∗; ν, λ) =
1

2ν−1Γ(ν)

(

2ν1/2‖s− s∗‖
λ

)ν

Jν

(

2ν1/2‖s− s∗‖
λ

)

, ν > 0, λ > 0,

where Γ(·) is the gamma function and Jν(·) is the modified Bessel function of the second

kind of order ν (see Stein 1999). The spatial range parameter λ controls the decay in

spatial correlation and the smoothness parameter ν can be interpreted as the degree of the

smoothness of the random field. For example, if ν = 0.5, the Matérn correlation function is

ρW (s, s∗;λ) = exp

(

−
√
2‖s− s∗‖

λ

)

. (9)

This is called the exponential covariance function and is widely used in many applications.

The data were simulated from the model (1) with β = 0, the exponential covariance function

with σ2 = 0.5, λ =
√
2/0.06 and

√
2/0.3, and nugget variance τ 2 = 1. σ2 and τ 2 were the

targets of the estimation and we assumed that the other parameters were known. When

pairs of observations are more than 50 unit distant from each other in λ =
√
2/0.06, they

have negligible (< 0.05) correlation. This distance is called the effective range of the random

field and 50 unit represents the random field with the strong spatial correlation. Similarly,

the effective range in λ =
√
2/0.3 is 10 unit and it has the weak spatial correlation. For prior

distributions, we assumed that a1 = 1, b1 = 0.1, a2 = 0.8, and b2 = 0.1 in (2). We ran the

second and third stages in the MCMC algorithm presented in Section 2 for 50000 iterations,

discarding the first 500 samples as burn-in periods. We applied the linear projection with

ǫ = 200 and r = 4, the covariance tapering with γ = 2.8 and 20, and the modified linear

projection with ǫ = 200, r = 4, and γ = 20 in λ =
√
2/0.06. In λ =

√
2/0.3, the linear

projection with ǫ = 150, 400, and r = 4, the covariance tapering with γ = 2.8 and 10, and

the modified linear projection with ǫ = 400, r = 4, and γ = 2.8 were considered.

The inefficiency factor (IF) is defined as 1 + 2
∑∞

t=1 ρ(t) where ρ(t) is the sample auto-

correlation at lag t for the parameter of interest. This factor is used to measure how well the

MCMC mixes (e.g., Chib 2001). The smaller the inefficiency factor becomes, the closer the

MCMC sampling is to the uncorrelated one. The computational time of each approach is
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relative to the time taken in the full model, scaled to 1. These times include the calculation

of MSPE, DIC, and Φ selected by the algorithm in Section 3. Additionally, we described

the rank of Φ required in the algorithm and the sparsity of the matrix measured by the

percentage of zero elements in the off-diagonal elements of Σtaper.

Table 1: Summary of results from the first simulation in λ =
√
2/0.06.

τ 2 σ2 MSPE DIC Relative time

True value 1 0.5 - - -

Original model Mean 0.992 0.432

1.138 4472 1
Stdev 0.043 0.090
95% interval [0.911, 1.079] [0.282, 0.633]
IF 7.537 21.753

MLP Mean 0.985 0.458

1.157 4479 0.38
(ǫ = 200, γ = 2.8) Stdev 0.047 0.111

95% interval [0.895, 1.077] [0.281, 0.708]
IF 12.919 35.117

LP Mean 0.987 0.451

1.158 4480 0.36
(ǫ = 200) Stdev 0.047 0.108

95% interval [0.896, 1.079] [0.276, 0.698]
IF 13.612 31.757

CT Mean 0.769 0.596

1.399 4702 0.22
(γ = 2.8) Stdev 0.10 0.106

95% interval [0.586, 0.979] [0.388, 0.802]
IF 46.439 48.492

CT Mean 0.971 0.342

1.158 4514 2.57
(γ = 20) Stdev 0.041 0.050

95% interval [0.894, 1.056] [0.255, 0.449]
IF 5.408 8.832

MLP: modified linear projection; LP: linear projection; CT: covariance tapering. The
required rank was 84 when ǫ = 200. The sparsity was 0.24% when γ = 2.8 and 10.71%
when γ = 20.
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Table 2: Summary of results from the first simulation in λ =
√
2/0.3.

τ 2 σ2 MSPE DIC Relative time

True value 1 0.5 - - -

Original model Mean 1.018 0.427

1.340 4717 1
Stdev 0.061 0.074
95% interval [0.90, 1.142] [0.293, 0.582]
IF 14.042 19.599

MLP Mean 1.037 0.416

1.408 4754 0.35
(ǫ = 400, γ = 2.8) Stdev 0.095 0.116

95% interval [0.836, 1.211] [0.224, 0.678]
IF 47.139 55.115

LP Mean 1.119 0.319

1.433 4763 0.33
(ǫ = 400) Stdev 0.085 0.094

95% interval [0.944, 1.277] [0.161, 0.531]
IF 219.804 407.408

CT Mean 0.763 0.665

1.444 4772 0.21
(γ = 2.8) Stdev 0.119 0.125

95% interval [0.541, 1.011] [0.412, 0.911]
IF 64.035 66.709

LP Mean 1.086 0.345

1.351 4724 1.2
(ǫ = 150) Stdev 0.056 0.058

95% interval [0.981, 1.20] [0.238, 0.466]
IF 37.746 149.150

CT Mean 0.928 0.499

1.367 4727 0.79
(γ = 10) Stdev 0.066 0.075

95% interval [0.80, 1.063] [0.359, 0.651]
IF 16.551 20.983

MLP: modified linear projection; LP: linear projection; CT: covariance tapering. The
required rank was 87 when ǫ = 400 and 510 when ǫ = 150. The sparsity was 0.24% when
γ = 2.8 and 2.94% when γ = 10.

Tables 1 and 2 display the Bayesian posterior sample means, standard deviations, and

95% credible intervals of the model parameters for each approach. Each approximation

method required more time as ǫ decreased or γ increased, which often offset the computa-

tional efficiency. As shown in Table 1, the linear projection worked very well in the random

field with the strong correlation. However, in the random field with the weak correlation,
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Table 2 shows that the estimation of σ2 using the linear projection was insufficient and the

original model was superior to the linear projection even from a perspective of the calcu-

lation time. This is because the linear projection places a particular emphasis on fitting

to the large-scale dependence. Since the covariance tapering has the property opposite to

the linear projection, its performance is good except in the case where the linear projection

is effective. Unlike the linear projection and the covariance tapering, the modified linear

projection proposed in this paper performed well regardless of the magnitude of the spatial

correlation. The modified linear projection with appropriate taper range γ improved the

linear projection by adding a bit of time.

In the strong correlation case of the first simulation, the Frobenius norm of the difference

between the original covariance matrix and the approximated one by the linear projection

is 6.311 when ǫ = 200. For the modified linear projection with ǫ = 200, it is 6.033 when

γ = 2.8 and 5.248 when γ = 10. In the weak correlation case of the first simulation, the

Frobenius norm of the error is 16.198 for the linear projection with ǫ = 400. For the modified

linear projection with ǫ = 400, it is 15.078 when γ = 2.8 and 12.524 when γ = 10. This

supports the result of Proposition 2 and shows that the decrease of the Frobenius norm by

the modified linear projection becomes large and the modification by the covariance tapering

is effective for the random field where the small-scale dependence is dominant.

In the second simulation, we considered a nonstationary random field using the covariance

function developed by Paciorek and Schervish (2006). The covariance function is

CW (s, s∗) = σ2 1

2ν−1Γ(ν)
|ΣD(s)|

1

4 |ΣD(s∗)|
1

4

∣

∣

∣

∣

ΣD(s) + ΣD(s∗)

2

∣

∣

∣

∣

− 1

2
{

2
√

νd(s, s∗)
}ν

Jν

{

2
√

νd(s, s∗)
}

,

(10)

where ΣD(s) is a d× d positive definite matrix,

d(s, s∗) = (s− s∗)
′

(

ΣD(s) + ΣD(s∗)

2

)−1

(s− s∗),

andD(s) indicates the subregion which s belongs to. In the second simulation, we considered

the sampling domain D = [0, 500]2 and partitioned the entire region D into two subregions

D1 = [0, 250]× [0, 500] and D2 = (250, 500]× [0, 500]. 1000 locations were sampled from a

uniform distribution over Di and split into 750 training sets and 250 test sets for i = 1, 2.

As a result, we obtained 1500 locations for training and 500 locations for testing. For the

nonstationary covariance function (10), the smoothness parameter ν was fixed to be 0.5

and we set ΣD(s) = λ2
D(s)I where D(s) is 1 if s ∈ D1, and 2 otherwise. This introduced the

nonstationary random field that combined the stationary random field of the range parameter
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λ1 over D1 with that of the range parameter λ2 over D2. In Section 3 of Paciorek and

Schervish (2006), there is an example of spatial data sets with different stationary covariance

structures in the eastern and western regions similar to the nonstationary random field in

our simulation. The data sets were simulated using the spatial linear regression model

(1) with x1(s) = 1, x2(s) generated from the standard normal distribution, β = (1, 2)′,

σ2 = 0.67, τ 2 = 0.11, λ1 = 1/0.08, and λ2 = 1/0.3. For prior distributions, we assumed

that µβ = (0.959, 1.972)′, Σβ = 1000I, a1 = 11, b1 = 1.261, a2 = 11, and b2 = 6.305.

These hyperparameter choices were guided by the least squares estimator and an appropriate

partition of the sample variance of its residual based on typical values in past empirical

studies.

In order to bypass the computational burden of the selection of Φ at each iteration, a

discrete uniform distribution with atoms {c1, . . . , ctj} was taken as the prior distribution of

λj (j = 1, 2) because we can precompute Φ using the algorithm presented in Section 3 for the

correlation matrix ofW (s) with each distinct value of λ1 ∈ {c1, . . . , ct1} and λ2 ∈ {c1, . . . , ct2}
prior to implementing the MCMC procedure. This strategy was proposed in Section 4 of

Banerjee et al. (2013). In addition, Wikle (2010) used the discrete uniform distribution as

the prior distribution for the range parameter.

Generation of λ1.

For i = 1, . . . , t1, the conditional posterior distribution of λ1 is

P (λ1 = ci|β, τ 2, σ2, λ2,Y )

= K1

∣

∣ΣW (λ1 = ci) + τ 2I
∣

∣

− 1

2 exp

{

−1

2
(Y −Xβ)′

(

ΣW (λ1 = ci) + τ 2I
)−1

(Y −Xβ)

}

,

where ΣW (λ1 = ci) denotes ΣW with λ1 = ci and

K1 = 1
/
∑t1

i=1 |ΣW (λ1 = ci) + τ 2I|−
1

2 exp
{

−1
2
(Y −Xβ)′ (ΣW (λ1 = ci) + τ 2I)

−1
(Y −Xβ)

}

.

Generation of λ2.

Similarly, for i = 1, . . . , t2, the conditional posterior distribution of λ2 is

P (λ2 = ci|β, τ 2, σ2, λ1,Y )

= K2

∣

∣ΣW (λ2 = ci) + τ 2I
∣

∣

− 1

2 exp

{

−1

2
(Y −Xβ)′

(

ΣW (λ2 = ci) + τ 2I
)−1

(Y −Xβ)

}

,

where ΣW (λ2 = ci) denotes ΣW with λ2 = ci and

K2 = 1
/
∑t2

i=1 |ΣW (λ2 = ci) + τ 2I|−
1

2 exp
{

−1
2
(Y −Xβ)′ (ΣW (λ2 = ci) + τ 2I)

−1
(Y −Xβ)

}

.

For j = 1, 2, we set ci = 1/(0.02i) (i = 1, . . . , tj) and tj = 25 to choose a wide interval of

the range parameters. The linear projection with ǫ = 350 and r = 5, the covariance tapering

with γ = 12, and the modified linear projection with ǫ = 350, r = 5, and γ = 12 were
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applied. Using the MCMC algorithm described in Section 2, we sampled 8000 draws after

the initial 300 samples were discarded as a burn-in period.

The results of the simulation are summarized in Table 3. For σ2 and τ 2, the linear

projection shows high inefficiency factors and has discrepancies from the posterior means

of the original model. This implies that the modification by the indicator function is not

sufficient for small-scale variations. For β1 and λ1, the 95% interval of the linear projection

does not include the true value. The covariance tapering is highly computationally efficient,

but the estimations of the range parameters are inaccurate. However, our proposed method

modifies these drawbacks and works well compared to the linear projection and the covariance

tapering. We obtained similar results with other settings, but these are not reported here.

6 Empirical study

In this section, we discuss the results when we applied our proposed modified linear pro-

jection method to air dose rates in Chiba prefecture. The data are created based on the

results of the vehicle-borne survey conducted by the Japanese Ministry of Education, Cul-

ture, Sports, Science and Technology from November 5 to December 10, 2012. This data

set consists of air dose rates (microsievert per hour) with longitudes, latitudes, and dis-

tances from the Fukushima Dai-ichi Nuclear Power Plant (NPP) (km) at 47470 sampling

points and is obtained from the Environment Monitoring Database for the Distribution

of Radioactive Substances Released by the TEPCO Fukushima Dai-ichi NPP Accident at

http://radb.jaea.go.jp/mapdb/en/. These are spatio-temporal data because they were ob-

served on irregularly spaced locations at discrete time points. However, we have considered

the data set to be spatial by assuming that the air dose rate trend does not fluctuate largely

over a short period. To assume the Gaussian process over the whole region, we selected

5557 points inside the rectangular region [139.920625, 140.103125]× [35.25375, 35.424584].

Figure 2 shows the logarithmic transformation of these spatial data sets. To understand

the entire trend for the scattered observations, we attempted to make the prediction surface

using representative points of the predictive distribution.

We split 5557 data points into a training set of 5000 observations and a test set of 557

observations. To account for the mean component and maintain normality, we considered

the spatial regression model (1) with the logarithmic transformation Y (s) of the air dose

rate, x1(s) = 1, and the distance from the Fukushima Dai-ichi NPP x2(s).

The MCMC algorithm was similar to the second simulation presented in Section 5. The

hyperparameters of the prior distributions for β = (β1, β2)
′, σ2, and τ 2 were assumed to be
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Table 3: Summary of results from the second simulation.

True Original MLP LP CT
value (ǫ = 350, γ = 12) (ǫ = 350) (γ = 12)

β1 1

Mean 0.949 0.952 0.933 0.962
Stdev 0.029 0.030 0.031 0.023
95% interval [0.891, 1.004] [0.892, 1.011] [0.873, 0.994] [0.916, 1.006]
IF 1.425 5.641 2.530 1.379

β2 2

Mean 1.980 1.972 1.970 1.970
Stdev 0.020 0.021 0.022 0.026
95% interval [1.942, 2.019] [1.930, 2.013] [1.927, 2.012] [1.929, 2.011]
IF 1.0 1.0 1.0 1.0

τ 2 0.11

Mean 0.138 0.139 0.214 0.120
Stdev 0.031 0.039 0.062 0.029
95% interval [0.086, 0.203] [0.079, 0.223] [0.099, 0.327] [0.073, 0.185]
IF 36.209 74.679 131.557 36.937

σ2 0.67

Mean 0.628 0.643 0.589 0.629
Stdev 0.041 0.049 0.080 0.039
95% interval [0.546, 0.706] [0.546, 0.738] [0.443, 0.743] [0.548, 0.707]
IF 26.513 40.110 129.658 26.337

λ1 1/0.08

Mean 13.944 18.257 24.368 36.215
Stdev 2.075 3.521 2.206 15.197
95% interval [12.50, 16.667] [12.50, 25.0] [16.667, 25.0] [10.0, 50.0]
IF 14.361 43.472 37.155 2.208

λ2 1/0.3

Mean 2.714 3.045 3.341 4.493
Stdev 0.523 1.089 1.020 2.075
95% interval [2.0, 3.846] [2.174, 5.556] [2.381, 5.556] [2.083, 10.0]
IF 1.131 1.269 2.952 1.263

MSPE - 0.664 0.681 0.710 0.708
DIC - 3701 3724 3746 3780
Relative time - 1 0.54 0.52 0.36

MLP: modified linear projection; LP: linear projection; CT: covariance tapering. Average
required rank and its 95% interval were 23.75 and [1, 94.50] when ǫ = 350. The sparsity
was 0.17% when γ = 12.
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Figure 2: The logarithmic transformation of air dose rates at 5557 sampling points in Chiba
prefecture.

µβ = (−2.5849,−0.0012)′, Σβ = 1000I, a1 = 11, b1 = 0.2121, a2 = 11, and b2 = 1.0607

in the same way as the second simulation. Moreover, we conducted some trial runs using a

training subset. The results led us to use the exponential covariance function (9) and the

discrete uniform distribution with ci = 1/(0.01i) (i = 1, . . . , 60) for the prior distribution of

λ. To implement the modified linear projection, we conducted a pilot analysis using training

and test subsets for various choices of ǫ and γ. Weighing the trade-off between the prediction

accuracy and run time, we determined that ǫ = 1200, r = 5, and γ = 0.5 were appropriate

choices. However, for ǫ = 1200, the linear projection caused poor mixing of the sampling of

λ because of the weak spatial correlation of the logarithmic transformation of the air dose

rate. Hence, ǫ = 300 and r = 5 were selected for the linear projection, which resulted in a

longer run time than that of the modified linear projection.

To run the MCMC algorithm, we drew 4100 samples and discarded 100 samples as

a burn-in period. The predictive surfaces were generated by considering the predictive

distribution at 31×31 prediction points, which overlaid the sampling domain, and calculating

the mean, 5%, and 95% quantiles of samples from the predictive distribution. The mean

of the predictive distribution was used as the single point predictor and the 5% and 95%

quantiles of the predictive distribution served as measures of uncertainty of the mean of
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the predictive distribution. Note that the calculation time for each method includes the

generation of the predictive surfaces as well as the Bayesian estimation and prediction.

Table 4: The result of the Bayesian analysis in the empirical data example.

Stationary model MLP LP CT
(ǫ = 1200, γ = 0.5) (ǫ = 300) (γ = 0.5)

β1

Mean -3.325 -1.559 -3.295 -2.971
Stdev 2.986 2.897 1.441 0.380
95% interval [-9.206, 2.615] [-7.248, 3.974] [-6.118, -0.434] [-3.696, -2.218]
IF 0.970 1.137 1.0 0.867

β2

Mean 0.001 -0.006 0.001 0.0003
Stdev 0.012 0.012 0.006 0.002
95% interval [-0.023, 0.025] [-0.028, 0.018] [-0.010, 0.013] [-0.003, 0.003]
IF 0.974 1.137 1.0 0.868

τ 2

Mean 0.070 0.055 0.068 0.049
Stdev 0.002 0.002 0.002 0.002
95% interval [0.066, 0.073] [0.051, 0.058] [0.065, 0.072] [0.046, 0.052]
IF 11.872 15.055 13.0 9.452

σ2

Mean 0.077 0.110 0.446 0.070
Stdev 0.018 0.009 0.005 0.003
95% interval [0.050, 0.121] [0.093, 0.129] [0.036, 0.055] [0.065, 0.076]
IF 38.980 11.472 6.825 7.074

λ

Mean 4.645 4.187 1.735 35.601
Stdev 1.594 0.308 0.182 31.961
95% interval [2.381, 8.333] [3.704, 5.556] [1.667, 2.041] [4.762, 100.0]
IF 32.214 4.20 4.912 1.202

MSPE 0.076 0.071 0.079 0.074
DIC 1703 1598 1747 2551
Relative time 1 0.51 0.59 0.34

MLP: modified linear projection; LP: linear projection; CT: covariance tapering. Average
required rank and its 95% interval were 45.133 and [8, 77] when ǫ = 1200 and 187.88 and
[26, 335.50] when ǫ = 300. The sparsity was 0.46% when γ = 0.5.
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Figure 3: Mean of the predictive distribution. We adopt the stationary model and the linear
projection for the left and right column in the top row respectively. The modified linear
projection and the covariance tapering are used for the left and right column in the bottom
row respectively.
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Figure 4: 95%-quantile of the predictive distribution. We adopt the stationary model and
the linear projection for the left and right column in the top row respectively. The modified
linear projection and the covariance tapering are used for the left and right column in the
bottom row respectively.
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Figure 5: 5%-quantile of the predictive distribution. We adopt the stationary model and
the linear projection for the left and right column in the top row respectively. The modified
linear projection and the covariance tapering are used for the left and right column in the
bottom row respectively.

The result of the Bayesian analysis is shown in Table 4. The modified linear projection has

the lowest MSPE and DIC and outperforms even the stationary model with the exponential

covariance function which induces the linear projection and modified one. This would suggest

that the original spatial data set shows nonstationarity. In the four cases, the estimate of τ 2

has the relatively high value compared to the one found in past empirical studies because of

the large local variability which is often observed on the east side of Figure 2. Since the 95%

credible intervals for β2 in the four cases include zero, it seems that we cannot detect strong

evidence of the effect of the Fukushima Dai-ichi NPP under the settings of this paper. This

may be because the sampling points are not close to the Fukushima Dai-ichi NPP and the
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survey was conducted less than 2 years after the TEPCO Fukushima Dai-ichi NPP Accident.

A widespread sampling domain and another valid model should be used to investigate the

influence of the Fukushima Dai-ichi NPP correctly.

Figure 3 is influenced by the estimate of λ from each method. The small value of λ in

the linear projection results in the smooth surface. In contrast, the predictive surface of

the covariance tapering has some small clusters due to the high value of λ and large local

variability. The modified linear projection shares the features of both the linear projection

and the covariance tapering. The original stationary model has a value of λ that is similar

to the modified linear projection, but its prediction surface does not express nonstationarity.

Figures 4 and 5 show large variations of the interquartile ranges at 31×31 prediction points on

the east side of the sampling domain because the original data include large local variability

in that region.

It is evident that our proposed modification of the linear projection using the compactly

supported correlation function improves the Bayesian analysis more effectively than increas-

ing ǫ. In addition, the modified linear projection serves as a kind of nonstationary covariance

function.

7 Conclusion and future studies

In this paper, we have proposed a modified linear projection approach for huge irregularly

spaced data analysis. Through some simulations and the empirical study, the performance

of the linear projection and covariance tapering depends on the dependence properties of the

spatial covariance functions. On the other hand, our proposed method is easy to implement

and is generally efficient in terms of computation time, estimation of model parameters, and

prediction at unobserved locations because it effectively captures both the large- and small-

scale spatial variations. Moreover, although the modified linear projection was motivated by

improving the approximation of the original covariance function in the linear projection, the

empirical study has shown that it can also be used as a nonstationary covariance function

instead of just an approximation.

In the empirical data example, we chose the target error ǫ and taper range γ in consid-

eration of the trade-off between prediction accuracy and computational cost for a subset of

the data. In the future, we intend to develop a comprehensive selection method for these

two parameters. It will also be interesting to extend the current work to non-Gaussian,

multivariate, and spatio-temporal processes.

Appendix : Proofs of Propositions 1 and 2
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Proof of Proposition 1

(a)

Consider a′ΦΣWΦ′a for any a ∈ R
n/{0}. Setting b = Φ′a, b 6= 0 because Φ is the full

row-rank matrix and a 6= 0. Thus, b′ΣWb > 0.

(b)

Let a lower triangular matrix L be a Cholesky factor of ΣW , that is ΣW = LL′. Now, we

have
{

ΣW − ΣWΦ′ (ΦΣWΦ′)
−1

ΦΣW

}

= L
[

I − (ΦL)′
{

ΦL (ΦL)′
}−1

ΦL
]

L′.

Since L is nonsingular and
[

I − (ΦL)′
{

ΦL (ΦL)′
}−1

ΦL
]

is a projection matrix from rank (ΦL) =

m,
{

ΣW − ΣWΦ′ (ΦΣWΦ′)−1ΦΣW

}

is positive semidefinite. From Theorem 5.2.1 of Horn

and Johnson (1991; page 309),
{

ΣW − ΣWΦ′ (ΦΣWΦ′)−1ΦΣW

}

◦ Σtaper is also positive

semidefinite. Therefore, Σsparse + τ 2I =
{

ΣW − ΣWΦ′ (ΦΣWΦ′)−1ΦΣW

}

◦ Σtaper + τ 2I is

positive definite.

(c)

From (a), ΣWΦ′ (ΦΣWΦ′)−1ΦΣW is positive semidefinite.

Thus, Σmlp + τ 2I = ΣWΦ′ (ΦΣWΦ′)−1ΦΣW + Σsparse + τ 2I is positive definite.

(d)

It is clear from (a) and (b).

✷

Proof of Proposition 2

In this proof, we denote (ΣW )ij = aij , (Σapprox)ij = bij , (Σtaper,γ1)ij = d
(1)
ij , (Σtaper,γ2)ij =

d
(2)
ij and (I)ij = eij for i, j = 1, . . . , n. It follows that

‖ΣW − Σapprox‖F =

n
∑

i=1

n
∑

j=1

(aij − bij)
2,

‖ΣW − {Σapprox + (ΣW − Σapprox) ◦ I} ‖F =
n
∑

i=1

n
∑

j=1

(aij − bij)
2(1− eij)

2,

and

‖ΣW − {Σapprox + (ΣW − Σapprox) ◦ Σtaper,γk} ‖F =
n
∑

i=1

n
∑

j=1

(aij − bij)
2
(

1− d
(k)
ij

)2

,

for k = 1, 2. From 1 ≥ (1− eij)
2 ≥

(

1− d
(1)
ij

)2

≥
(

1− d
(2)
ij

)2

, the proof is completed.
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