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Abstract

In this paper we propose a new multiple test procedure for assessing multivariate

normality which combines BHEP (Baringhaus-Henze-Epps-Pulley) tests by consid-

ering extreme and non-extreme choices of the tuning parameter in the definition of

the BHEP test statistic. Monte Carlo power comparisons indicate that the new test

presents a reasonable power against a wide range of alternative distributions, show-

ing itself to be competitive against the most recommended procedures for testing a

multivariate hypothesis of normality. We further illustrate the use of the new test for

the Fisher Iris data set.
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1 Introduction

If X1, . . . , Xn, . . . is a sequence of independent copies of a d-dimensional absolutely continu-

ous random vector X with unknown probability density function f , also denoted by fX , the

problem of assessing multivariate normality (MVN) is to test, on the basis of X1, . . . , Xn,

the hypothesis

H0 : f ∈ Nd,

against a general alternative, where Nd is the family of normal probability density functions

on R
d. The multivariate normal distribution is widely used in many applications and several

test procedures for this classical problem have been proposed in the literature showing a

continued interest in this subject. Some of the work published in the last ten years include

the papers of Liang et al. (2005), Mecklin and Mundfrom (2005), Székely and Rizzo (2005),

Sürücü (2006), Arcones (2007), Farrel et al. (2007), Chiu and Liu (2009), Liang et al. (2009),

Tenreiro (2009, 2011), Oliveira and Ferreira (2010), Ebner (2012) and Wang (2015). For

some additional bibliography on this topic see Csörgő (1986), Rayner and Best (1989, p. 98–

109), Thode (2002, p. 181–224) and the review articles of Henze (2002) and Mecklin and

Mundfrom (2004).

An important class of test procedures for assessing MVN is the BHEP (Baringhaus-

Henze-Epps-Pulley) family introduced by Baringhaus and Henze (1988) and Henze and

Zirkler (1990), which extends the Epps and Pulley (1983) procedure to the multivariate

context. In order to define this family of test statistics, let us denote by

Yj = S−1/2
n (Xj −Xn), j = 1, . . . , n

the scaled residuals associated with the observations X1, . . . , Xn, where

Xn = n−1

n∑

j=1

Xj and Sn = n−1

n∑

j=1

(Xj −Xn)(Xj −Xn)
′,

are the sample mean vector and the sample covariance matrix, respectively, and S
−1/2
n is the

symmetric positive definite square root of S−1
n . We always assume that Sn is nonsingular

almost surely which, in accordance with Dykstra (1970), holds whenever n ≥ d + 1. The

BHEP test statistic associated to the strictly positive real number h, is a weighted L2-

distance between the empirical characteristic function of the scaled residuals,

Ψn(t) =
1

n

n∑

j=1

exp
(
i t′Yj

)
, t ∈ R

d,

and the characteristic function Φ of the d-dimensional standard Gaussian density φ(x) =

(2π)−d/2 exp(−x′x
/
2), x ∈ R

d, with weight function t → |Φh(t)|2 = exp(−h2t′t), where Φh
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is the characteristic function of φh(·) = φ(·/h)/hd. The BHEP test statistic is then defined

as

B(h) = n

∫
|Ψn(t)− Φ(t)|2|Φh(t)|2dt, h > 0, (1)

where the unspecified integral denotes integration over the whole space. The considered

weight function is particularly useful because in such a case B(h) does not require any

integration. In fact we can rewrite the BHEP test statistic as

B(h) = (2π)d
1

n

n∑

i,j=1

Q(Yi, Yj; h),

with

Q(u, v; h) = φ(2h2)1/2(u− v)− φ(1+2h2)1/2(u)− φ(1+2h2)1/2(v) + φ(2+2h2)1/2(0),

for u, v ∈ R
d and h > 0.

The asymptotic behaviour of B(h) under the null hypothesis, a fixed alternative distribu-

tion and a sequence of local alternatives, can be obtained from the work of several authors

such as Baringhaus and Henze (1988), Csörgő (1989), Henze and Zirkler (1990), Henze

(1997), Henze and Wagner (1997) and Gürtler (2000). In particular, for each 0 < h < ∞,

B(h) has as limiting null distribution a weighted sum of χ2 independent random variables

and, contrary to almost all MVN tests considered in the literature, the associated test

procedure is consistent against each fixed alternative distribution.

It is worth mentioning that the statistic (1) can be interpreted as the L2-distance

between the Parzen-Rosenblatt kernel estimator based on the scaled residuals with kernel

K = φ and smoothing parameter (bandwidth) h, and the convolution Kh ∗ φ, which can

be seen as an approximation of the standardised null density when h is close to zero (see

Henze and Zirkler, 1990, Fan, 1998). In this form the statistic B(h) was firstly considered

by Bowman and Foster (1993) and its asymptotic behaviour under the null hypothesis,

a fixed alternative distribution and a sequence of local alternatives was first establish in

Gürtler (2000). For an unifying treatment of the asymptotic behaviour of B(h) for the

non-fixed (h = hn → 0) and fixed (0 < h < ∞) bandwidth cases, see also Tenreiro (2007).

From a practical point of view, it is well known that the finite sample power performance

of the BHEP test is very sensitive to the choice of h which acts as a tuning parameter (see

Henze and Zirkler, 1990, Henze and Wagner, 1997, Tenreiro, 2009). In Tenreiro (2009) the

choice of h has been examined through a large-scale simulation study based on a set of meta-

Gaussian distributions whose marginal distributions are members of the generalised lambda

family discussed in Ramberg and Schmeiser (1974). Two distinct behaviour patterns for the
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BHEP empirical power as a function of h were identified which has led the author to propose

two distinct choices of the bandwidth, depending on the data dimension (2 ≤ d ≤ 15):

h = hS := 0.448 + 0.026 d and (2)

and

h = hL := 0.928 + 0.049 d. (3)

The bandwidth hS has revealed to be suitable for short tailed or high moment alternatives

while the bandwidth hL has shown to be appropriate for long tailed or moderately skewed

alternative distributions.

If there is no relevant information about the alternative distribution, which is the most

common case in a real situation, the proposal of Tenreiro (2009) is to use

h = h̄ = (hS + hL)/2, (4)

because this value produces an omnibus test for normality. Despite this good property, for

several alternative distributions the MVN test based on B(h̄) is outperformed by one of

the classical Mardia (1970) tests, which are among the most recommended procedures for

testing MVN. The Mardia tests are based on the test statistics MS (multivariate skewness)

and MK (multivariate kurtosis) given by

MS = nb1,d (5)

and

MK =
√
n | b2,d − d(d+ 2)|, (6)

where

b1,d =
1

n2

n∑

j,k=1

(Y ′

jYk)
3 and b2,d =

1

n

n∑

j=1

(Y ′

jYj)
2, (7)

are the Mardia empirical measures of multivariate skewness and kurtosis, respectively. The

Mardia skewness test performs well for skewed or long tailed alternatives and the Mardia

kurtosis test is especially good for short tailed alternatives (cf. Henze and Zirkler, 1990,

Baringhaus and Henze, 1992, Romeu and Ozturk, 1993).

Intending to propose a MVN test that could reveal a good empirical power for a wider

range of alternative distributions than the BHEP test based on B(h̄), an improved Bon-

ferroni method considered by Fromont and Laurent (2006) is used in Tenreiro (2011) in

order to combine the previous BHEP tests based on B(hS) and B(hL), and the Mardia tests

based on MS and MK. A simulation study carried out in Tenreiro (2011) for a wide range

of alternative distributions, indicated that the resulting multiple test procedure, named
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MB, presents a reasonable performance against a large set of alternative distributions and

a good overall performance against other highly recommended MVN tests.

However, other combinations of affine invariant MVN tests are naturally possible. In

this paper we consider one of such combinations which is exclusively based on the BHEP

test statistic this being an interesting feature of the proposed multiple test procedure.

Similarly to the MB test, the new multiple test combines four affine invariant MVN tests.

Two of them are the BHEP tests based on B(hS) and B(hL), that were also included in

the MB multiple test. The other two tests for MVN are based on the statistics derived in

Henze (1997) by letting the bandwidth h tend to zero and to infinity in B(h). Therefore

the resulting multiple test procedure is based on the BHEP test statistic by combining

extreme and non-extreme choices of the tuning parameter h.

The paper is planned as follows. In Section 2 we identify the two test statistics obtained

in Henze (1997) by letting the parameter h in the definition of the BHEP statistic tend

to zero and to infinity. Two of the goodness-of-fit tests for MVN that can be associated

to these statistics are combined with the tests based on B(hS) and B(hL) in order to

propose a new multiple test for MVN. In Section 3 we define such a multiple test procedure

and, as a consequence of the results in Tenreiro (2011), we describe its main properties. In

Section 4 we report the results of a simulation study carried out to analyse the finite sample

power performance of the new multiple test compared with the MB multiple test, that we

take here as a benchmark MVN test. For the generality of the alternative distributions

included in our Monte Carlo study, the two tests reveal quite similar results showing a

good performance for a wide range of alternative distributions. Finally, in Section 5 the

proposed test is illustrated using the Fisher Iris data set and in Section 6 we provide some

overall conclusions. All the proofs are deferred to Section 7. The simulations and plots in

this paper were carried out using the R software (R Development Core Team, 2011).

2 The extreme BHEP test statistics

Henze (1997) proposed and studied tests for multivariate normality whose test statistics

are obtained by letting the bandwidth h in the definition of the BHEP statistic tend to

zero or to infinity. In this section we identify such test statistics and we describe the main

properties of the associated MVN tests. Here, and throughout this article || · || denotes the
Euclidean norm in R

d and
d−→ denotes convergence in distribution.

Lemma 1 (Henze, 1997, Theorems 2.1 and 3.1). We have:

i) Limit of B(h) as h → ∞:

lim
h→∞

(2π)−d/2(h
√
2 )d+6B(h) = n

(
b1,d/6 + b̃1,d/4

)
,
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where b1,d is the Mardia skewness measure given in (7) and

b̃1,d =
1

n2

n∑

j,k=1

Y ′

jYk||Yj||2||Yk||2.

ii) Limit of B(h) as h → 0:

lim
h→ 0

2−1n−1/2
(
(2π)−d/2B(h)− 2−d/2(h−d − n)

)
= −√

n
(
b̃2,d − 2−d/2

)
,

where

b̃2,d =
1

n

n∑

j=1

exp
(
− ||Yj||2

/
2
)
.

Under the null hypothesis of MVN, Henze (1997) established that n (b1,d/6+ b̃1,d/4)
d−→

1
2
(d + 4)χ2

d + χ2
d(d−1)(d+4)/6 and

√
n
(̃
b2,d − 2−d/2

) d−→ N
(
0, 3−d/2 − 2−d − d 2−(d+3)

)
, which

led him to propose two new MVN tests based on the affine invariant statistics defined as

B(∞) := n (b1,d/6 + b̃1,d/4) (8)

and

B(0) :=
√
n | b̃2,d − 2−d/2|. (9)

In both cases these tests reject H0 for large values of the corresponding test statistics.

As noticed by Henze (1997), B(∞) is based on a weighted sum of the empirical skewness

measures b1,d and b̃1,d, the latter being a sample version of a measure of multivariate skew-

ness introduced and studied by Móri et al. (1993) (see also Henze, 2002). In relation to the

statistic b̃2,d involved in B(0), Henze (1997) pointed out that it is similar to the Mardia kur-

tosis measure b2,d in the sense that it only uses information contained in the Mahalanobis

distances ||Y1||2, . . . , ||Yn||2.
Taking into account these similarities, it will be not surprising if the tests based on the

statistics (8) and (9) share some of the properties of the classical Mardia’s tests based on the

statistics MS and MK, respectively. As for these tests, the tests based on B(∞) and B(0) are

not consistent against each alternative distribution. Therefore, the universal consistency of

the BHEP test for each fixed 0 < h < ∞ (Csörgő, 1989) is lost in the limit cases h → ∞ and

h → 0. Denoting by β̃1,d = ||E
(
||W ||2W

)
||2 and β̃2,d = E

(
exp(−||W ||2/2)

)
the population

counterparts to b̃1,d and b̃2,d, respectively, where W = Σ−1/2(X−µ), µ and Σ are the mean

vector and the covariance matrix of X , and Σ−1/2 is the symmetric positive definite square

root of Σ−1, Henze (1997) showed that if E||X||6 < ∞ and the alternative distribution is

supported by a set of positive d-dimensional Lebesgue measure, then the MVN test based

on b̃1,d is consistent if β̃1,d > 0. Additionally, he established that if E||X||2 < ∞, the MVN

test based on b̃2,d is consistent if and only if β̃2,d differs from 2−d/2.
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3 A new multiple test for assessing MVN

The new test for testing MVN proposed in this paper, labelled BB henceforth, is based on

the combination of the extreme BHEP statistics given by (8) and (9), and the non-extreme

BHEP statistics B(h) with h = hS and h = hL given by (2) and (3), respectively.

3.1 Definition and finite sample behaviour under H0

For u ∈ ]0, 1[ and

Tn,1 = B(0), Tn,2 = B(hS), Tn,3 = B(hL) and Tn,4 = B(∞), (10)

consider the corrected statistic

Tn(u) = max
h∈H

(
Tn,h − cn,h(u)

)
, (11)

where H = {1, 2, 3, 4} and cn,h(u) is the quantile of order 1−u of the test statistic Tn,h under

the null hypothesis of MVN. As the test statistics Tn,h, h ∈ H , are affine invariant, that

is, Tn,h(AX1 + b, . . . , AXn + b) = Tn,h(X1, . . . , Xn), for all b ∈ R
d and nonsingular matrix

A, and fX ∈ Nd if and only if fAX+b ∈ Nd, the quantile cn,h(u) does not depend on the

distribution considered under the null hypothesis, and therefore Tn(u) is affine invariant

for every u ∈ ]0, 1[.

For a preassigned level of significance α ∈ ]0, 1[, the BB multiple test is defined as the

test procedure that rejects the null hypothesis of MVN whenever

Tn(un,α) > 0

where

un,α = sup In,α (12)

with

In,α =
{
u ∈ ]0, 1[ : Pφ(Tn(u) > 0) ≤ α

}
,

and φ the d-dimensional standard Gaussian density.

Taking into account that α/4 ≤ un,α, we conclude that the BB multiple test is at least

as powerful as the Bonferroni procedure that leads to the rejection of H0 if at least one of

the test statistics Tn,h, for h ∈ H , is larger than its quantile of order 1− α/4.

Similarly to the Bonferroni test procedure based on Tn,h, for h ∈ H , the next non-

asymptotic result, which is a consequence of Theorem 1 of Tenreiro (2011), states that the

BB multiple test has a level of significance that is at most equal to α.
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Sample size Data dimension

2 3 4 5 7 10

α = 0.01

20 .0037 .0032 .0033 .0031 .0029 .0032
40 .0032 .0032 .0030 .0029 .0028 .0026
60 .0032 .0032 .0031 .0027 .0030 .0025
80 .0032 .0029 .0029 .0029 .0028 .0028
100 .0036 .0030 .0030 .0025 .0030 .0027
200 .0030 .0030 .0033 .0029 .0030 .0029
400 .0033 .0026 .0031 .0029 .0032 .0030

α = 0.05

20 .0187 .0169 .0167 .0167 .0159 .0159
40 .0173 .0176 .0167 .0161 .0162 .0145
60 .0182 .0163 .0166 .0162 .0160 .0152
80 .0186 .0170 .0168 .0158 .0152 .0149
100 .0173 .0163 .0159 .0152 .0152 .0150
200 .0171 .0165 .0171 .0159 .0157 .0154
400 .0179 .0161 .0170 .0164 .0163 .0158

Table 1: Estimates of un,α for α = 0.01, 0.05 based on a regular grid of size 0.0001 on the interval
]0, 1[. The number of replications for each stage of the estimation process is 50,000.

Theorem 1. For n > d and 0 < α < 1 we have Pf (Tn(un,α) > 0) ≤ α, for all f ∈ Nd.

In practice, the value un,α, the level at which each one of the tests Tn,h, h ∈ H , is

performed, is estimated by Monte Carlo experiments under the null hypothesis as described

in Fromont and Laurent (2006). We have used 50,000 simulations under the null hypothesis

of the involved test statistics and the R function quantile(·,type=7) for estimating the

1 − u quantiles cn,h(u) for u varying on a regular grid, ui+1 = ui + p with u1 = p and

p = 0.0001, on the interval ]0, 1[, and further 50,000 simulations were used for estimating

the probabilities Pφ(Tn(u) > 0 ). Finally, we have taken the largest value of u that satisfies

Pφ(Tn(u) > 0) ≤ α as an approximation for un,α defined by (12).

For α = 0.01 and α = 0.05, and several sample sizes n and data dimensions d, we

present in Table 1 the estimated levels un,α based on a regular grid of size p = 0.0001. For

the large majority of the considered combinations, the estimated level un,α is clearly larger

than α/4, the level at which each one of the tests Tn,h, h ∈ H , is performed whenever a

Bonferroni multiple test based on these statistics is used. However, for α = 0.01 and for

some of the considered sample size and data dimension combinations, the estimated level

un,α is close to α/4, which means that the considered multiple test BB is, in those cases,

close to the Bonferroni test procedure.
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Sample size Data dimension

2 3 4 5 7 10

α = 0.01

20 .0098 .0099 .0095 .0087 .0099 .0095
40 .0092 .0095 .0096 .0094 .0093 .0089
60 .0093 .0096 .0092 .0083 .0097 .0082
80 .0097 .0010 .0087 .0091 .0088 .0098
100 .0011 .0098 .0089 .0082 .0098 .0092
200 .0087 .0096 .0095 .0091 .0099 .0087
400 .0098 .0087 .0091 .0092 .0093 .0094

α = 0.05

20 .0504 .0471 .0499 .0482 .0498 .0496
40 .0499 .0512 .0508 .0509 .0515 .0485
60 .0512 .0466 .0473 .0462 .0497 .0479
80 .0533 .0496 .0494 .0490 .0479 .0481
100 .0502 .0490 .0477 .0477 .0481 .0482
200 .0488 .0481 .0496 .0487 .0494 .0477
400 .0494 .0487 .0492 .0496 .0506 .0491

Table 2: Estimates of the nominal level of significance of the multiple test BB for a preassigned
level α. The number of replications for each case is 100,000.

For the previously considered values of α, n and d, Table 2 shows estimates for the

nominal levels of significance of the BB test based on 100,000 simulations under the null

hypothesis. These estimates were evaluated by using an approximation of the p-value of

the BB test that can be obtained along the lines described in Tenreiro (2011, p. 1991).

The R program for computing the p-value may be obtained from the author. Although we

were not able to prove that the BB test has an exact α-level of significance, a sufficient

condition for which being the continuity of the distribution function of the statistics Tn,h,

for all h ∈ H (see Theorem 1 of Tenreiro, 2011), we conclude from Table 2 that the previous

implementation enables us to obtain a multiple test procedure with an attained level of

significance very close to α. With some few exceptions the estimated levels are inside the

approximate 95% confidence interval for the preassigned level α.

3.2 Consistency against fixed and local alternatives

The next result, which is a consequence of Theorem 1 of Tenreiro (2011), states that the

BB multiple test is consistent against each fixed alternative.

Theorem 2. For 0 < α < 1 we have Pf (Tn(un,α) > 0) → 1, as n → +∞, for all f /∈ Nd.
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A similar result is valid for a sequence of local alternatives converging to the null

density function at a rate slower than n−1/2. To define local alternatives we consider

Xn1, . . . , Xnn, . . . a sequence of independent and identically distributed d-dimensional ab-

solutely continuous random vectors with mean µn and nonsingular covariance matrix Σn,

whose probability density function fn satisfies

f ∗

n(x) = φ(x)
(
1 + γnη(x) + o(γn)ηn(x)

)
,

for x ∈ R
d, with f ∗

n(x) = |Σ1/2
n |fn

(
µn +Σ

1/2
n x

)
, η an a.e. non-identically null function, (γn)

a sequence of positive real numbers tending to zero as n tends to infinity, and the functions

η and ηn satisfy

sup
x∈Rd

|η(x)| < ∞, sup
n∈N

sup
x∈Rd

|ηn(x)| < ∞.

Theorem 3. For 0 < α < 1 we have Pfn(Tn(un,α) > 0) → 1, as n → +∞, for a sequence

of local alternatives with n−1/2 = o(γn).

4 Finite sample power analysis

In this section we present the results of a simulation study that was conducted to compare

the empirical power performance of the new BB multiple test against the MB multiple test

proposed by Tenreiro (2011). We recall that the latter test is defined similarly to the BB

multiple test with Tn1 = MK, Tn2 = B(hS), Tn,3 = B(hL) and Tn,4 = MS. Based on the

Monte Carlo results presented in Tenreiro (2011), we know that the MB test procedure

reveals a good empirical power for a wide range of alternative distributions, and shows an

overall good performance against the most recommended procedures for testing MVN such

as the Henze and Zirkler (1990) test which is based on B(hHZ) with hHZ = 1.41, the BHEP

test based on B(h̄) with h̄ given by (4), and the test proposed by Székely and Rizzo (2005),

among others (see Tenreiro, 2011, p. 1986). For this very reason the MB test is considered

here as a benchmark test for testing MVN against which we will compare the new multiple

test proposed in this paper.

4.1 The alternative distributions

A wide set of alternative distributions, including all the distributions considered in Tenreiro

(2009, 2011), was selected to our study. This set includes distributions previously considered

in other simulations studies such as those of Henze and Zirkler (1990), Romeu and Ozturk

(1993), Mecklin and Mundfrom (2005) and Székely and Rizzo (2005). We investigate: i)
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some symmetric distributions from Pearson’s Types II and VII families (see Johnson, 1987,

p. 110–121); ii) some heavily skewed distributions such as the multivariate χ2
1 and the

multivariate lognormal with independent marginals, and some members of the multivariate

asymmetric Laplace family (see Kotz et al., 2001, chapter 6); iii) some distributions with

some characteristics identical to MVN such as (meta-)Burr-Pareto-Logistic distributions

with normal marginals (see Johnson, 1987, chapter 9) and Khintchine distributions with

generalised exponential power marginal distributions (see Johnson, 1987, chapter 8 and

paragraph 2.4); iv) some mixtures of two multivariate normals (location and scale mixtures)

in order to assess the effect of data contamination; and finally v) a set of meta-Gaussian

distributions whose marginal distributions, given in Table 2 of Tenreiro (2009, p. 1043), are

members of the generalised lambda family discussed in Ramberg and Schmeiser (1974). For

a detailed description of all these alternatives see Tenreiro (2009, p. 1045; 2011, p. 1986).

4.2 Empirical power comparisons

The Monte Carlo results presented in this section are based on 10,000 samples of different

sizes (n = 20, 40, 60, 80, 100, 200, 400) and data dimensions (d = 2, 3, 4, 5, 7, 10) from the

considered set of alternative distributions. With this number of repetitions the margin of

error for approximate 95% confidence intervals for the true power does not exceed 0.01.

The standard level of significance α = 0.05 was used.

The observed numerical results indicate that the tests MB and BB exhibit a simi-

lar behaviour for the large majority of the considered alternative distributions. This is

particularly clear when one of the considered non-extreme BHEP tests, B(hS) or B(hL),

is, by a wide margin, the best of the tests involved in both multiple test procedures for

a given alternative distribution. As these tests are included in both multiple tests, the

power performances of MB and BB are quite similar for such alternatives. This is il-

lustrated in Figures 1 and 2, for two normal location mixture distributions of the form

pNd(0, I)+ (1−p)Nd(µ, I) with p = 0.5 (centrally symmetric with tails lighter than MVN)

and p = 0.9 (asymmetric with tails heavier than MVN), where I is the d-dimensional iden-

tity matrix and µ = (3, . . . , 3). Besides the empirical power of the two multiple tests we

want to compare, we also present the empirical power of each one of the tests involved

in both multiple test procedures. The same situation is reported in Figure 3 where we

consider a Khintchine alternative whose values of the Mardia skewness and kurtosis are

equal to the MVN ones (high moment alternative), which explains the poor performance

of the tests MK, MS, B(0) and B(∞) for this alternative.
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Figure 1: Normal location mixture distribution with p = 0.5.
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Figure 2: Normal location mixture distribution with p = 0.9.
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Figure 3: High moment Khintchine distribution with GEP marginals.
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Figure 4: Pearson Type II distribution with m = 0.5.
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Figure 5: Meta-Gaussian distribution with marginals S.2d(0.7).
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Figure 6: Burr-Pareto-Logistic distribution with normal marginals and α = 1.
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Next we report three other situations where the empirical powers of the two multiple

tests are not as close as before, which can be mainly explained by the distinct power perfor-

mances of the tests B(0) and MK, or B(∞) and MS, for the considered alternatives. This

is illustrated in Figures 4 and 5 for a Pearson Type II distribution (elliptically symmetric

with tails lighter than MVN) and for a centrally symmetric meta-Gaussian distribution

with generalised lambda marginals (tails lighter than MVN), and in Figure 6 for a Burr-

Pareto-Logistic distribution with normal marginals (asymmetric with kurtosis close to the

MVN one). For this latter alternative we observed the greatest difference between the

power of the tests MB and BB among the considered set of alternative distributions. Due

to the exceptional good performance of the Mardia MS test in relation to B(∞), the MB

test outperforms the BB test by a wide margin, and this occurs uniformly in relation to

the considered sample sizes and data dimensions.

Taking into account the power performance of the BB test for all the considered alterna-

tive distributions, sample sizes and data dimensions (not presented here for brevity’s sake),

we conclude that the new test reveals a reasonable performance for a wide range of alter-

native distributions, demonstrating itself to be competitive against the multiple MB test

which has shown an overall good performance against the most recommended procedures

for testing MVN (Tenreiro, 2011, p. 1986).

5 An example: the Fisher Iris data

We consider in this section the well-known iris data of Fisher (1936). This data comprises

flower measurements from three iris species of fifty plants each: iris setosa, iris versicolor

and iris virginica. For each plant four measurements in centimeters were taken: sepal

length, sepal width, petal length and petal width. We consider testing for multivariate

normality of the four measurements for each of the considered species.

Approximations of the p-values of the multiple tests BB and MB are reported in Table 3.

At level α = 0.05, multivariate normality is not rejected for iris versicolor and iris virginica

data which is compatible with the results obtained by Beirlant et al. (1999, p. 124). In

relation to the iris setosa data set, the normality assumption was rejected by Small (1980)

through a test statistic that combines marginal skewness and kurtosis, and by two of the

three test statistics considered by Beirlant et al. (1999, p. 124–125). Although smaller

p-values were observed for this data set when compared with the p-values observed for the

other two iris species, the MVN hypothesis was not rejected by any of the multiple tests

BB or MB, which agrees with the result obtained by the third MVN test considered by
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Data set Multiple tests

BB MB

Iris setosa 0.1385 < p-value < 0.139 0.1405 < p-value < 0.141

Iris versicolor 0.3 < p-value < 0.35 0.3 < p-value < 0.35

Iris virginica 0.3 < p-value < 0.35 0.3 < p-value < 0.35

Table 3: Approximations of the p-values of the multiple tests BB and MB for the three iris species

measurements of fifty observations each of the Fisher Iris data set.

Beirlant et al. (1999, p. 125). Of the six tests involved in the two multiple test procedures,

only the BHEP tests B(hS) and B(hL) reject, and by a small margin, the MVN hypothesis

for the iris setosa data. In fact, we obtain for both tests approximate p-values between

0.049 and 0.0495.

6 Conclusions

In this paper we propose a new multiple test procedure for assessing MVN which combines

tests from the BHEP family by considering extreme and non-extreme choices of the tuning

parameter figuring in the definition of the BHEP test statistic. Contrary to the multiple

test MB previously proposed by the author, which combines the Mardia and non-extreme

BHEP tests (Tenreiro, 2011), the new test exclusively combines test statistics based on the

BHEP family, this being an interesting feature of the proposed test procedure. The Monte

Carlo study indicates that the new test presents a reasonable performance for a wide range

of alternative distributions, which is a desirable feature particularly when no information

about the alternative hypothesis is available.

7 Proofs

Proof of Theorem 1: Following closely the proof of Theorem 3 in Tenreiro (2011, p. 1992)

we conclude that the null distribution function FTn,h
of each one of the statistics (10) is

strictly increasing. Thus, from Theorem 1 of Tenreiro (2011) we conclude that the BB

multiple test I(Tn(un,α) > 0) has a level of significance less than or equal to α.

2

Proof of Theorem 2: Given f a non-normal density, we have

Tn,2 = B(hS)
p−→ +∞ under f, (13)

(see Csörgő, 1989), where
p−→ denotes convergence in probability, and

Pf

(
Tn(un,α

)
> 0) ≥ Pf

(
Tn,2 > cn,2(un,α)

)
≥ Pf

(
Tn,2 > cn,2(α/4)

)
(14)
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(the same reasoning could be based on Tn,3 = B(hL)).

Moreover, Tn,2 has a weighted sum of χ2 independent random variables as limiting null

distribution (see Baringhaus and Henze, 1988). Denoting this limiting random variable

by T∞,2, from the continuity of F−1
T∞,2

and the convergence F−1
Tn,2

(t) −→ F−1
T∞,2

(t), for all

0 < t < 1 (see Shorack and Wellner, 1986, p. 10), we get

cn,2(α/4) = F−1
Tn,2

(1− α/4) −→ F−1
T∞,2

(1− α/4). (15)

Finally, from (13), (14) and (15) we deduce that

Pf

(
Tn(un,α

)
> 0) ≥ Pf

(
Tn,2 > sup

n∈N
cn,2(α/4)

)
−→ 1.

2

Proof of Theorem 3: Following the proof of Theorem 2, for a sequence fn of local

alternatives we have

Pfn

(
Tn(un,α

)
> 0) ≥ Pfn

(
Tn,2 > sup

n∈N
cn,2(α/4)

)
.

The stated result follows now from the fact that Tn,2 = B(hS)
p−→ +∞ under fn

whenever n−1/2 = o(γn) (see Tenreiro, 2007, p. 115).
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