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Abstract

The nonparametric two-sample bootstrap is applied to computing uncertainties of measures in 

ROC analysis on large datasets in areas such as biometrics, speaker recognition, etc., when the 

analytical method cannot be used. Its validation was studied by computing the SE of the area 

under ROC curve using the well-established analytical Mann-Whitney-statistic method and also 

using the bootstrap. The analytical result is unique. The bootstrap results are expressed as a 

probability distribution due to its stochastic nature. The comparisons were carried out using 

relative errors and hypothesis testing. They match very well. This validation provides a sound 

foundation for such computations.
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1 Introduction

Receiver operating characteristic (ROC) analysis provides important statistical techniques in 

a wide variety of disciplines related to decision making. The uncertainties of different 

measures used in ROC analysis on large datasets such as the true accept rate (TAR) and the 

equal error rate (EER) in biometrics, a detection cost function defined as a weighted sum of 

probabilities of type I error and type II error in speaker recognition evaluation, etc., need to 

be determined [1, 2].

The analytical method cannot be used in those cases [1–2]. For instance, in speaker 

recognition evaluation, it is hard to calculate analytically the covariance term of the 

correlated probabilities of type I error and type II error for the detection cost function. In 

addition, the analytical method does not take account of the characteristics of the 

distributions of scores and thus may underestimate the uncertainties if it were to be used [3]. 

As a result, the nonparametric two-sample bootstrap method is employed to compute those 

uncertainties in terms of standard errors (SE) and confidence intervals (CI) [1–2, 4–8].

A challenging question then arises: Can the bootstrap method provide reliable estimates of 

the SEs of the measures in ROC analysis on large datasets? This validation was studied by 

calculating the SE of the area under the ROC curve (AUC) using the well-established 
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analytical method as well as using the nonparametric two-sample bootstrap method, and 

then comparing results from these two methods. Such a validation can provide a sound 

foundation for applying the bootstrap method to computing the uncertainties of measures in 

those areas where the analytical method cannot be used.

The AUC evaluates a classifier using a metric which depends on the classifier itself [9, 10]. 

Such arguments are out of the scope of this article. Nonetheless, the AUC of a classifier is 

equivalent to the probability that the classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative instance [11, and references therein]. If the 

trapezoidal rule is employed, the AUC is equivalent to the Mann-Whitney statistic formed by 

independent and identically distributed (i.i.d.) genuine scores and impostor scores [12–17]. 

Hence, the variance of the Mann-Whitney statistic can be utilized as the variance of the 

AUC. In other words, the SE of the AUC can be computed analytically. This analytical 

approach is a deterministic process. The result may be treated as the ground truth.

On the other hand, the SE of the AUC can also be estimated using the nonparametric two-

sample bootstrap method [4]. Unlike the analytical approach, the bootstrap method is a 

stochastic process. Hence, the SEs derived using the bootstrap method constitute a 

probability distribution. Some outcomes may be more probable and others less. 

Comparisons of such a probability distribution of the bootstrap estimated SÊs of AUC with 

the single analytically estimated SÊ are carried out using relative errors as well as hypothesis 

testing. If the differences are small, then the nonparametric two-sample bootstrap method is 

validated for estimating the uncertainties of measures in ROC analysis on large datasets.

Without loss of generality, in this article, biometric applications on large datasets will be 

taken as examples. Genuine scores are created by comparing two different images of the 

same subject, and impostor scores are generated by matching two images of two different 

subjects. The two distributions of continuous scores are schematically depicted in Figure 

1(A). The cumulative probabilities of genuine and impostor scores ranging from a specified 

score (i.e., threshold) to the highest score are defined as the TAR and the false accept rate 

(FAR), respectively. As the threshold moves from the highest score down to the lowest 

score, an ROC curve is constructed in the far-tar coordinate system as drawn in Figure 1(B).

As extensively investigated, the above two distributions usually do not have well defined 

parametric forms [1, 12]. The bootstrap method assumes that the data are randomly selected 

and i.i.d.. Our large government data bases used for developing scores in biometric 

technology were randomly collected from real practice, and thus the data dependency is not 

involved. As a result, the nonparametric two-sample bootstrap method is pertinent to 

estimating the SE of the AUC. The empirical distribution is assumed for each of the 

observed scores.

The number of bootstrap replications is a very important parameter in bootstrap method [6–

8]. In our applications the data samples are large, the statistics of interest are probabilities, 

and no normality assumption can be made for score distributions. In order to reduce the 

bootstrap variance and ensure the accuracy of computation in such applications, the 
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bootstrap variability was empirically studied, and the appropriate number of bootstrap 

replications was determined to be 2000 [4].

In this article, 14 datasets generated by 14 image matching algorithms1 are employed as 

examples. These 14 datasets are completely different with respect to scoring methods in 

terms of using integers or real numbers in different ranges, the shapes of the score 

distributions, the overlap between the genuine-score distribution and the impostor-score 

distribution, etc. However, in each dataset, the total number of genuine scores is a little over 

60,000 and the total number of impostor scores is a little over 120,000. As demonstrated in 

our previous studies of sample size carried out by applying Chebyshev’s inequality in 

biometric applications, if the numbers of scores get larger than these, the measurement 

accuracy will improve little [18].

To support the main objective in the paper [19], a very preliminary comparison was carried 

out, in which the stochastic characteristic of the bootstrap method was not taken into account 

and thus only a single SE estimated by a random execution of the bootstrap rather than a 

distribution of the bootstrap results was compared with the unique analytically estimated SE. 

So, the hypothesis testing was not used. And the datasets used in that paper had data 

dependency but were assumed to be i.i.d..

The exact bootstrap variance of the single AUC was proposed in Ref. [20], which contains a 

double summation over the total number of the genuine scores and the total number of the 

impostor scores, and thus is computationally impractical in the applications where tens to 

hundreds of thousands of scores are involved. Further, it is impossible to figure out the exact 

bootstrap variance for most statistics of interest. The nonparametric two-sample bootstrap 

algorithms can be used to compute variance of any measures in ROC analysis. In addition, 

our bootstrap variability studies determine the appropriate number of bootstrap replications 

and thus provide a theoretical basis to reduce the bootstrap variance and ensure the accuracy 

of the computation for the bootstrap applications in ROC analysis on large datasets [4].

The formulas of AUC are presented in Section 2. The analytical method using the Mann-

Whitney statistic to estimate the SE of the AUC is shown in Section 3. An algorithm of the 

nonparametric two-sample bootstrap method for estimating the SE of the AUC is provided 

in Section 4. The probability distribution of the bootstrap estimated SE of the AUC is 

explored in Section 5. The 14 different datasets are discussed in Section 6. The results of the 

analytical method and the bootstrap method, and the comparisons of these two types of 

results are offered in Section 7. Finally, conclusions and discussion can be found in Section 

8.

1Specific hardware and software products identified in this paper were used in order to adequately support the development of 
technology to conduct the performance evaluations described in this document. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and 
equipment identified are necessarily the best available for the purpose.
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2 The formulation of AUC

Let fG(s) and fI(s) denote the continuous probability density functions (pdf) of the genuine 

scores and the impostor scores, respectively. Then, the TAR and FAR at a score s are 

expressed by

(1)

and

(2)

where s ∈ (−∞, +∞). Defining υ ≡ FAR (s) where v increases from 0 to 1 as s decreases 

from +∞ down to −∞, it is clear that dv = −fI(s) ds. Then, form Figure 1(B) the AUC can be 

expressed as

(3)

In other words, the AUC is the integral over score s of the cumulative probability of the 

genuine pdf from a score s up to positive infinity multiplied by the impostor pdf at the score 

s.

This formulation of AUC can also be interpreted in terms of discrete distribution functions 

of scores. All scores were converted into integers if they were not for implementation 

purposes. Without loss of generality, the scores are expressed inclusively using the integer 

score set {s} = {smin, smin+1, …, smax}. The genuine score set and the impostor score set in 

the sense of multiset (i.e., the same score can appear multiple times) are denoted as

(4)

and

(5)

where NG and NI are the total numbers of genuine scores and impostor scores.

Let Pi(s), where s ∈ {s} and i ∈ {G, I}, denote the discrete empirical probabilities of genuine 

scores and impostor scores occurring at a score s, respectively. Thus, the two discrete 

probability distribution functions can be expressed as
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(6)

Suppose that the discrete cumulative probabilities of genuine scores and impostor scores at a 

score s, Ci (s), i ∈ {G, I}, are defined in this article to be the probabilities cumulated from 

the integer score s up to the highest score smax. Then, the two discrete cumulative probability 

distribution functions can be expressed as

(7)

The ROC curve in the discrete formation is no longer a smooth curve. While cumulating 

probabilities of genuine scores and impostor scores starting from the highest score, an ROC 

curve may move horizontally, vertically, toward the upper right, or stay where it is for each 

score decrement, depending on whether PI(s) and/or PG(s) are nonzero or not. Thus, the 

AUC consists of a set of trapezoids, each of which is built by a rectangle and a triangle in 

general. The trapezoid may be reduced to a rectangle, a vertical line, or a point.

At a score s ∈ {s}, in the far-tar coordinate system, a trapezoid depicted schematically in 

Figure 2 is constructed by four points: A (CI(s + 1), 0), B (CI(s + 1), CG(s + 1)), C (CI(s), 

CG(s)), and D (CI(s), 0). It is assumed that CI(smax + 1) = CG(smax + 1) = 0. This boundary 

condition indicates that Points A and B in the very first trapezoid corresponding to s = smax 

are at the origin of the far-tar coordinate system. It also implies  due to Eq. (7). 

Thus, the lengths (CI(s) − CI(s + 1)) (i.e., PI(s)) and (CG(s) − CG(s + 1)) (i.e., PG(s)) form a 

triangle, and the lengths (CI(s) − CI(s + 1)) (i.e., PI(s)) and CG(s + 1) (i.e., ) 

create a rectangle.

If the trapezoidal rule is employed, the AUC expressed in Eq. (3) can be estimated as

(8)

Note that the summation runs consecutively in the descending order from smax to smin.
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3 The analytical method to compute the estimated SÊA(A) of AUC

The AUC is estimated using the trapezoidal rule. Thus, the AUC is equivalent to the Mann-

Whitney statistic formed by the discrete genuine and impostor scores. Thereafter, the 

variance of the Mann-Whitney statistic that can be computed analytically is utilized as the 

variance of AUC [12–17].

In order to relate AUC to the Mann-Whitney statistic, all the NI scores in the impostor score 

set I in Eq. (5) are compared with all the NG scores in the genuine score set G in Eq. (4). 

The order relations among scores can be expressed as

(9)

By converting probabilities of genuine and impostor scores in Eq. (8) back to frequencies 

and including zero-frequency scores, the first term in Eq. (8) shows the total number of score 

pairs, in which both the impostor score and the genuine score are equal to s, divided by 

NGNI and weighted by ½. And the second term in Eq. (8) represents the total number of 

score pairs, in which the impostor score is less than the genuine score, divided by NGNI and 

weighted by 1 [21]. Hence, the estimated AÛC can be re-written as

(10)

Except for the coefficient, this is exactly the Mann-Whitney statistic formed by the genuine 

and impostor scores.

To compute the variance of the Mann-Whitney statistic, two more cumulative probability 

distribution functions are required [11–15]. One is

(11)

The other one is

(12)

Where  is assumed.
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The probability BGGI, that two randomly chosen genuine matches will obtain higher scores 

than one randomly chosen impostor match, can be written as

(13)

And the probability BIIG, that one randomly chosen genuine match will get higher score than 

two randomly chosen impostor matches, can be expressed as

(14)

Finally, the SE of the AUC can be analytically estimated as

(15)

4 The bootstrap method to compute the estimated SÊB(A) of AUC

The uncertainty of AUC in terms of SE and 95% CI can also be estimated using the 

nonparametric two-sample bootstrap [1–2, 4–8]. With the i.i.d. assumption, the algorithm is 

as follows.

Algorithm (Nonparametric two-sample bootstrap)

1: for i = 1 to B do

2:  select NG scores randomly WR from G to form a set {new NG genuine scores}i

3:  select NI scores randomly WR from I to form a set {new NI impostor scores}i

4:  {new NG genuine scores}i & {new NI impostor scores}i => statistic Âi

5: end for

6:

{Âi | i = 1, …, B } ⇒SÊB and 

7: end

where B is the number of two-sample bootstrap replications and WR stands for “with 

replacement”. As shown from Step 1 to 5, this algorithm runs B times. In the i-th iteration, 

NG scores are randomly selected WR from the raw genuine score set G shown in Eq. (4) to 

form a new set of scores, and NI scores are randomly selected WR from the raw impostor 

score set I shown in Eq. (5) to form a new set of scores. Then in Step 4 from these two new 

sets of scores the i-th bootstrap replication of the estimated AÛC, i.e., Âi = AÛCi, is 

generated using Eq. (8).

Finally, as indicated in Step 6, after B iterations, the bootstrap distribution {Âi |i = 1, …, B} 

formed by the B replications of AUC is generated. From this distribution, the SÊB estimated 
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by the sample standard deviation, and the 

estimated by the α/2 100% and (1 − α/2) 100% quantiles at the significance level α can be 

obtained [6]. While computing the quantile, Definition 2 in Ref. [22] is adopted, i.e., the 

sample quantile is obtained by inverting the empirical distribution function with averaging at 

discontinuities. For the 95% CÎ, α is set to be 0.05.

The remaining issue is to determine how many iterations the bootstrap algorithms need in 

order to reduce the bootstrap variance and ensure the accuracy of the computation [6–8]. In 

our applications of ROC analysis, such as in biometrics and speaker recognition evaluation, 

the sizes of datasets are tens to hundreds of thousands of scores. Our statistics of interest are 

mostly probabilities or a weighted sum of probabilities rather than a simple sample mean. 

Most importantly our data samples of scores have no parametric model to fit. So, the 

bootstrap variability was re-studied empirically, and the number of bootstrap replications 

needed for our applications was determined to be 2000 [4].

5 The probability distribution of the bootstrap estimated SÊB(A) of AUC

Due to the stochastic nature of the bootstrap method, different runs can produce different 

results. Some results may be more probable and others less so. The bootstrap estimated 

SÊB(A) of AUC constitute a probability distribution. Such a distribution, SEB(A) = 

{SÊB i(A) | i = 1, …, L}, can be generated by running the above algorithm multiple times. 

Subsequently, the mean, median, 68.27% CI (i.e., 1 σ) and 95% CI (i.e., 1.96 σ) of the 

distribution can be estimated.

To determine the number of iterations L, two image matching algorithms, A of high 

accuracy and B of low accuracy were taken as examples. The number of iterations L was set 

to vary from 100 up to 500 at intervals of 100. Then the minimum, maximum, and range of 

L estimated SÊB(A) of AUC were calculated and are shown in Table 1. Across the five 

different numbers of iterations, for high-accuracy Algorithm A, they round to 0.00013, 

0.00014, and 0.00001, respectively; and for low-accuracy Algorithm B, they round to 

0.00046, 0.00050, and 0.00004 (with one slight exception), respectively. This indicates that 

the discrepancies in the results from 100 runs to 500 runs are small.

Further, in order to obtain a statistically meaningful estimated CÎ, the number of estimated 

SÊB(A) of AUC, i.e., the number of iterations L, must be rather large. For instance, 

generally speaking, there are only about two instances located outside the 95% CÎ in each 

tail of the distribution for L = 100, whereas there are about 12 instances for L = 500. 

Therefore, for each matching algorithm, 500 estimates of SÊB(A) of AUC will be generated 

to represent a probability distribution.

Here are two examples. The distributions of 500 bootstrap estimated SÊB(A) of AUC for the 

high- and low-accuracy Algorithms A and B, respectively, are shown in Figure 3, where the 

red triangle stands for the analytical result, the blue diamonds are the two bounds of the 

68.27% CI, and the green circles represent the two bounds of the 95% CI. It is shown in 

Figure 3 that Algorithm A has less dispersed values than Algorithm B, and for both 
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algorithms the analytically estimated SÊA(A) of AUC is very close to the mean as well as 

the median of the distribution (see Algorithms 3 and 14 in Table 2 of Section 7.1).

6 The 14 different datasets

In this article, the 14 datasets generated by 14 image matching algorithms, respectively, are 

taken as examples. These 14 datasets are quite different. In Figure 4 are shown the 

distributions of genuine scores and impostor scores for algorithms A (left) and B (right). 

Besides differences such as scoring methods using integers or real numbers in different 

ranges, the shapes of the score distributions, etc., Algorithm A has much less overlap 

between the genuine-score distribution and the impostor-score distribution than Algorithm B 

does. This indicates why Algorithm A is more accurate than Algorithm B as pointed out in 

Section 5 [1, 12].

7 Results

7.1 The analytical results and bootstrap results

As mentioned above, the 14 algorithms have different image matching accuracies. The larger 

the estimated AÛC is, the more accurate the algorithm is. For each algorithm, the 

analytically estimated SÊA(A) using the Mann-Whitney statistic is unique; but the bootstrap 

estimated SÊB(A) constitute a probability distribution described by the estimated mean, 

median, 68.27% CÎ, 95% CÎ, and its own SÊB(SE) estimated by the sample standard 

deviation of the distribution. Along with the estimated AÛC, all these quantities are shown 

in Table 2. In this table, Algorithms 3 and 14 are Algorithms A and B employed in Section 

5, and all distributions were generated by 500 runs.

To highlight the differences, seven decimal places are shown. It may be noted that most of 

the analytical estimators SÊA(A) fall within the estimated 95% CÎ of the distributions of 

SÊB(A); the exceptions are Algorithms 1, 7, and 11. For these three algorithms, there are 

huge stand-alone peaks at the lowest impostor score, which occupy 98.54%, 97.15%, and 

80.02% of the impostor population, respectively. For the other matching algorithms, a stand-

alone peak does not occupy more than 50% of the population when it exists. The 

randomness of resampling scores may be affected by such a huge stand-alone peak of score 

distributions.

7.2 The comparison of the two types of results using relative errors

The comparison between the bootstrap results and the analytical result can be quantified by 

the relative error δ of one of the quantities such as the mean, the median, the upper bound 

and lower bound of the 68.27% CÎ, as well as the upper bound and lower bound of the 95% 

CÎ of the probability distribution of the bootstrap estimated SÊB(A) of AUC with respect to 

the unique analytically estimated SÊA(A) of AUC that is computed using Eq. (15). When 

using the estimated CÎ, the larger of the two relative errors using the two bounds of the CI is 

employed. These relative errors in each scenario are denoted by δmean, δmedian, δ68, and δ95, 

respectively. The relative error takes into account the impact of the magnitude of the 

analytical result.
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All the relative errors (%) for 14 matching algorithms are shown in Table 3. The 

corresponding box diagrams of 14 relative errors in each scenario are depicted in Figure 5. It 

is obvious that there are three outliers corresponding to Algorithms 1, 7, and 11, 

respectively. This is consistent with the discussion in Section 7.1.

The SEs, created by random runs using the nonparametric two-sample bootstrap, that would 

be obtained more probably than others are those near the estimated mean and median, and 

those within the estimated 68.27% CÎ of the distribution of estimated SÊB(A) (see Figure 3). 

The bootstrap estimators of SE can fall in between 68.27% CÎ and 95% CÎ with probability 

about 27%. And the relative errors δmean, δmedian, and δ68 may be more probable than the 

relative error δ95.

Moreover, it is shown in Figure 5 that the distribution in each of the four scenarios is 

skewed. Thus, the median of the distribution is more important than the mean. The estimated 

mean and median of the 14 relative errors (%) in each scenario are shown in Table 4, where 

the three outlier algorithms are included. Those excluding the three outliers are presented in 

Table 5.

When the three outliers are included, the worst relative error of SÊB(A) is 5.49% which is 

related to a bound of the 95% CI of the distribution, but the median of 14 relative errors 

δmedian is 0.30%. When the three outliers are excluded, they are 3.65% and 0.09%, 

respectively. As a result, the discrepancies between the estimated SÊB(A) computed using 

the nonparametric two-sample bootstrap and the analytically estimated SÊA(A) using the 

Mann-Whitney statistic are quite small, especially for those random bootstrap runs obtained 

more probably. This validates the nonparametric two-sample bootstrap method in ROC 

analysis on large datasets from the perspective of relative errors.

7.3 The comparison of the two types of results using hypothesis testing

The estimated 95% CÎs shown in Table 2 were all calculated using the quantile method as 

described in Section 4. They can also be computed by using “mean ± 1.96 × SÊB(SE)” 

where SÊB(SE) is shown in Table 2, assuming that the probability distribution of the 

bootstrap estimated SÊB(A) of AUC is normal. These two types of 95% CÎs are matched at 

least up to the fifth decimal place for all 14 algorithms. For instance, for Algorithm 3, the 

95% CÎ derived from the quantile method is (0.0001297, 0.0001377), while it is (0.0001296, 

0.0001376) based on the assumption of normality. This suggests that the probability 

distributions of the bootstrap estimated SÊB(A) of AUC for each matching algorithm can be 

assumed to be normal [1]. The normality of the distribution can also be seen in Figure 3.

As a result, the one-algorithm hypothesis testing can be carried out on each of 14 matching 

algorithms to determine whether the difference between the estimated mean of the 

distribution of the bootstrap estimated SÊB(A) of AUC and the analytical SÊA(A), which is 

assumed to be a hypothesized value, is statistically significant. It was found that the two-

tailed p-values of Algorithms 1, 7, and 11 (the three outliers) were close to zero, whereas 

those of Algorithms 8 and 9 were about 20% and all others were greater than 70%. This is 

consistent with the observations in Table 2, where the analytical SÊA(A) falls outside the 

estimated 95% CÎ for Algorithms 1, 7, and 11, between the 68.27% CÎ and the 95% CÎ for 
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Algorithms 8 and 9, and inside the 68.27% CÎ for all other algorithms. Hence, in general the 

difference is not statistically significant. And this validates the nonparametric two-sample 

bootstrap method in ROC analysis on large datasets from the perspective of hypothesis 

testing.

8 Conclusions and discussion

In order to validate the nonparametric two-sample bootstrap in ROC analysis on large 

datasets, the estimated SÊ of AUC was computed analytically using the Mann-Whitney 

statistic if the trapezoidal rule is employed; it was also calculated numerically using the 

nonparametric two-sample bootstrap method. The analytical approach is a deterministic 

process, and thus its estimated SÊA(A) is unique and treated as the ground truth. However, 

the bootstrap method is a stochastic process, and thus its estimators of SÊB(A) constitute a 

probability distribution.

The comparisons between the probability distribution of the bootstrap estimated SÊs of AUC 

and the unique analytically estimated SÊ were carried out using relative errors as well as the 

one-algorithm hypothesis testing. To take the variance of such a distribution into 

consideration, the estimated mean, median, 68.27% CÎ, and 95% CÎ of the distribution of 

estimated SÊB(A) of AUC were compared with the analytical SÊA(A). And the 14 different 

datasets generated by 14 image matching algorithms were taken as examples.

It was found from all these analyses that the discrepancies between the bootstrap estimated 

SÊB(A) and the analytically estimated SÊA(A) are quite small, especially for those random 

bootstrap runs obtained more probably. Thus the bootstrap results match the analytical result 

very well.

As a consequence, this validates the nonparametric two-sample bootstrap method for 

computing the uncertainties of measures in ROC analysis on large datasets. As pointed out 

in Section 1, the analytical method is not appropriate and the nonparametric two-sample 

bootstrap method must be employed in many cases while computing the uncertainties of 

measures. Therefore, this validation provides a sound foundation for applying the bootstrap 

method to computing uncertainties of measure in the cases where the analytical method 

cannot be used.

As shown in Section 7.1, the randomness of resampling scores may be affected by a huge 

stand-alone peak of score distributions. The objective of creating such a peak at the lowest 

(and/or highest) score is to separate the distributions of genuine scores and impostor scores 

as far as possible so as to increase the matching accuracy [1, 12]. Nevertheless, the worst 

relative errors (up to 15.60%), as shown in Table 3, occur when such peaks are found. 

Though they are relatively large in comparison with others in the table, these relative errors 

are acceptable in real numerical computation.

For considerations of time complexity, the nonparametric two-sample bootstrap algorithm to 

compute the SE of the AUC may be partitioned as follows: 1) Randomly resample WR the 

raw genuine scores and impostor scores, respectively; 2) Sort the two new score sets; 3) 

Compute the two new discrete probability distributions of the scores; 4) Calculate the 

Wu et al. Page 11

Commun Stat Simul Comput. Author manuscript; available in PMC 2017 January 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



bootstrap replication of AUC; 5) Repeat B = 2000 times and then estimate the SE of the 

AUC. The average running time of the quicksort algorithm is O(n log n), where n is the 

length of the data array. However, the time spent in Parts 3 and 4 depends also on the total 

number of possible scores in the scoring method after converting them to integers, i.e., the 

range from smin to smax (see Section 2).

Different algorithms employ different scoring methods using integers or real numbers in 

different ranges, which can be seen in Figure 4. And to obtain more accurate computation, as 

many score digits as possible were kept while converting to integers. Therefore, the total 

running time of computing the SE of the AUC is algorithm-dependent. For the 14 algorithms 

employed in this article, the average running time was 149 seconds; the fastest was 72 

seconds; and the slowest was 219 seconds. Further, as discussed in Section 1, sample sizes 

larger than the ones used in this paper are not needed in order to guarantee the computation 

accuracy [18]. Therefore, in terms of running time, the bootstrap method is certainly feasible 

and reliable.

All the tests performed in this article were on large datasets with tens or hundreds of 

thousands of genuine scores and of impostor scores. A simple test on small medical datasets 

from Ref. [14] was also conducted, in which there were only 54 genuine scores and 58 

impostor scores for both Modality 1 and Modality 2. The test was based on a random run of 

the bootstrap method rather than on generating a distribution of estimated SÊB(A). However, 

the number of bootstrap replications was set to be 2000, as discussed in Sections 1 and 4. 

For Modality 1, the estimated AÛC was 0.882822, the analytical SÊA(A) was 0.032606, and 

the bootstrap SÊB(A) was 0.031943. Thus, the relative error was 2.03%. For Modality 2, 

they were 0.930236, 0.026434, and 0.025059, respectively. Hence, the relative error was 

5.20%. These are small relative errors.
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Figure 1. 
(A): A schematic diagram of two distributions of continuous genuine scores and impostor 

scores, showing three related variables: TAR, FAR, and threshold. (B): A schematic drawing 

of an ROC curve constructed by moving the threshold from the highest score down to the 

lowest one.
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Figure 2. 
A schematic drawing of a trapezoid at a score s formed by four points A, B, C, and D along 

with their coordinates in the far-tar coordinate system.
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Figure 3. 
The distributions of 500 bootstrap estimated SÊB(A) of AUC for high-accuracy Algorithm A 

(L) and low-accuracy Algorithm B (R). The red triangle stands for the analytical result, the 

blue diamonds are the two bounds of the 68.27% CI, and the green circles represent the two 

bounds of the 95% CI.
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Figure 4. 
Distributions of genuine scores (red) and impostor scores (green) for Algorithms A (left) and 

B (right).
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Figure 5. 
The box diagrams of 14 relative errors of the estimated mean, median, 68.27% CÎ, and 95% 

CÎ of the probability distribution of SÊB(A), respectively. There are three outliers in each 

scenario.
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Table 3

The relative errors (%) δmean, δmedian, δ68, and δ95 using the estimated mean, median, 68.27% CÎ, and 95% CÎ 

of the probability distribution of SÊB(A), respectively, for 14 matching algorithms.

Alg.
Relative Errors (%) of SÊB(A)

δmean δmedian δ68 δ95

1 12.83 12.79 14.17 15.60

2 0.05 0.02 1.74 3.55

3 0.02 0.03 1.48 3.06

4 0.14 0.21 1.75 3.00

5 0.03 0.03 1.66 3.37

6 0.34 0.38 1.83 3.99

7 8.80 8.76 10.29 11.51

8 1.91 1.97 3.60 4.74

9 1.93 1.90 3.47 4.91

10 0.53 0.61 2.08 3.88

11 6.71 6.66 8.32 9.65

12 0.05 0.04 1.48 3.16

13 0.04 0.09 1.62 3.30

14 0.04 0.05 1.64 3.14
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Table 4

The estimated mean and median of 14 relative errors (%) in each scenario if three outliers are included.

Include three outlines
Relative Errors (%) of SÊB(A)

δmean δmedian δ68 δ95

Mean 2.39 2.39 3.94 5.49

Median 0.24 0.30 1.79 3.71
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Table 5

The estimated mean and median of 11 relative errors (%) in each scenario if three outliers are excluded.

Exclude three outlines
Relative Errors (%) of SÊB(A)

δmean δmedian δ68 δ95

Mean 0.46 0.48 2.03 3.65

Median 0.05 0.09 1.74 3.37
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