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Abstract

We consider the problem related to clustering of gamma-ray bursts
(from “BATSE” catalogue) through kernel principal component anal-
ysis in which our proposed kernel outperforms results of other com-
petent kernels in terms of clustering accuracy and we obtain three
physically interpretable groups of gamma-ray bursts. The effectivity
of the suggested kernel in combination with kernel principal compo-
nent analysis in revealing natural clusters in noisy and nonlinear data
while reducing the dimension of the data is also explored in two sim-
ulated data sets.

keywords: clustering; gamma ray bursts; kernel principal component analy-
sis; positive definite kernel.

1 Introduction

Gamma-ray bursts (GRBs), the brightest explosion in the universe since the
Big Bang, show huge variation in their duration which can vary from ten
milliseconds to several hours, indicating the variation in their formation. To
explore the possible sources, clustering of GRBs is performed in different
ways (Chattopadhyay et al., 2007 and references therein). Among the con-
troversy that the number of natural groups in GRBs is two or three, we
apply kernel principal component analysis (Schölkopf and Smola, 2002) to
GRB data set to perform clustering as well as dimension and noise reduction.
Previous work of kernel principal component analysis on astronomical data
includes classification of supernovae (Ishida et al., 2012, 2013), denoising of
early-type galaxies (Modak et al., 2016), etc.
Kernel principal component analysis is a nonlinear transformation on raw
data, where nonlinear features are extracted from data in terms of kernel
principal components. It is a generalization of linear transformation per-
formed in standard principal component analysis, where linear features are
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extracted from data in terms of principal components. We find that principal
component analysis fails to detect the clustering nature in GRB data while
kernel principal component analysis finds better results. Clustering based on
first few kernel principal components extracted through the proposed kernel,
outperforming results of other competent kernels, reveals three physically in-
terpreted groups of 1972 GRBs.
The paper is organized as follows. Section 2 gives a brief introduction to lin-
ear principal component analysis and kernel principal component analysis.
In Section 3, we develop a new kernel, discuss its properties and carry out
simulation study. Clustering of GRBs and study variables are discussed in
Section 4. Results with interpretation are given in Section 5 and Section 6
concludes.

2 Principal component analysis and kernel principal com-
ponent analysis

2.1 Principal component analysis (PCA)

PCA extracts structure from data in terms of resulted features called princi-
pal components (PCs), which are ordinarily obtained from orthogonal trans-
formation of the data set. Given a set of M centered observations xk, k =
1, 2, ...,M, xk ∈ RN ,

∑M

k=1 xk = 0, PCA diagonalizes the covariance matrix
(for simplification, sample covariance matrix is used in place of population
version)

C =
1

M

M∑

j=1

xjx
T
j , (1)

in which PCs are obtained by solving the equation

λV = CV, (2)

for eigenvalues λ ≥ 0 (as C is non-negative definite matrix), and eigenvectors
V ∈ RN (non-zero vector). Let λ1 ≥ ... ≥ λM ≥ 0 be the eigenvalues of C
with λl being the last nonzero eigenvalue and V 1, ..., V M be the corresponding
orthonormal set of eigenvectors. Then for given random vector x ∈ RN , the
kth principal component of x is obtained by

uk = V k · x, k = 1, 2, ..., l. (3)
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For nonlinear data structure, PCA, which is based on linear transformation,
must fail. PCs also extract noise from a noisy data. To overcome such
drawbacks of PCs, we consider the methods of analysis described in the
following subsections.

2.2 Kernel principal component analysis (KPCA)

Kernel principal component analysis (Schölkopf and Smola, 2002), a general-
ization of principal component analysis, is performed on a dot product space
F (feature space) instead of the input space RN by using a map from RN to
F

Φ : RN → F.

Then for
∑M

k=1Φ(xk) = 0, the covariance matrix C̄ in F can be written as,

C̄ =
1

M

M∑

j=1

Φ(xj)Φ(xj)
T . (4)

Now, we need to solve the following equation for eigenvalues λ ≥ 0, and
eigenvectors V ∈ F (non-zero vector).

λV = C̄V. (5)

2.3 Kernel trick

For some coefficients αi ∈ R (i = 1, 2, ...,M) V can be written as

V =
M∑

i=1

αiΦ(xi),

which gives rise to an M ×M symmetric, positive semi-definite matrix K =
((Kij))i,j=1(1)M , given by

Kij =< Φ(xi),Φ(xj) >, (6)

where < ·, · > represents the usual dot product. By the above kernel trick we
avoid computing the map Φ in F, which can have arbitrarily large dimension.
Instead, we simply compute the dot product in F, which leads to just solving
the eigenvalue problem for kernel matrix K = ((Kij))i,j=1(1)M as follows

Mλα = Kα. (7)
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Any positive definite kernel can be used in (6), where F is a reproducing
kernel Hilbert space satisfying ∀ Φ ∈F, ||Φ|| = √

< Φ,Φ > (Hofmann et al.,
2008).

2.4 Nonlinear or kernel principal components

Let λ1 ≥ λ2 ≥ ... ≥ λM ≥ 0 denote the eigenvalues of K and α1, ..., αM be
the corresponding eigenvectors, where λl is the last nonzero eigenvalue. Nor-
malization of eigenvectors V 1, ..., V l in F can be written in terms of α1, ..., αl

as
αk · αk = 1/λk, k = 1, 2, ..., l.

Then the kth kernel principal component (KPC) corresponding to Φ(x) (Schölkopf
and Smola, 2002) is given by

< V k,Φ(x) >=
M∑

i=1

αk
i < Φ(xi),Φ(x) >=

M∑

i=1

αk
i k(xi, x), k = 1, 2, ..., l, (8)

where k(xi, x)= kernel corresponding to xi and x.
Next we relax the assumption of being centered on the observations. In that
case, kernel matrix K̃ is used instead of K, where

K̃ij = (K − 1MK −K1M + 1MK1M)ij , (1M)ij = 1/M, for i, j = 1, 2, ...,M.
(9)

This enables KPCA to be performed using conditionally positive definite
kernels ⊃ positive definite kernels (Hofmann et al., 2008).
No theoretical result exists on what number of KPCs is to be extracted to
gain sufficient information on data under study. So, first we extract the
first KPC and analysis is performed on that. Then we do the same based
on the first two KPCs and so on. We continue in this way until we obtain
improvement in terms of some accuracy measure chosen appropriately in the
context of study (e.g. classification error in Schölkopf and Smola, 2002).
KPCA is performed on GRB data set for nonlinear feature extraction and
dimension reduction. Noise is simultaneously and automatically reduced by
discarding projections of transformed data onto the higher order eigenvectors
in feature space. Thus we have found the natural clustering nature in GRBs.
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3 Proposed kernel

In this paper we propose the real-valued symmetric kernel

k(x, y) = exp(−
N∑

i=1

|xi − yi
si

|p), (10)

between x, y ∈ RN , where p (0 < p ≤ 2) is a tuning parameter and si
(> 0), i = 1, 2, ..., N are scale parameters, called hyperparameters. Here it
can be seen that, as x ↔ y, k(x, y) ↓ 0. Moreover, k(x, y) ∈ (0, 1] and is
positive definite (p.d.) when p ∈ (0, 2], since exp(−|x− y|p), x, y ∈ R is p.d.
when 0 < p ≤ 2 (Berg et al., 1984) and equation (10) is the dot product of
N such p.d. kernels (Hofmann et al., 2008). In the kernel (10), we can fix
the problem of divergence by the parameter p when two points in RN are
far away. For example, by choosing a small p we can prevent the numerical
divergence, which often occurs in radial basis function, provided the exponent
should not be zero.
Next, we compare the kernel (10) with largely used kernels existing in the
literature. Some possible choices of k(x, y) are given below.
(i) Polynomial kernel of degree d:

k(x, y) = (< x, y > +c)d, (11)

where c ≥ 0 and d is a positive integer. Here, in particular, when c = 0 and
d = 1, kernel PCA becomes standard PCA.
(ii) Gaussian radial basis function kernel:

k(x, y) = exp(−‖ x− y ‖2
2σ2

), (12)

where σ > 0 is a scale parameter and ‖ · ‖=Euclidean norm. For p = 2 and
si =

√
2σ for all i = 1, 2, ..., N , kernel (10) boils down to kernel (12).

(iii) Laplacian kernel:

k(x, y) = exp(−‖ x− y ‖
σ

). (13)

For p = 1 and si = σ for all i = 1, 2, ..., N , kernel (10) boils down to kernel
(13).
(iv) Sigmoid kernel:

k(x, y) = tanh(a < x, y > +b), (14)
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where a, b ≥ 0.

3.1 Effectiveness of proposed kernel through simulation study

For graphical representation, we consider only two dimensional data sets.
First, we draw random vectors of size 500 from bivariate entangled spiral
which has two natural groups, known a priori. Then Gaussian noise with
standard deviation 0.05 is added to the data. Fig.1 shows the first KPC,
extracted through kernel (10) with p = 1/2, s1 = 0.07, s2 = 0.13, is sufficient
to reveal the two groups in the noisy data and hence reduces the dimension of
the data. Next, random vectors of size 500 are obtained from nonlinear data
sets in which four differently shaped distributions (viz. Gaussian, square,
triangle and wave) are used. The first two KPCs, extracted through kernel
(10) with p = 1/2, s1 = 1.24, s2 = 1.89, expose all the four heterogeneous
groups present in the data (Fig.2).

4 Clustering of GRBs

Our data set, retrieved from the fourth BATSE Gamma-Ray Burst Cata-
log (revised) (Paciesas et al., 1999), consists of information on 1972 GRBs
for the following 9 variables. F1, F2, F3, F4 are time-integrated fluences in
20 − 50, 50 − 100, 100 − 300 and > 300 keV spectral channels respectively;
P64, P256, P1024 are peak fluxes measured in 64, 256 and 1024 ms bins respec-
tively; T50, T90 are times within which 50% and 90% of the flux arrive. Unit
of fluence is given in ergs per square centimetre (ergs cm−2), unit of peak
flux is count per square centimetre per second (cm−2 s−1) and unit of time
is second (s).
First, observations on each variable are standardized because the ranges of
the variables vary largely (Table 1). Then, for a particular choice of kernel,
KPCA is performed on them. We extract nonlinear features using the sig-
nificant kernel principal components. Then using them as study variables,
k-means clustering method (Hartigan–Wong clustering algorithm; Hartigan
et al., 1979) is performed on them in which the number of clusters is deter-
mined with the help of gap statistic (Tibshirani et al., 2001).
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4.1 Choice of kernel principal components and hyperparameters

KPCs are supposed to carry less information and more noise with increasing
order and after a certain order they fail to give any relevant information re-
garding the data under study. So, we start by choosing the first few KPCs
and the number of chosen KPCs is increased as long as their performance
gets better in terms of an accuracy measure. In this context, we choose the
Dunn index (Dunn, 1974) as our accuracy measure, which indicates the in-
ternal validation of a clustering performed. It takes value between 0 and ∞
with greater value indicating better clustering.
In kernel (10), a plausible choice for hyperparameter si is the square root
of the sample variance of the ith variable, i = 1, 2, ..., N . As the analysis
is performed based on the data standardized for each variable, we consider
s1 = s2 = ... = sN = s (say) with a plausible choice for s being the square
root of the sample variance of the whole data set. 95% bootstrap confidence
interval (the non-parametric BCa interval, Efron and Tibshirani, 1993) for
s is computed in which lower BCa limit, upper BCa limit and thier arith-
metic mean are represented by σ1, σ2 and σ3 respectively. Next, for the
pair of hyperparameters s and p, grid search method is applied to the set
{σ1, σ2, σ3} × {2, 1, 1/1.5, 1/2}. For comparison purpose, we consider the
same values for σ in kernel (12) and kernel (13) as for s in kernel (10).
Now kernel principal component analysis is functioned for a particular choice
of kernel with corresponding hyperparameters. For each value of hyperpa-
rameter (or each set of values for hyperparameters) considered, KPCA is
performed independently. At first, k-means clustering is acted on the basis
of the first kernel principal component in which number of clusters is deter-
mined by gap statistic. Then based on the obtained clusters we compute
Dunn index. Next, we take the first two kernel principal components and
do the same. Like this we gradually go up to higher order kernel principal
components to extract more information till improvement is met in terms of
Dunn index. Maximum Dunn index giving KPC (or set of KPCs) is chosen
under a fixed choice of values for hyperparameters. We repeat this algo-
rithm for each choice of values for hyperparameters and finally maximum
Dunn index giving combination of values for hyperparameters and KPCs is
selected.
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4.2 Robustness of KPCA w.r.t. clustering method and accuracy measure

Here clustering of GRBs is performed based on KPCs extracted through
KPCA in association with k-means clustering method where Dunn index is
used as accuracy measure. Now for fixed choice of KPCs we can vary the clus-
tering method and accuracy measure. When the extracted components are
able to show up the natural clustering in GRBs then use of other clustering
methods and accuracy measures should give the same results with three phys-
ically interpretable groups of GRBs. To show the robustness with respect to
accuracy measure we compute 11− NN (11−nearest neighbor) classification
error rate (Ripley, 1996) for KPCs with the highest Dunn index. While to
show the robustness with respect to clustering method we perform hierarchi-
cal cluster analysis using average linkage (Kaufman and Rousseeuw, 1990)
on Euclidean distance matrix computed on KPCs with the highest Dunn in-
dex. Here the number of clusters is chosen by the average Silhouette width
(ASW) (Rousseeuw, 1987). ASW (−1 ≤ ASW ≤ 1) with a large value (close
to 1) indicates very well clustering, having small value (around 0) means
the observations lie between two clusters, and ASW with a negative value
indicates that observations are probably placed in the wrong clusters.

5 Results and interpretation

First, k-means clustering method is applied to the standardized variables of
GRB data set in which gap statistic indicates no clustering present in GRBs,
i.e. raw GRB data set fails to reveal the inherent clustering nature in GRBs.
Then the same method is applied to the principal components, extracted
from the GRB data through principal component analysis. Linear features
(first two PCs extracted through kernel (11) with c = 0, d = 1), explaining
more than 80% variation in data, result in one group of GRBs. Thus linear
information on data also can not expose the natural groups (two or three)
present in GRBs (Table 2).
Kernel (10) successfully reveals the inherent clustering nature in GRBs, by
extracting the relevant nonlinear information from raw data in terms of ker-
nel principal components. Table 2 shows accuracy measure for clustering
based on KPCs, extracted through different kernels with different choices of
hyperparameters. We see the first two KPCs, extracted through kernel (10)
with p < 1 and for every choice of s considered, are enough to describe the
data. They sufficiently extract the important nonlinear features from the
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noisy raw data and hence effectively reveal the three physically interpretable
clusters in GRBs. While inclusion of the third KPC results in either no
clustering or worse clustering in terms of our chosen accuracy measure. This
indicates that the third KPC bears mostly noise and does not account for
any usable information in the data set. Hence the third KPC is excluded and
no higher order KPCs are considered further. Maximum Dunn index giving
combination of hyperparameters is kernel (10) with p = 1/2 and s = σ1,
which outperforms all the other kernels in terms of Dunn index with a value
0.018853. Table 3 giving 11−NN classification error rate for the KPCs with
the highest Dunn index value shows the robustness of method of KPCA in
clustering GRBs w.r.t accuracy measure. The corresponding value for the
first two KPCs, extracted through kernel (10) with p = 1/2 and s = σ1 is
0.15% which is quite a favorable value in its selection.
We compare our result with clustering of 1594 GRBs performed in Chat-
topadhyay et al. (2007), in terms of 1-NN classification error rate (using
leave-one-out cross validation on the whole data set on which clustering is
performed; Ripley, 1996). In Chattopadhyay et al. (2007), k-means clus-
tering approach is directly applied to differently chosen study variables and
1594 GRBs are clustered in three groups of sizes 622, 423, and 549 respec-
tively with 4.08 % 1-NN classification error rate. While our clustering of
1972 GRBs based on the first two kernel principal components, extracted
by kernel (10) with p = 1/2 and s = σ1, groups those 1594 GRBs in three
clusters of sizes 827, 438, and 329 respectively with 0.2% 1-NN classification
error rate.
k-means applied to the first two KPCs, extracted through kernel (10) with
p = 1/2 and s = σ1, clusters 1972 GRBs into three groups, say cluster I
(k1), cluster II (k2) and cluster III (k3) (Fig.3), in terms of gap statistic.
Table 4 shows that hierarchical clustering method also gives three clusters
of GRBs (corresponding dendrogram shown in Fig.4) with ASW= 0.64 (for
cluster-wise Silhouette plot see Fig.5), which is quite a high value evidencing
well clustering. We compare the properties based on cluster averages ob-
tained from hierarchical clustering (Table 5) and k-means clustering (Table
6). Similarities between k1 and group1, k2 and group3, k3 and group2 show
the robustness of KPCA with respect to clustering method in revealing the
three natural clusters present in GRBs.
Further discussion on astrophysical properties of the groups is performed
based on the results of k-means method. To explore the physical interpre-
tation of the clusters, time (log10(T90) in s) vs. fluence (log10(FT ) in ergs
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cm−2, where FT = F1 + F2 + F3 + F4) graph is shown in Fig.6. k3 is con-
sistent with the short duration bursts (viz. T90 = 1.16 ± 0.07 s) separated
by the solid line FT = 10−5.4/T 0.9

90 (Fig.6). This cluster can be connected
with mergers of neutron star systems. The standard long duration bursts
(T90 > 2 s) are clustered into two groups, I and II respectively. The solid
line FT = 10−4.6/T 0.4

90 separates these two groups. Fig.7 and Fig.8 show the
histograms for log10(FT ) and log10(T90) respectively. As we can see from
Fig.8 that the distribution of log10(T90) for GRBs is bimodal based on which
Kouveliotou et al. (1993) separates GRBs into two classes as short events
(< 2 s) and longer events (> 2 s). But multivariate analysis considering
other important variables rather than only the duration clusters GRBs into
three physically interpretable groups (Balastegui et. al, 2001; Chattopad-
hyay et al., 2007; Veres et al., 2010) which is consistent with our findings
corresponding to short duration bursts (k3), intermediate duration bursts
(k2), and long duration bursts with higher fluence (k1). We also plot the
diagram of log10(T90) vs. log10(H32) (Fig.9), where H32 = F3/F2 is a measure
of spectral hardness. We can see that the short duration bursts having the
highest average hardness ratio (viz. H32 = 6.17±0.25) is consistent with that
of Veres et al. (2010). Veres et al. (2010) performing the cluster analysis
of 408 GRBs, collected from a different data source, on the basis of H32 and
T90 says that the group of intermediate duration bursts is the softest one.
But the intermediate and long duration bursts in our study have more or less
similar average hardness ratios (viz. H32 = 3.25±0.12 and H32 = 3.29±0.06
for k2 and k1 respectively). Thus unlike the previous authors we cannot say
that they are X-Ray flashes (XRF) and X-Ray rich (XRR) populations. Also
in their work the observed XRFs do not cover all the intermediate GRBs.
Therefore we can physically interpret them in the following manner.
In a previous work, Ghirlanda et al. (2004) measures redshift corrected in-
trinsic energy spectrum, Epeak (in keV) and isotropic energy output, Eiso (in
ergs) for 25 GRBs in which Epeak and Eiso are found correlated. In order to
see how our work affects this relationship, we take these GRBs which have
measured values of FT and T90 as well. On the basis of the separating lines
between the groups we separate these GRBs and plot Epeak vs. Eiso in Fig.10.
It is clear from Fig.10 that low fluence GRBs mostly fall in k2 and they have
more or less constancy in isotropic energy output ( viz. Eiso). So this group
might be associated with the neutron star-white dwarf mergers (King et al.,
2007), since both of neutron stars and white dwarfs do not have significant
mass variations leading to nearly constant energy output. Also, their merger
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time is smaller which is consistent with shorter intrinsic duration of T90 (viz.
T90 = 18.53 ± 0.59 s). On the other hand, massive stellar collapse might be
associated with the members of k1. Because energy output and duration of
a GRB connected with massive stellar collapse depend on the mass and size
of the progenitor, which is observed in the variation inferred for high fluence
burst. The interpretation of these two groups will be more convincing subject
to future observations of higher fluence GRBs having highest energy outputs
(viz. 1052 − 1054 ergs).

6 Conclusion

This work concerns clustering of gamma-ray burts. Here we not only reduce
the burden of the data, but also extract the inherent information from the
data, on which simple clustering method reveals the natural groups in GRBs.
We propose a new possible way, kernel principal component analysis, to
analyze GRB data set as well as a new kernel, which makes the clustering
results better in comparison with the other existing kernels and gives three
physically interpretable groups in GRBs. However explanation of the sources
of these three groups will be more prominent in the future with more data
collection.
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Table 1: Variable-wise range of GRB data set

Variable Range
F1 (0, 4.61e-05)
F2 (0, 3.72e-05)
F3 (0, 0.000139)
F4 (0, 0.000608)
P64 (0, 183.37)
P256 (0, 181.634)
P1024 (0, 163.344)
T50 (0.012, 481.984)
T90 (0.024, 673.824)
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Table 2: Comparison of different kernels

Kernel Hyperparameter(s) No. of No. of Cluster size(s) Dunn Index

first KPC(s) cluster(s) (×104)

kernel(10) s = σ1, p = 2¶ - - - -

s = σ2, p = 2¶ - - - -

s = σ3, p = 2¶ - - - -
kernel(10) s = σ1, p = 1 1 2 1441, 531 84.47

2 4 1030, 165, 370, 407 63.49
s = σ2, p = 1 1 2 1441, 531 84.47

2 4 1030, 165, 370, 407 63.49
s = σ3, p = 1 1 2 1494, 478 154.03

2 4 1053, 154, 381, 384 60.51
kernel(10) s = σ1, p = 1/1.5 1 3 301, 694, 977 50.52

2 3 758, 705, 509 68.81
3 no clustering - -

s = σ2, p = 1/1.5 1 3 303, 662, 1007 44.71
2 3 726 758 488 106.15
3 no clustering - -

s = σ3, p = 1/1.5 1 3 282, 634, 1056 73.09

2 3 702, 789, 481 75.22
3 no clustering - -

kernel(10) s = σ1, p = 1/2 1 5 277, 193, 412, 845, 245 27.69
2 3 941, 588, 443 188.53
3 5 296, 284, 313, 750, 329 119.75

s = σ2, p = 1/2 1 3 984, 415, 573 73.38
2 3 915, 611, 446 88.69
3 no clustering - -

s = σ3, p = 1/2 1 no clustering - -

2 3 886, 621, 465 60.43
3 no clustering - -

kernel(11) c = 0, d = 1 1 1 1972 -
2 1 1972 -
3 5 80, 318, 1545, 7, 22 14.5
4 no clustering - -

c = 0, d = 2 1 1 1972 -
2 2 7, 1965 -
3 2 7, 1965 -

kernel(12) σ = σ
¶
1

- - - -

σ = σ
¶
2

- - - -

σ = σ
¶
3

- - - -
kernel(13) σ = σ1 1 3 439, 789, 744 42.25

2 3 653, 532, 787 113.46
3 5 275, 278, 585, 483, 351 162.48
4 no clustering - -

σ = σ2 1 3 442, 774, 756 34.17
2 3 638, 539, 795 69.89
3 5 278, 282, 593, 466, 353 108.78
4 no clustering - -

σ = σ3 1 5 295, 575, 580, 256, 266 19.62
2 3 622, 544, 806 59.73
3 no clustering - -

kernel(14) a = 1, b = 0 1 3 390, 415, 1167 27.65
2 3 279, 452, 1241 54.85
3 5 171, 294, 1074, 204, 229 150.18
4 no clustering - -

¶ exponent diverges
BCal = 0.94,
BCau = 1.08
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Table 3: Number of clusters w.r.t. classification error rate

Kernel Hyperparameters No. of No. of Cluster sizes Dunn Index 11−NN classification

first KPC(s) clusters (×104) error rate (×104)
kernel(10) s = σ1, p = 1/2 1 5 277, 193, 412, 845, 245 27.69 30.43

2 3 941, 588, 443 188.53 15.21
3 5 296, 284, 313, 750, 329 119.75 65.92
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Table 4: ASW for hierarchical clustering

No. of ASW
clusters (x 102)

2 56.57
3 63.58
4 58.61
5 60.01
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Table 5: Properties of three groups from hierarchical clustering

Name of Size of FT × 106 T90 T50 P64 P256 P1024

the cluster the cluster (ergs cm−2) (s) (s) (cm−2 s−1) (cm−2 s−1) (cm−2 s−1)
group1 1079 22.14 ± 1.73 62.94± 2.20 27.32 ± 1.37 5.86 ± 0.37 4.96 ± 0.31 3.69 ± 0.24
group2 397 0.45 ± 0.02 0.94± 0.06 0.37 ± 0.02 1.83 ± 0.05 1.07 ± 0.03 0.41 ± 0.01
group3 496 1.56 ± 0.06 14.37±0.53 5.14 ± 0.20 1.64 ± 0.07 1.17 ± 0.04 0.72 ± 0.02
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Table 6: Properties of three groups k1, k2 & k3 from k-means clustering

Name of Size of FT × 106 T90 T50 P64 P256 P1024

the cluster the cluster (ergs cm−2) (s) (s) (cm−2 s−1) (cm−2 s−1) (cm−2 s−1)
k1 941 24.95 ± 1.96 68.02 ± 2.47 29.65 ± 1.56 6.48 ± 0.42 5.49 ± 0.35 4.09 ± 0.27
k2 588 1.96 ± 0.07 18.53 ± 0.59 6.94 ± 0.25 1.59 ± 0.06 1.19 ± 0.04 0.79 ± 0.02
k3 443 0.49 ± 0.02 1.16 ± 0.07 0.45 ± 0.03 1.87 ± 0.05 1.09 ± 0.03 0.43 ± 0.01
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Figure 1: (a) Random vectors of size 500 generated from bivariate entangled
spiral which has two natural groups (known a priori), with added Gaussian
noise having standard deviation= 0.05, (b) First kernel principal component,
extracted through kernel (10) with p = 1/2, s1 = 0.07, s2 = 0.13, sufficiently
revealing the two inherent groups in the noisy data, (c) First two kernel
principal components doing the same with higher discrimination.

18



−1.5 −0.5 0.5 1.5

−
2

−
1

0
1

2

(a)
X−axis

Y
−

ax
is

−15 −10 −5 0 5 10

0
10

0
20

0
30

0
40

0
50

0

(b)
First kernel principal component

S
am

pl
e 

si
ze

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

(c)
First kernel principal component

S
ec

on
d 

ke
rn

el
 p

rin
ci

pa
l c

om
po

ne
nt

Figure 2: (a) Random vectors of size 500 generated from four differently
shaped distributions: Gaussian, square, triangle and wave, (b) First ker-
nel principal component, extracted through kernel (10) with p = 1/2, s1 =
1.24, s2 = 1.89, revealing three inherent groups in data of heterogeneous
shapes, while (c) First two kernel principal components successfully revealed
all the four heterogeneous groups present in the data.
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Figure 3: K-means applied to the first two KPCs, extracted through kernel
(10) with p = 1/2 and s = σ1, revealed three clusters of GRBs.
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Figure 5: Silhouette plot for three clusters of GRBs obtained from hierarchi-
cal clustering applied to the first two KPCs, extracted through kernel (10)
with p = 1/2 and s = σ1.
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Figure 6: log10(T90) (in s) vs. log10(FT ) (in ergs cm−2) plot for three clusters
of GRBs. The solid lines represent FT = 10−5.4/T 0.9

90 ergs cm−2 (bottom)
which separates short duration bursts, i.e. k3 from long duration bursts
and FT = 10−4.6/T 0.4

90 ergs cm−2 (top) which separates long duration bursts
further into k1 and k2.
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Figure 7: Histograms of log10(FT ) for all the bursts (GRB) and three clusters
(k1, k2, k3).
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Figure 8: Histograms of log10(T90) for all the bursts (GRB) and three clusters
(k1, k2, k3).

25



−
1

0
1

2
3

−1.0 −0.5 0.0 0.5 1.0 1.5

log
10 (T

90 )

log10(H32)

−
1

0
1

2
3

−1.0 −0.5 0.0 0.5 1.0 1.5

log
10 (T

90 )

log10(H32)

−
1

0
1

2
3

−1.0 −0.5 0.0 0.5 1.0 1.5

log
10 (T

90 )

log10(H32)

k
1

k
2

k
3

F
igu

re
9:

P
lot

of
log

1
0 (T

9
0 )

v
s.

log
1
0 (H

3
2 )

for
th
ree

clu
sters.

26



52.0 52.5 53.0 53.5 54.0 54.5

1.
5

2.
0

2.
5

3.
0

log10(Eiso)(ergs)

lo
g 1

0(E
pe

ak
)(

ke
V

)

52.0 52.5 53.0 53.5 54.0 54.5

1.
5

2.
0

2.
5

3.
0

log10(Eiso)(ergs)

lo
g 1

0(E
pe

ak
)(

ke
V

)

52.0 52.5 53.0 53.5 54.0 54.5

1.
5

2.
0

2.
5

3.
0

log10(Eiso)(ergs)

lo
g 1

0(E
pe

ak
)(

ke
V

)

k1

k2

k3

Figure 10: log10(Epeak) (in keV) vs. log10(Eiso) (in ergs) plot for 25 GRBs
with well-defined spectral parameters (Ghirlanda et al., 2004).
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