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ABSTRACT

For J ≥ 2 independent groups, the paper deals with testing the global hypothesis that

all J groups have a common population median or identical quantiles, with an emphasis on

the quartiles. Classic rank-based methods are sometimes suggested for comparing medians,

but it is well known that under general conditions they do not adequately address this goal.

Extant methods based on the usual sample median are unsatisfactory when there are tied

values except for the special case J = 2. A variation of the percentile bootstrap used in

conjunction with the Harrell–Davis quantile estimator performs well in simulations. The

method is illustrated with data from the Well Elderly 2 study.

Keywords: Tied values; bootstrap methods; Harrell–Davis estimator; projection dis-

tances; Well Elderly 2 study

1 Introduction

For J independent random variables, let θj be the population median or some other quantile

associated with jth variable (j = 1, . . . , J). The paper considers the problem of testing

H0 : θ1 = · · · = θJ , (1)

particularly when there are tied values. The focus is on comparing the medians as well as

the upper or lower quartiles, but it is evident that the results are relevant when comparing

other quantiles instead.

For the special case J = 2, the Wilcoxon-Mann-Whitney (WMW) test is sometimes

suggested for comparing medians, but it is well known that under general conditions it does

not accomplish this goal (e.g., Hettmansperger, 1984; Fung, 1980). Roughly, the reason is

that for two independent random variables, X and Y , it is not based on an estimate of θ1−θ2,
but rather on an estimate of P (X < Y ). Another concern is that when distributions differ,

under general conditions the WMW test uses the wrong standard error (e.g., Cliff, 1996;

Wilcox, 2012). More generally, the Kruskall–Wallis test, which reduces to the Wilcoxon-

Mann-Whitney test when J = 2, does not test (1).
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Yet another possible approach is to use the usual sample median in conjunction with

a permutation test. However, results in Romano (1990) establish that this approach is

unsatisfactory as well.

For a random sample X1, . . . , Xn, let X(1) ≤ . . . ≤ X(n) denote the observations written

in ascending order and let Mj denote the usual sample median. That is, if the number of

observations, n, is odd,

M = X(m),

where m = (n+ 1)/2 and if n is even,

M =
(X(m) +X(m+1))

2
,

where now m = n/2. A natural way of proceeding is to estimate θj with Mj and use some

test statistic that is based in part on some estimate of the standard error of Mj. When

sampling from a continuous distribution where tied values occur with probability zero, an

effective method was studied by Bonett and Price (2002) that can be used when J = 2

or when J > 2 and the goal is to test some hypothesis based on a linear contrast of the

population medians. Numerous methods for estimating the standard error of Mj have been

derived, but extant results indicate that all of them can perform poorly when tied values

can occur (Wilcox, 2012). Wilcox (2006) found a slight extension of a standard percentile

bootstrap method that performs well when testing (1), there are tied values and J = 2. But

Wilcox (2012) notes that in terms of testing (1) when J > 2, evidently no method has been

found that performs well in simulations when there are tied values.

There is another complication when working with the usual sample median. It is well

known that when sampling from a continuous distribution, under certain regularity condi-

tions, Mj is asymptotically normal. However, when sampling from a discrete distribution

with a finite sample space, Mj does not converge to a normal distribution. More broadly,

when estimating quantiles using a single order statistic, or a weighted average of two or-

der statistics, assuming asymptotic normality is generally unsatisfactory when dealing with

discrete distributions where tied values occur.

As an illustration, consider a beta-binomial distribution having the probability function

P (x) =
B(m− x+ r, x+ s)

(m+ 1)B(m− x+ 1, x+ 1)B(r, s)
, (2)
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where B is the complete beta function, r > 0 and s > 0 are parameters that determine the

shape of the distribution and x = 0, . . . ,m. Consider m = 30. Then the cardinality of the

sample space is 31 and as is evident, if the sample size is n > 31, tied values occur with

probability one. The left panel of Figure 1 shows a plot of 3000 sample medians generated

from a beta-binomial distribution with r = 1 and s = 3 based on a sample size n = 100.

(So the beta-binomial distribution is skewed to the right, P (x) is monotonic decreasing

and x = 6 corresponds to the .52 quantile.) The right panel is the same as the left, only

now n = 500. As is evident, the sampling distribution has not moved closer to a normal

distribution and indeed the cardinality of the sample space has decreased, indicating that

any method for making inferences based on the sample median that assumes asymptotic

normality can perform poorly.

For the special case where the goal is to compare two independent groups, a method for

comparing quantiles that deals effectively with tied values is to use a percentile bootstrap in

conjunction with the quantile estimator derived by Harrell and Davis (1982); see Wilcox et

al. (2013). The Harrell–Davis estimator uses a weighted average of all the order statistics.

The result is a sampling distribution that is typically well approximated by a continuous

distribution. Consider again the right panel of Figure 1 and note that the cardinality of the

sample space is only five. That is, only five values for the sample median were observed

among the 3000 estimates. In contrast, if the Harrell–Davis estimator is used, there are no

tied values among all 3000 estimates. But the method studied by Wilcox et al. is limited

to J = 2; there are no results on how best to proceed when testing (1) and there are J > 2

independent groups.

Here, two methods for testing (1) were considered, both of which were based on the

Harrell–Davis estimator. The first was based on a test statistic mentioned by Schrader and

Hettmansperger (1980), and studied by He, Simpson and Portnoy (1990). The basic strategy

was to use a percentile bootstrap method to estimate the null distribution. But situations

were found where this approach performed very poorly when dealing with tied values, so

further details are omitted. The other method is described in section 2 and simulation

results are reported in section 3. Section 4 illustrates the proposed method using data from

the Well Elderly 2 study. The strategy is not new and has been found to perform reasonably

well when dealing with other robust measures of location (Wilcox, 2012). However, when
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Figure 1: The left panel shows a plot of 3000 sample medians when sampling from a beta-

binomial distribution, n = 100, m = 30, r = 1, s = 3. The right panel is a plot of the 3000

medians when n = 500

5



using the usual sample median for the situation at hand, preliminary simulations found that

it performs poorly in terms of controlling the Type I error probability. Results in Wilcox et

al. (2013) suggest that using instead the Harrell–Davis estimator, reasonably good control

over the Type I error probability might be obtained. So the goal here is to determine the

extent to which this is the case.

Note that in terms of characterizing the typical value of some random variable, the pop-

ulation median is an obvious choice. However, situations are encountered where differences

occur in the tails of a distribution that have substantive interest (e.g. Doksum & Sievers,

1976; Wilcox et al., 2014). This issue can be addressed by comparing quantiles other than

the median, which can help provide a deeper understanding of how distributions differ. This

point is illustrated in section 4.

2 Description of the Proposed Method

To describe the Harrell and Davis (1982) estimate of the qth quantile, let Y be a random

variable having a beta distribution with parameters a = (n + 1)q and b = (n + 1)(1 − q).
That is, the probability density function of Y is

Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1, 0 ≤ y ≤ 1,

where Γ is the gamma function. Let

Wi = P
(
i− 1

n
≤ Y ≤ i

n

)
.

For a random sample X1, . . . , Xn, let X(1) ≤ . . . ≤ X(n) denote the observations written in

ascending order. The Harrell–Davis estimate of θq, the qth quantile, is

θ̂q =
n∑

i=1

WiX(i). (3)

In terms of its standard error, Sfakianakis and Verginis (2006) show that in some situa-

tions the Harrell–Davis estimator competes well with alternative estimators that again use

a weighted average of all the order statistics, but there are exceptions. (Sfakianakis and

Verginis derived alternative estimators that have advantages over the Harrell–Davis in some
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situations. But when sampling from heavy-tailed distributions, the standard errors of their

estimators can be substantially larger than the standard error of θ̂q.) Additional comparisons

of various estimators are reported by Parrish (1990), Sheather and Marron (1990), as well

as Dielman, Lowry and Pfaffenberger (1994). The only certainty is that no single estimator

dominates in terms of efficiency. For example, the Harrell–Davis estimator has a smaller

standard error than the usual sample median when sampling from a normal distribution or

a distribution that has relatively light tails, but for sufficiently heavy-tailed distributions,

the reverse is true (Wilcox, 2012, p. 87).

Let δjk = θj − θk. Roughly, the strategy for testing (1) is to test

H0 : δjk = 0, ∀ j < k, (4)

via a percentile bootstrap method. If the null hypothesis is true, then 0, a vector of zeros

having length (J2−J)/2, should be nested fairly deeply within a cloud of bootstrap estimates

of δjk. Moreover, the depth of 0 can be used to compute a p-value as will be indicated.

A natural way of measuring the depth of 0 within a bootstrap cloud is via Mahalanobis

distance. Note, however, that the δjk parameters are linearly dependent. This indicates that

Mahalanobis distance can fail from a computational point of view because the bootstrap

covariance matrix will be singular. This proved to be the case, so the strategy here is to

measure the depth of 0 using a method that does not require the use of a covariance matrix.

For completeness, note that the issue of a singular covariance matrix could be avoided by

using the first group as a reference group and testing H0: θ1 − θ2 = θ1 − θ3 = · · · = θ1 − θJ .

In terms of a Type I error, this approach is reasonable, but in terms of power, this is not

necessarily the case. The reason is that power can depend on which group is used as the

reference group because the choice of the reference group impacts the magnitude of the

differences between the medians that are compared.

To describe the details of the proposed test of (1) via (4), let Xij be a random sample

from the jth group (i = 1, . . . , nj). Generate a bootstrap sample from the jth group by

resampling with replacement nj observations from group j. Let θ̂∗j be the estimate of the qth

quantile for group j based on this bootstrap sample. Let δ̂∗jk = θ̂∗j − θ̂∗k, j < k. Repeat this

process B times yielding δ̂∗bjk, b = 1, . . . , B. Here, B = 600 is used in order to avoid overly

high execution time and because this choice has been found to provide reasonably good
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control over the Type I error probability when dealing with related bootstrap techniques

(e.g., Wilcox, 2012). However, in terms of power, there might be a practical advantage to

using a larger choice for B (Racine & MacKinnon, 2007).

A portion of the strategy used here is based on measuring the depth of a point in a

multivariate data cloud using a projection-type method, which provides an approximation

of half-space depth (Wilcox, 2012, section 6.2.5). For notational convenience, momentarily

focus on an n × p matrix of data, Y. Let τ̂ be some measure of location based on Y. For

simplicity, the marginal medians (based on the usual sample median) are used. Let

Ui = Yi − τ̂

(i = 1, . . . , n),

Ci = UiU
′
i

and for any j (j = 1, . . . , n), let

Wij =
J∑

k=1

UikUjk,

Tij =
Wij

Ci

(Ui1, . . . , Uip) (5)

and

Dij = ‖Tij‖,

where ‖Tij‖ is the Euclidean norm associated with the vector Tij (i = 1, . . . n; j = 1, . . . , n).

Let

dij =
Dij

qi2 − qi1
,

where qi2 and qi1 are estimates of the upper and lower quartiles, respectively, based on

Di1, . . . , Din. Here, qi2 and qi1 are estimated with the so-called ideal fourths (e.g., Friqqe et

al., 1989.), which are computed as follows. Let j be the integer portion of (n/4) + (5/12)

and let

h =
n

4
+

5

12
− j.

The lower quartile is estimated with s

qi1 = (1− h)Di(j) + hDi(j+1), (6)
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where Di(1) ≤ · · · ≤ Di(n). Letting k = n− j + 1, the upper quartile is

qi2 = (1− h)Di(k) + hDi(k−1). (7)

The projection distance of Yj, relative to the cloud of points represented by Y, is the

maximum value of dij, the maximum being taken over i = 1, . . . , n. This measure of depth

is nearly the same as the measure derived by Donoho and Gasko (1992). the only difference

is that they used the median absolute difference (mad) as a measure of scale rather than the

interquartiles range. MAD has a higher breakdown point but using the interquartile range

has been found to perform better in various situations (Wilcox, 2012). This might be due

to the poor efficiency of mad, but the extent this is the case is unclear. Perhaps using mad

would perform well in the simulations reported here, but this is left to future investigations.

Now create a (B + 1) × L matrix G where the first B rows are based on the δ̂∗bjk,

b = 1, . . . , B, L = (J2 − J)/2. That is, row b consists of the L values associated with δ̂∗bjk

for all j < k. Row B + 1 of G is a vector 0 having length L. Then from general theoretical

results in Liu and Singh (1997), a (generalized) p-value can be computed based on the relative

distance of 0. Compute the projection distance for each row of G. The distance associated

with the bth row is denoted by Kb and the distance for the null vector (row B+1) is denoted

by K0. Then a generalized p-value is

1− 1

B

B∑
b=1

I(K0 ≥ Kb),

where the indicator function I(K0 ≥ Kb) = 1 if K0 ≥ Kb, otherwise I(K0 ≥ Kb) = 0. This

will be called method Q.

3 Simulation Results

Simulations were used to study the small-sample properties of method Q when there are

J = 4 groups. Results are reported when comparing medians as well as the lower and

upper quartiles. Estimated Type I error probabilities, α̂, were based on 4000 replications.

Both continuous and discrete distributions were used. The four continuous distributions

were normal, symmetric and heavy-tailed, asymmetric and light-tailed, and asymmetric and
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Table 1: Some properties of the g-and-h distribution.

g h κ1 κ2

0.0 0.0 0.00 3.0

0.0 0.2 0.00 21.46

0.2 0.0 0.61 3.68

0.2 0.2 2.81 155.98

heavy-tailed. More precisely, four g-and-h distributions were used (Hoaglin, 1985) that

contain the standard normal distribution as a special case. If Z has a standard normal

distribution, then

W =


exp(gZ)−1

g
exp(hZ2/2), if g > 0

Zexp(hZ2/2), if g = 0

has a g-and-h distribution where g and h are parameters that determine the first four mo-

ments. The four distributions used here were the standard normal (g = h = 0.0), a symmetric

heavy-tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution with relatively light

tails (h = 0.0, g = 0.2), and an asymmetric distribution with heavy tails (g = h = 0.2). Ta-

ble 1 shows the skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties

of the g-and-h distribution are summarized by Hoaglin (1985).

As for situations where tied values can occur, consider a discrete distribution with a

sample space having cardinality N . A goal in the simulations was to get some sense about

how well method Q controls the Type I error probability when N is small. Roughly, as

the likelihood of tied values increases, at what point does method Q break down? Here,

results are reported when data are generated from a beta-binomial distribution for which

the cardinality of the sample space is N = m + 1 = 11 and N = m + 1 = 21. The choices

for (r, s) were (3, 3), which has a symmetric distribution, as well as (1, 3) and (1,9), which

are skewed distributions.

First consider the four g-and-h distributions when testing at the .05 level and the groups

have a common sample size n = 20. As indicated in Table 2, the estimated Type I error

probability ranges between .025 and .062. Although the importance of a Type I error depends

on the situation, Bradley (1978) suggests that as a general guide, when testing at the .05

level, the actual level should not drop below .025 or exceed .075. In Table 2, the estimates
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Table 2: Estimated Type I Error Probability using method Q, continuous distributions,

α = .05
q g h n = 20 n = 50

0.25 0.0 0.0 0.058 0.059

0.25 0.0 0.2 0.031 0.046

0.25 0.2 0.0 0.061 0.058

0.25 0.2 0.2 0.038 0.055

0.50 0.0 0.0 0.059 0.061

0.50 0.0 0.2 0.046 0.057

0.50 0.2 0.0 0.062 0.062

0.50 0.2 0.2 0.054 0.056

0.75 0.2 0.0 0.049 0.054

0.75 0.2 0.2 0.025 0.038

were in this range.

A possible criticism of the results in Table 2 is that they are based on only 4000 repli-

cations. Consequently, some comments about the precision of the estimates in Table 2 are

provided. Assuming Bradley’s criterion is reasonable, consider the issue of whether the ac-

tual level is less than or equal .075. Using the method in Pratt (1968), it can be seen that

based on a two-sided .95 confidence interval for the actual level, the confidence interval will

not contain .075 if α̂ ≤ .06675. All of the results in Table 2 suggest that the actual level

does not exceed .075. Using instead a .99 confidence interval for the actual level, α̂ ≤ .06425

indicates that the actual level does not exceed .075. In a similar manner, based on a two-

sided .95 confidence interval, the confidence interval for the actual level does not contain

.025 if α̂ ≥ .03025. For a .99 confidence interval, α̂ ≥ .032 is required and there are only two

situations where the estimate is less than .032 which occurred for n = 20 when comparing

the quartiles.

For normal distributions, a simulation was run with n = 100 as an additional check on

how the method performs as n gets large. The estimated Type I error probability was .058.

For the beta-binomial distributions, estimated Type I error probabilities are shown in

Table 3. For m = 20, control over the Type I error probability is reasonably good when
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Table 3: Estimated probability of a Type I error using method Q when sampling from a beta-

binomial distribution for a sample sizes n = 20 and 50, α = .05, and where the cardinality

of the sample space is N = m+ 1.

q r s (n,m) = (20, 10) (n,m) = (20, 20) (n,m) = (50, 10) (n,m) = (50, 20)

0.25 3 3 0.074 0.071 0.068 0.063

0.50 3 3 0.066 0.070 0.061 0.058

0.25 1 3 0.056 0.052 0.094 0.048

0.50 1 3 0.059 0.062 0.060 0.060

0.75 1 3 0.078 0.085 0.065 0.067

0.25 1 9 0.008 0.058 0.000 0.067

0.50 1 9 0.088 0.052 0.154 0.050

0.75 1 9 0.061 0.064 0.069 0.054

comparing medians. But for m = 10, it is evident that control over the probability of a Type

can be unsatisfactory, particularly when (r, s) = (1, 9). The fact that method Q does not

perform well for this particular distribution is not surprising because the .47 quantile is zero.

When comparing the quartiles with m = 20, method Q can be unsatisfactory with n = 20,

the highest estimate of actual level being .085. For this particular situation, increasing the

sample size of two of the groups to 40, the estimate is .064. With all sample sizes equal to

30 and m = 10, the estimate is .065.

Precise details regarding the rate of convergence to the nominal level is impossible with

only 4000 replications, but it is evident that the rate of convergence can depend on the

nature of the distribution. Among the discrete distributions considered here for which the

cardinality of the sample space is 21, n ≥ 20 suffices in terms of achieving an estimated Type

I error probability reasonably close to a nominal .05 level when comparing the medians. But

for m = 10 (the cardinality of the sample space is 11) and (r, s) = (1, 9), n ≥ 180 is required

when comparing medians. With n = 100, for example, the estimate of the actual level

exceeds .09, in which case the .95 confidence interval for the actual level does not contain

.075.

A few simulations were performed using a discrete distribution where the null hypothesis

is true but not all of the distributions are identical. All indications are that when comparing
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medians, again the Type I error probability is controlled reasonably well when n = m = 20.

Consider, for example, a beta-binomial distribution where r = s = 3. Then 11 is the

.54 quantile. Now, suppose that for all four groups data are generated from a discrete

distribution such that P (X ≤ x) corresponds to a beta-binomial distribution where r = s = 3

provided that x ≤ 11, but that otherwise some of the cumulative distributions differ. So the

distributions are not all identical in the right tail, but the hypothesis of equal population

medians is true. Consider in particular the situation where for three of the groups the

probability function, say f(x), corresponds to a beta-binomial probability function when

x < 15. Otherwise

f(x) =
21∑

x=15

P (x)/7

when x ≥ 15, where again P (x) indicates a a beta-binomial distribution given by (2). Now

the estimated Type I error probability when comparing the population medians is .057. If

instead for x = 15, 16, . . . , 21 f(x) is taken to be P (21), P (20), . . . , P (15), respectively, the

estimated Type I error probability is .048. However, when comparing the lower quartiles,

now control over the Type I error probability exceeds .09. Increasing the sample sizes to

40, this problem persisted. With all sample sizes equal to 50, control over the Type I error

probability is reasonably good, the estimate being .064.

4 An Illustration

Method Q is illustrated using data from the Well Elderly 2 study (Jackson, et al., 2009;

Clark et al. 1997). Generally, the study dealt with the efficacy of a particular intervention

strategy aimed at improving the physical and emotional health of older adults. One partic-

ular issue was whether four educational groups differed in terms of a measure of meaningful

activity prior to intervention. The four groups were high school graduate, some college or

technical school, 4 years of college and post-graduate school. For convenience, these groups

are designated G1, G2, G3 and G4 henceforth. Meaningful activity was measured with the

sum of 29 Likert items, where the possible responses for each item were 0, 1, 2, 3 and 4.

Higher scores reflect higher levels of meaningful activities. The sample sizes were 62, 81, 110

and 125, respectively.

13
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Figure 2: Boxplots for the four groups compared in the Well Elderly 2 study. G1=high school

graduate, G2=some college or technical school, G3=4 years of college and G4=post-graduate

school.

Figure 2 shows boxplots for each of the four groups, which suggests that more pronounced

differences occur based on the lower quartile compared to upper quartile. Applying method

Q, the p-values corresponding to the .25, .5 and .75 quantiles were 0, .074 and .294, respec-

tively. So in terms of participants who score relatively high on meaningful activities, no

significant difference is found, but a significant result is found for low levels of meaningful

activity as reflected by the .25 quantiles.
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5 Concluding Remarks

All indications are that if the cardinality of the sample space is N > 20 and the sample

size is n ≥ 30, reasonably good control over the Type I error probability will be achieved

using method Q when the goal is to compare the population medians. When comparing the

quartiles, now n ≥ 50 might be required. Of course, simulations do not guarantee that this

will be the case for all practical situations that might be encountered. But the main point is

that no other method has been found that performs even tolerably well in simulations when

tied values are likely to occur, except for the special case of J = 2 groups.

There are many variations of the method used here. For example, in various situations,

weighted bootstrap methods have been suggested when dealing with robust estimators; see

for example Salibian-Barrera and Zamar (2002) and the papers they cite. There are several

alternatives to the Harrell–Davis estimator that use a weighted sum of all the order statistics,

and there are variations of the projection distance that was used. perhaps there are situations

where some combination of these methods provide a practical advantage over the method

used here, but this remains to be determined. The main point is that the method in the

paper is the only known method that continues to perform reasonably well when there are

tied values.

Finally, method Q can be applied with the R function Qanova, which has been added to

the Forge R package WRS. This function is also stored in the file Rallfun-v28, which can be

downloaded from http://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-display.cfm.
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