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Abstract

A density estimation method in a Bayesian nonparametric framework is presented

when recorded data are not coming directly from the distribution of interest, but from a

length biased version. From a Bayesian perspective, efforts to computationally evaluate

posterior quantities conditionally on length biased data were hindered by the inability

to circumvent the problem of a normalizing constant. In this paper we present a novel

Bayesian nonparametric approach to the length bias sampling problem which circumvents

the issue of the normalizing constant. Numerical illustrations as well as a real data

example are presented and the estimator is compared against its frequentist counterpart,

the kernel density estimator for indirect data of Jones (1991).

Keywords: Bayesian nonparametric inference; Length biased sampling; Metropolis algo-

rithm.

1 Introduction

Let f(x; θ), with θ ∈ Θ being an unknown parameter, be a family of density functions. Sampling

under selection bias involves observations being drawn not from f(x; θ) directly, but rather from

a distribution which is a biased version of f(x; θ), given by the density function

g(y; θ) =
w(y) f(y; θ)∫∞

0
w(x) f(x; θ) dx

.

where the w(x) > 0 is the weight function. We observe a sample (Y1, . . . , Yn), independently

taken from g(·). In particular, when the weight function is linear; i.e. w(y) = y, the samples

are known as length biased.

There are many situations where weighted data arise; for example, in survival analysis

(Asgharian et al., 2002); quality control problems for estimating fiber length distributions (Cox,

1969); models with clustered or over–dispersed data (Efron, 1986); visibility bias in aerial data;
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sampling from queues or telephone networks. For further examples of length biased sampling

see, for example, Patil and Rao (1978) and Patil (2002).

In the nonparametric setting f(x; θ) is replaced by the more general f(x), so the likelihood

function for n data points becomes,

l(f) =

n∏

i=1

yi f(yi)∫∞

0
x f(x) dx

.

A classical nonparametric maximum likelihood estimator (NPMLE) for F (the disribution

function corresponding to f) exists for this problem and is discrete, with atoms located at the

observed data points. In particular, Vardi (1982) finds an explicit form for the estimator in the

presence of two independent samples, one from f and the other from the length biased density

g.

Our work focuses on length biased sampling and from the Bayesian nonparametric setting

we work in, the aim is to obtain a density estimator for f . There has been no work done on this

problem in the Bayesian nonparametric framework due to the issue of the intractable likelihood

function, particularly when f is modeled nonparametrically using, for example, the mixture of

Dirichlet process (MDP) model; see Lo (1984) and Escobar and West (1995). While some

ideas do exist on how to deal with intractable normalizing constants; see Murray et al. (2006);

Tokdar, (2007); Adams et al. (2009); and Walker, (2011), these ideas fail here for two reasons:

the infinite dimensional model and the unbounded w(y) = y when the space of observations is

the positive reals.

We by-pass the intractable normalizing constant by modeling g nonparametrically. We argue

that modeling f or g nonparametrically is providing the same flexibility to either; i.e. modeling

f(y) nonparametrically and defining g(y) ∝ y f(y) is essentially equivalent to modeling g(y)

nonparametrically and defining f(y) ∝ y−1g(y). We adopt the latter style, obtain samples from

the predictive density of g and then “convert” these samples from g into samples from f , which

forms the basis of the density estimator of f .

The layout of the paper is as follows: In Section 2 we provide supporting theory for the

model idea which avoids the need to deal with the intractable likelihood function. Section 3

describes the model and the MCMC algorithm for estimating it and Section 4 describes some

numerical illustrations. In Section 5 are the concluding remarks and in Section 6 asymptotic

results are provided.

2 Supporting theory and methodology

Our aim is to avoid computing the intractable normalizing constant. The strategy for that

would be to model the density g(y) directly and then make inference about f(x) by exploiting

the fact that

g(y) ∝ y f(y).
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In the parametric case if a family f(x; θ) is known then so is g(y; θ), except its normalizing

constant may not be tractable. There is a reluctance to avoid the problem of the normalizing

constant in the parametric case by modeling the data directly with a tractable g(y; θ) since the

incorrect model would be employed. However, in the nonparametric setting it is not regarded

as relevant whether one models f(·) or g(·) directly. A clear motivation to model g(·) directly

is that this is where the data are coming from.

For a general weight function w, an essential condition to model F through G (F and G

denote the corresponding distribution functions of f and g, respectively) is the finiteness of∫∞

0
w(x)−1 g(x) dx. This, through invertibility, enables us to reconstruct F from G and occurs

when F is absolutely continuous with respect to G, with the Radon-Nikodym derivative being

proportional to w(x)−1.

For absolute continuity to hold we need that w(x) > 0 in the support of F ie F (x : w(x) =

0) = 0. In the length biased case examined here w(x) = x and the densities have support on

the positive real line, so this condition is automatically satisfied. A case, for instance, when

this does not hold and invertibility fails is in a truncated model where w(x) = 1(x ∈ B), B is

a Borel set and F is a distribution which could be positive outside of B.

A Bayesian model is thus constructed by assigning an appropriate nonparametric prior

distribution to g, provided that ∫ ∞

0

y−1 g(y) dy < ∞.

This in turn specifies a prior for f .

The question that now arises is how the posterior structures obtained after modelling g

directly can be converted to posterior structures from f . The first step in this process would

be to devise a method to convert a biased sample from a density g to one from its debiased

version f . This algorithm is then incorporated to our model building process so that posterior

inference becomes possible.

Specifically, assume that a sample y1, . . . , yN , comes from a biased density g. This can be

converted into a sample from f(x) ∝ x−1g(x) using a Metropolis–Hastings algorithm. If we

denote the current sample from f(x) as xj , then

xj+1 = yj+1 with probability min

{
1,

xj

yj+1

}
,

otherwise xj+1 = xj . Here, we have the transition density for this process as

p(xj+1|xj) = min

{
1,

xj

xj+1

}
g(xj+1) + {1− r(xj)}1(xj+1 = xj),

where

r(x) =

∫
min

{
1,

x

x∗

}
g(x∗) dx∗.

This transition density satisfies detailed balance with respect to f(x) since

p(xj+1|xj) x
−1
j g(xj) = p(xj |xj+1) x

−1
j+1g(xj+1)
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and thus the transition density has stationary density given by f(x).

This algorithm was first tested on a toy example, i.e. g(y) is Ga(y|2, 1) so that f(x) is

Ga(x|1, 1). A sample of N = 10, 000 of the (yj) was taken independently from the g(·) and

the Metropolis algorithm run to generate the (xj), starting with x0 = 1. Sample values for the

sequence of (xj) yield

N−1

N∑

j=1

xj = 0.981 and N−1

N∑

j=1

x2
j = 1.994,

which are compatible outcomes with the (xj) sample coming from f(x). A similar example will

be elaborated on in the numerical illustration section.

Applying this idea to our model would amount to turning a sample from the biased pos-

terior predictive density to an unbiased one using a MH step. An outline of the inferential

methodology is now described.

1. Once data (y1, . . . , yn) from a biased distribution g become avalaible a model for g is

assumed and a nonparametric prior is assigned.

2. Using MCMC methods, after a sensible burn-in period, at each iteration, posterior values

of the random measure Π(dg|y1, . . . , yn) and the relevant parameters are obtained. Subse-

quently, conditionally on those values, a sequence {y
(l)
n+1}, l = 1, 2, . . ., from the posterior

predictive density g(y|y1, . . . , yn) is generated.

3. The {y
(l)
n+1} will then form a sequence of proposal values of a Metropolis-Hastings chain

with stationary density the debiased version of the posterior predictive, i.e. ∝ y−1g(y|y1, . . . , yn).

Specifically, at the l-th iteration of the algorithm applying a rejection criterion a value

x
(l)
n+1 is generated such that x

(l)
n+1 = y

(l)
n+1 with probability min

{
1, x

(l−1)
n+1 /y

(l)
n+1

}
, otherwise

x
(l)
n+1 = x

(l−1)
n+1 .

4. These {x
(l)
n+1} values form a sample from the posterior predictive of f .

3 The model and inference

We want the model for g(y) to have large support and the standard Bayesian nonparametric

idea for achieving this is based on infinite mixture models (Lo, 1984) of the type

gP(y) =

∫
k(y; θ)P(dθ)

where P is a discrete probability measure and k(y; θ) is a density on (0,∞) for all θ. Since we

require g(y) to be such that ∫ ∞

0

y−1 gP(y) dy < ∞
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or, equivalently, for a kernel k(y; θ)
∫ ∞

0

y−1k(y; θ)dy < ∞

we find it most appropriate to take the kernel to be a log–normal distribution. So, assuming a

constant precision parameter λ for each component, we have

gλ,P (y) =

∫

R

LN(y|µ, λ−1)P(dµ) (1)

where P is a discrete random probability measure defined in R and P ∼ DP(c, P0), where

DP(c, P0) denotes the Dirichlet process (Ferguson, 1973) with precision parameter c > 0 and

base measure P0. Interpreting the parameters, we have that E(P(A)) = P0(A), and

Var(P(A)) =
P0(A)(1− P0(A))

c + 1

for appropriate sets A.

This Dirichlet process mixture model implies the hierarchical model for y = (y1, . . . , yn):

For 1 ≤ i ≤ n

yi|µi, λ
ind
∼ LN(µi, λ

−1)

µi|P
i.i.d.
∼ P

P| c, P0 ∼ DP(c, P0)

To complete the model we choose λ ∼ Ga(a, b) and for the base measure, P0 is N(0, s−1).

A useful representation of the Dirichlet process, introduced by Sethuraman and Tiwari

(1982) and Sethuraman (1994), is the stick–breaking constructive representation given by

P =
∞∑

j=1

wj δµj

where the (µj) are i.i.d. from P0, i.e. N(0, s
−1). The (wj) are constructed via a stick–breaking

process; so that w1 = v1 and, for j > 1,

wj = vj
∏

l<j

(1− vl) (2)

where the (vj) are i.i.d. from the beta(1, c) distribution, for some c > 0, and
∑∞

j=1wj = 1

almost surely. Let w = (wj)
∞
j=1 and µ = (µj)

∞
j=1; then we can then write

g(yi|µ, w, λ) =
∞∑

j=1

wj LN
(
yi|µj, λ

−1
)

(3)

This is a standard Bayesian nonparametric model. The MCMC algorithm is implemented using

latent variable techniques, despite the infinite dimensional model. The basis of this sampler is

in Walker (2007) and Kalli et al. (2011).
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For 1 ≤ i ≤ n we introduce latent variables ui which make the sum finite. The ui augmented

density then becomes,

g(yi, ui|w, µ, λ) =

∞∑

j=1

1(ui < wj)LN
(
yi|µj, λ

−1
)
=

=
∑

j∈Aw(ui)

LN
(
yi|µj, λ

−1
) (4)

This has a finite representation and Aw(ui) denotes the almost surely finite ui slice set {j : ui <

wj}.

Now we introduce latent variables {d1, . . . , dn} which allocate the component that {y1, . . . , yn}

are sampled from. Conditionally on the weights w these are sampled independently with

P (di = j|w) = wj . Hence, we consider the (ui, di) augmented random density

g(yi, ui, di|w, µ, λ) = 1(ui < wdi)LN
(
yi|µdi , λ

−1
)

Therefore, the complete data likelihood based on a sample of size n is seen to be

l(y, u, d|w, µ, λ) =

n∏

i=1

1(ui < wdi)LN
(
yi|µdi , λ

−1
)

This will form the basis of our Gibbs sampler. At each iteration we sample from the associated

full conditional densities of the following variables:

(vj , µj), j = 1, . . . , N ; λ; (di, ui), i = 1 . . . n

where N is a random variable, such that ∪n
i=1Aw(ui) ⊆ {1, . . . , N}, and N < ∞ almost surely.

These distributions are, by now, quite standard so we proceed directly to the last two steps

of the algorithm.

The upshot is that after a sensible burn–in time period given the current selection of pa-

rameters, at each iteration, we can sample values yn+1 from the posterior predictive density

g(y|y1, . . . , yn) and subsequently, using a Metropolis step, draw a z value from its debiased

version f(·|y1, . . . , yn).

1. Once stationarity is reached then at each iteration we have points generated by the

posterior measure of the variables. These points are represented by

{(v∗j , µ
∗
j), j = 1, 2 . . . ;λ∗; (d∗i , u

∗
i ), i = 1 . . . n; }

Given {w∗
j , µ

∗
j , λ

∗} a value yn+1 ∼ g(y|y1, . . . , yn) is generated. This is done by sampling

a r uniformly in the unit interval and then take k = 1 if 0 < r ≤ w∗
1 or k ≥ 2 if

k−1∑

i=1

w∗
j < r ≤

k∑

j=1

w∗
j

6



The appropriate µ∗
n+1 = µ∗

k is then assigned, with probability w∗
k. Even though we have

not sampled all the weights, if we “run out” of weights, in essence the indices {1,. . . ,N},

we merely draw a µ∗
n+1 from N(0, s−1). Finally, the predictive value yn+1 comes from

LN(y|µ∗
n+1, λ

∗).

2. The Metropolis step for the posterior predictive of f : Let x̃ be the state of the chain from

the previous Gibbs iteration. Accept the sample yn+1, from the g-predictive, as coming

from the f -predictive, that is z = yn+1, with probability min{1, x̃/yn+1}; otherwise the

chain remains in its current state i.e. z = x̃.

4 Numerical illustrations

We illustrate the model with two simulated data sets and a real data example. In each of the

assumed models, for a given realisation (y1, . . . , yn), we report on the results and compare them

with the following density estimators:

(i) The classical kernel density estimate given by

g̃h (y; (y1, . . . , yn)) ∝ n−1

n∑

j=1

N
(
y| yj, h

2
)
1(y > 0). (5)

(ii) The kernel density estimate for indirect data, see Jones (1991), is given by

f̂J,h (y; (y1, . . . , yn)) ∝ n−1µ̂

n∑

j=1

y−1
j N

(
y| yj, h

2
)
1(y > 0), (6)

where µ̂ is the harmonic mean of (y1, . . . , yn).

Here h is the bandwidth and in all cases an estimate of it has been calculated as the average

of the plug–in and solve–the–equation versions of it, (Sheather and Jones 1991). The Gibbs

sampler iterates 60, 000 times with a burn–in period of 10, 000.

4.1 Simulated Data Examples

Here we use non informative prior specifications:

π(λ) ∝ 1/λ, and µj ∼ N(0, 0.5−1). (7)

The value of the concentration parameter has been set to c = 1.

Example 1. The length biased distribution is g(y) = Ga(y| 2, 0.5) and we simulate yg =

(y1, . . . , yn) of size n = 50. The following results are presented Figure 1:

• 1(a): (i) a histogram of the simulated length biased data set yg, ii) the true biased density

Ga(2, 0.5) (the solid line) and iii) the kernel density estimate g̃h(y; yg) (the dashed line).
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(a) Simulated data set yg              
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(b) Predictive based on data set yg
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(c) Metropolis based on data set yg

 

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

True density

Kde: f̂J,h(y; yg)

Figure 1: Data set from Ga(2, 0.5) of size n = 50. In all subfigures the true densities are

depicted with a solid line and the kernel density estimates g̃h and f̂J,h with a dashed line.

• 1(b): (i) a histogram of a sample from the posterior predictive density g(yn+1|yg), (ii) the

true biased density Ga(2, 0.5) (the solid line) and iii) the kernel density estimate g̃h(y; yg)

(the dashed line).

• 1(c): (i) a histogram of the debiased data associated with the application of the Metropolis

step, ii) the true debiased density exp(0.5) (the solid line) and iii) Jones’ kernel density

estimate f̂J,h(y; yg) (the dashed line).

For both estimators g̃h(y; yg) and f̂J,h(y; yg) the bandwidth parameter is set at h = 1.06. The

average number of clusters Cg is 4.27. As it can be seen from the graphs we are hitting the

right distributions with the Metropolis step.

Example 2. Here the length biased distribution is the mixture

g(x) = 0.25Ga(x| 2, 1) + 0.75Ga(x| 10, 1)

We simulate a sample ymg = (y1, . . . , yn) of size n = 70. Similar results, as in the first example,

are shown in Figure 2, (a)–(c). For both estimators g̃h(y; ymg) and f̂J,h(y; ymg) the bandwidth

parameter has been calculated to h = 1.48. For the average number of clusters, we estimate

Cmg = 5.55. It is noted that the Metropolis sampler produces samples that are very close to the

debiased mixture f(x) = 0.75Ga(x| 1, 1) + 0.25Ga(x| 9, 1) depicted with a solid line in 2(c).

4.2 Real Data Example

The data can be found in Muttlak and McDonald (1990) and consist of ymm = (y1, . . . , yn),

n = 46, measurements representing the widths of shrubs obtained by line–transect sampling.
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(a) Simulated data set ymg            

 

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

True density
Kde: g~h(y; ymg)

(b) Predictive based on data set ymg
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(c) Metropolis based on data set ymg
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Figure 2: Data set from the mixture 0.25Ga(2, 1) + 0.75Ga(10, 1), n = 70 . In all subfigures

the true densities are depicted with a solid line and the kernel density estimates g̃h and f̂J with

a dashed line.

In this sampling method the probability of inclusion in the sample is proportional to the width

of the shrub making it a case of length biased sampling. A noninformative estimation is shown

in Figure 3 (a)-(c) with the same specifications as in (7) while in 3(d), 3(e) we perform a highly

informative estimation with π(λ) = Ga(λ| 3, 0.01).

The following results are presented in Figures 3 and 4:

• 3(a), 3(b): histograms of the length biased data set ymm and of a sample from the posterior

predictive g(yn+1| ymm), respectively . In both subfigures the associated classical estimator

g̃h(y; ymm) is depicted with a dashed line, for h = 0.23.

• 3(c): a histogram of the debiased data associated with the Metropolis chain estimator.

Jones’ estimator f̂J,h(y; ymm) is shown in dashed line, for the same bandwidth value.

• 3(d), 3(e): histograms of the posterior predictive and the Metropolis sample, respectively,

under the highly informative prior π(λ) = Ga(λ| 3, 0.01), with superimposed classical

density estimators.

• 4(a): the running acceptance rate of the Metropolis with jump distribution the posterior

predictive values from g(yn+1| ymm) with an estimated value of about 0.62.

• 4(b), 4(c): running averages of the predictive and Metropolis samples respectively.

Finally, in Figure 5 we provide the autocorrelation function as a function of lag, among the

values of the posterior predictive sample for the synthetic and real data sets, after a reasonable

burn-in period.
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(a) Real data set ymm              
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(b) Predictive based on data set ymm
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(c) Metropolis based on data set ymm
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(d) Predictive based on data set ymm
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(e) Metropolis based on data set ymm
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Figure 3: Data set of size n = 46 measuring the widths of shrubs. Kernel density estimates g̃h

(classical) and f̂J,h (indirect data) are depicted with dashed lines. Top figures indicate a non-

informative prior specificaion while bottom figures an informative one. Such choice reproduces

classical estimation results.
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Figure 4: (a) the Metropolis acceptance rate running average(MAR–RAV),(b) the predictive

running average (P–RAV) and (c) the Metropolis sample running average (M–RAV).
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Figure 5: The autocorrelation functions based on the posterior predictive observations. In

(a),(b) the gamma and mixture of gammas synthetic data. In c) the width of shrubs real data.
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4.3 Remarks

• Estimation for the simulated data is nearly perfect and we get the best results for π(λ) ∝

1/λ. As it is evident from subfigure 1(c), for the exp(0.5), the estimator f̂J,h does not

properly capture the distributional features near the origin. The same holds true for the

’debiased’ mixture density 0.75Ga(x| 1, 1) + 0.25Ga(x| 9, 1), subfigure 2(c).

• For the real data set the 1/λ prior gives again the best results. Such a prior gives

the largest average number of clusters among all noninformative specifications that were

examined. The debiased f density is close to f̂J,h though not exactly the same. The

difference comes from a small area where the biased data have the group of observations

(1.85, 1.85, 1.86) that causes f̂J,h to produce an intense second mode. Excluding these 3

data points Jones’ estimator f̂J,h becomes identical with ours.

• The highly informative specification λ ∼ Ga(3, 0.01) increases the average number of

clusters from 4.03 (noninformative estimation) to about 5.63, thus the appearance of a

second mode between 1.2 and 2.0, in 3(d). From our numerical experiments it seems that

f̂J,h is ”data hunting” in the sense that it overestimates data sets and produces spurious

modes. Our method performs better as it does not tend to overestimate, and at the same

time has better properties near the origin.

• When informative prior specifications are used they increase the average number of real-

ized clusters and the nonparametric estimates tend to look more like Jones’ type estimates.

For example choices of λ priors like Ga(α, 0.01) with α ≥ 2.5 increase considerably the

average number of clusters and our real data estimates in subfigures 3(d) and 3(e) become

nearly identical to f̂J,h .

5 Discussion

In this paper we have described a novel approach to the Bayesian nonparametric modeling of

a length bias sampling model. We directly tackle the length bias sampling distribution, from

where the data arise, and this technique avoids the impossible situation of the normalizing

constant if one decides to model the density of interest directly. This is legitimate modeling

since only mild assumptions are made on both densities, so we are free to model g directly and

choose an appropriate kernel with the only condition that
∫∞

0
x−1k(x, θ)dx < ∞.

In a parametric set-up since f is known up to a parameter θ modeling g directly is not

recommended, since to avoid a normalizing constant problem a model for g would not result

from the correct family for f .

We have also as part of the solution presented a Metropolis step to “turn” the samples from

g(·) into samples from f(·). A rejection sampler here would not work as the 1/y is unbounded.
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The method we have proposed here should also be applicable to an arbitrary weight function

w(y), whereby samples are obtained from g(y) and yet interest focuses on the density function

f(y), where the connection is provided by

g(y) =
w(y) f(y)∫∞

0
w(y) f(y) dy

.

Our estimator, besides being the first Bayesian kernel density estimator for length biased

data, it was demonstrated that it performs at least as well and in some cases even better than

its frequentist counterpart.

Appendix: Asymptotics

In this section we assume that the posterior predictive sequence (gn)n≥1 is consistent in the sense

that d1(gn, g0) → 0 a.s. as n → ∞, where g0 is the true density function generating the data

and d1 denotes the L1 distance. This would be a standard result in Bayesian nonparametric

consistency involving mixture of Dirichlet process models: see, for example, Lijoi et al. (2005),

where sufficient conditions for the L1 consistency are given.

The following theorem establishes a similar consistency result for the debiased density.

Theorem. Let fn(y) ∝ y−1gn(y) and f0(y) ∝ y−1g0(y) denote the sequence of posterior

predictive estimates for the debiased density and the true debiased density, respectively. Then,

d1(fn, f0) → 0 a.s.

Proof. Let

gn(y) =

∫
LN(y|µ, σ2) dPn(µ, σ

2)

where Pn is the posterior expectation of P , and for some P0 it is that

g0(y) =

∫
LN(y|µ, σ2) dP0(µ, σ

2).

The assumption of consistency also implies that Pn converges weakly to P0 with probability

one. This means for any continuous and bounded function h(µ, σ2) of (µ, σ2) we have the a.s.

weak consistency of Pn implies

∫
h(µ, σ2) dPn(µ, σ

2) →

∫
h(µ, σ2) dP0(µ, σ

2) a.s.

and note that ∫ ∞

0

y−1 LN(y|µ, σ2) dy = exp{−µ+ σ2/2}.

We now aim to show that these results imply the a.s. L1 convergence of fn(y) to f0(y). To

this end, if we construct the prior so that for some constants M and σ∗ it is that σ < σ < σ
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and |µ| < M , assuming P0 puts all the mass on [−M,+M ]× (σ2, σ2), then from the definition

of weak convergence we have that, with probability one,

cn =

∫
y−1gn(y) dy =

∫
exp{−µ + σ2/2} dPn(µ, σ

2)

→ c0 =

∫
exp{−µ+ σ2/2} dP0(µ, σ

2).

Also, with the conditions on (µ, σ2), we have

hy(µ, σ
2) = y−1LN(y|µ, σ2)

is a bounded and continuous function of (µ, σ2) for all y > 0. Hence
∫

y−1LN(y|µ, σ2) dPn(µ, σ
2) →

→

∫
y−1LN(y|µ, σ2) dP0(µ, σ

2) a.s.

pointwise for all y > 0. Consequently, by Scheffé’s theorem, we have
∫

y−1|gn(y)− g0(y)| dy → 0 a.s. .

Now ∫
|fn(y)− f0(y)| dy ≤

∫
y−1gn(y) dy|c

−1
n − c−1

0 |+

+c−1
0

∫
|y−1gn(y)− y−1g0(y)| dy ≤

≤ |1− cn/c0|+ c−1
0

∫
y−1|gn(y)− g0(y)| dy

and so ∫
|fn(y)− f0(y)| dy → 0 a.s. ,

as required.
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