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Abstract: Different critical values deduced by simulation have been proposed that greatly 

improve Lenth’s original proposal. However, these simulations assume that all effects are zero –

something not realistic-- producing bigger than desired critical values and thus significance levels 

lower that intended.  This article, in accordance with George Box [2] well known idea that 

Experimental Design should be about learning and not about testing and based on studying how 

the presence of a realistic number and size of active effects affects critical values,  proposes to 

use t = 2 for any number of runs equal or greater than 8. And it shows that this solution, in addition 

of being simpler, provides under reasonable realistic situations better results than those obtained 

by simulation.  
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Significant effects; Unreplicated factorial designs. 

 

1. Introduction 

Identifying which are the active factors is one of the steps required in analyzing the results 

of a factorial design. When replicates are available, the experimental error variance can 

be used to estimate the variance of the effects and judge whether they are active or not. In 

other cases it can be assumed that three or more factors interactions are zero and then 

their values can be used to estimate the effect’s variance. Unfortunately, this estimate is 

made with very few degrees of freedom unless we are dealing with full factorial designs 

with five or more factors, or fractional designs with resolution greater than five, unusual 

situations in industrial environments where the number of runs is generally limited. 
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Daniel [5] proposed a procedure based on the representation of the absolute value of the 

effects on a half-normal plot, since the non-active effects are distributed according to 

𝑁(0; 𝜎𝑒𝑓) in these coordinates they are aligned approximately along a straight line that 

passes through the origin. A variant of this method, also used by Daniel [6], is to represent 

the effects with their sign on a Normal Probability Plot (NPP). In this case, the non-

significant effects are aligned according to a straight line which passes through the point 

(0, 0.5). 

Daniel's method, in the half-normal or NPP version, is the most used for analyzing the 

“significance” of effects in the absence of replicates; although, being based on a graphic 

interpretation, the conclusions that are drawn are subjective and may be 

debatable. What’s more, their proper use requires a good deal of judgment and 

experience. If one simply applies the motto, "the active effects are those that are separated 

from the line," one can commit glaring errors, as described by De León et al. [8]. Another 

drawback from basing the observation on a graph is that it is not possible to automate the 

process of selecting  active effects. 

To solve these problems, Lenth [15] proposed a method for estimating the standard 

deviation of the effects on the basis that if  X~N(0, σ), the median of |X| is equal to 

0.6475𝜎  and therefore 1.5 ∙ median|𝑋| = 1.01𝜎 ≅ 𝜎 . Considering that 𝜅𝑖  ( 𝑖 =

1, … , 𝑛) are the effects of interest and that their estimators 𝑐𝑖 are distributed according to 

𝑁(𝜅𝑖, 𝜎𝑒𝑓) , he defines 𝑠0 = 1.5 ∙ median|𝑐𝑖|  and uses this value to calculate a new 

median by excluding the estimates |𝑐𝑖| > 2.5𝑠0  with the intention of excluding those 

which correspond to effects with 𝜅 > 0 . In this way he obtains the so-called pseudo 

standard error: 

𝑃𝑆𝐸 = 1,5 ∙ median
|𝑐𝑖|<2.5𝑠0

|𝑐𝑖| 

Lenth verifies that the PSE is a 𝜎𝑒𝑓  estimator which is reasonably good when 

the significant effects are rare (sparse) and he proposes calculating a margin of error for 𝑐𝑖 

by means of 𝑀𝐸 = 𝑡1−𝛼/2,𝑑 · 𝑃𝑆𝐸 for a confidence level of 1 − 𝛼  and where t is 

distributed according to a Student’s t distribution with 𝑑 = 𝑛/3  degrees of freedom. On 

the other hand, since 𝑛  significance tests are performed simultaneously, calculating a 

simultaneous margin of error (SME) is also proposed, which is obviously greater than the 
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ME. Finally, he proposes performing a graphical analysis rather than formal significance 

tests. He suggests graphics that are similar to those used by Ott [19] for the analysis of 

means. If 𝑐𝑖 <  𝑀𝐸  should be considered non-significant, if  𝑐𝑖  is larger than ME but 

smaller than SME could be described as possibly active and if 𝑐𝑖 >  𝑆𝑀𝐸, then the effect 

is probably active. 

Since its publication, the Lenth method has gained prominence. In fact, it has become the 

most employed method, being described in the books which are most prevalent in the 

field of industrial experimental design, such as those by Montgomery [18] and Box, 

Hunter and Hunter [3]. It is also used by statistical software packages which are very 

common in the field of industrial statistics, such as MINITAB or SigmaXL that use the 

critical values originally proposed by Lenth or JMP which calculates critical values ad 

hoc for each case by simulation. 

In our opinion the principal advantage of Lenth method is that it uses a simple and 

effective procedure (given the scarcity of the information available) to estimate the 

standard deviation of the effects. However, the critical values originally proposed are not 

the most appropriate and in many cases produce results that a representation in NPP show 

that are clearly incorrect. For example, Box, Hunter and Hunter [3] classical book 

provides a 24−1 design example, page 237. The analysis is accompanied by the comment 

that it is reasonable to consider that factors A and B influence the response, which is very 

consistent with what is observed in the NPP representation of the effects.  But, for 

example Minitab that uses Lenth’s method with its critical values only presents A as 

significant (Figure 1).  

Although the errors are less frequent when the number of runs increases, these also occur. 

The well-known example (Box [2]) of optimizing the design of a paper helicopter using 

experimental design techniques can be useful to illustrate that. The article presents the 

results of a 28-4 , 16 run design, saying that factors B and probably C  are active. Minitab’s 

representation of the effects on NPP and identifications of the significant ones using 

Lenth’s method with its original critical values only identifies B as active (Figure 2).    
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Figure 1. Effects of the Box, Hunter and Hunter example represented in NPP by 

Minitab. Significant ones identified by Lenth’s method using its original critical values 

 

Figure 2. Effects of Box’s paper helicopter represented by Minitab in NPP. Significant 

effects identified by Lenth’s method using its original critical values 

2. Alternatives to the Lenth method  
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Since its publication, many alternative methods to Lenth’s proposal have appeared. Some, 

like Loughin [16], show that a Student’s 𝑡 distribution with 𝑑 = 𝑛/3 degrees of freedom 

is not a good reference distribution for Lenth’s 𝑡-ratio, and he obtained by simulation that 

for 𝛼 = 0.05,  it is necessary to have 𝑡 = 2.300  and 𝑡 = 2.152  for 8 and 16 runs, 

respectively. Along these lines, and also by simulation, Ye and Hamada [21] determine 

the critical values for certain values of 𝛼 by means of a computational method that is more 

efficient than Loughin. They also address three level and Plackett and Burman designs. In 

this case, the values obtained for 𝛼 = 0.05 and eight and sixteen-run designs are 𝑡 =

2.297 and 𝑡 = 2.156. 

Other authors propose using different methods from Lenth but based on similar 

procedures, such as Dong [9], who instead of using the effects’ median to calculate 

the 𝜎𝑒𝑓 estimator, uses the average of the squares and states that when the number of 

significant effects is low (less than 20%) and its value is not small (its tests are performed 

with a 𝜅 ≥ 5𝜎𝑒𝑓 value of significant effects), his method delivers better results than that 

of Lenth. In a similar vein, Juan and Peña [14] deal with the problem by identifying 

outliers (significant effects) in a sample and, under certain circumstances, the Lenth 

method is a particular case of the one they propose. They claim that their method works 

better than Lenth when the number of active effects is large (greater than 20%), but it is 

more complicated. 

Other strategies are those that may be called "step by step", like that of Venter and Steel 

[20], which, through a simulation study for sixteen-run designs (with the same 

configurations that we have used), conclude that their 𝜎𝑒𝑓 estimator is as good as Lenth’s 

PSE when there are few significant effects, and that it is much better when there are 

many. Ye, Hamada and Wu [22] also propose a method they call the "step-down version 

of the Lenth method". They begin by calculating the Lenth statistic (𝑡-Lenth) for the 

biggest effect and, if it is considered significant, the PSE is recalculated with the 

remaining effects and a new 𝑡 -Lenth is obtained for biggest of them. This is then 

compared with a critical value obtained by simulation in accordance with the number of 

effects considered. The procedure is repeated until the biggest effect remaining is not 

considered significant. After performing a simulation study, they conclude that their 

results are better than those obtained with the original Lenth method or that of Venter and 

Stell [20]. Mee, Ford III and Wu [17] also propose an iterative system, but in this case of 
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stepwise regression assuming that at least a certain number of non-significant effects 

exist. 

Edwards and Mee [10] propose to calculate by simulation the 𝑝-value that corresponds to 

the 𝑡-ratios. To calculate the critical values they use a method similar to that of Ye and 

Hamada, but it can be applied to a wide variety of designs, particularly those which are 

not orthogonal. Bergquist et al. [1] propose a Bayesian procedure. They begin with a 

study of published cases to establish the a priori probabilities based on the principles of 

sparsity, hierarchy and heredity, and then illustrate their method by analyzing cases in the 

literature. 

A proposal that we find particularly pragmatic is that of Costa and Lopes [4], which takes 

advantage of current computational capabilities. Since most of the methods are simple to 

apply, they propose using various methods. If all of them give the same solution, it is 

clear that this it is a good one. On the contrary if there is a discrepancy, the solution can 

be decided by a majority, perhaps with careful consideration of the method or of the 

characteristics of the situation being analyzed. When there is a great disparity between 

some methods and others, the solution is certainly not clear; not for any failure of the 

methods but for lack of information, and the only way out is to perform new experiments. 

Detailed studies and comparisons of existing methods have also been published, such as 

Haalang and O’Connell [12]. After a simulation analysis of sixteen-run designs, they 

conclude that the Lenth method has good properties in a wide range of number and size 

of significant effects. Other alternatives, such as the previously mentioned Dong, are only 

recommended if the number of significant effects is known to be low. Another study, 

which is very complete and detailed, is that of Hamada and Balakrishnan [13], where they 

summarize and discuss 17 methods and also propose another 5 that are new proposals or 

modifications of existing ones. They advise against the use of some methods and 

conclude that among those which perform reasonably well, there is no clear winner. 

 

3. Lenth method with improved critical values 

In our opinion, of all the alternatives considered, the ones that best combine simplicity 

and precision are those, in accordance with the proposals of Ye and Hamada [21] or 
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Edwards & Mee [10], based on comparing the t-ratios with reference distributions 

obtained through simulation.  

The problem with these t-ratios and the critical values proposed is that PSE values tend 

to be higher than those obtained by simulation under the assumption that all effects are 

zero. In practice, some non-null effects (κ ≠ 0) may be incorporated into the PSE 

calculation producing an overestimation of 𝜎𝑒𝑓 and therefore affecting the critical values. 

This drawback was already highlighted by Lenth and even improved versions as the 

widely acknowledged proposed by Ye and Hamada [21] suffer from this problem. To 

further illustrate this phenomenon, Figure 3(a) shows the distribution of 10,000 PSE 

values obtained by simulation from a design with 8 runs, when all effects are values from 

a N(0, 1) and Figure 3(b) gives the distribution obtained when there are five effects 

belonging to a distribution N(0, 1) and two of a N(2, 1). It can be clearly seen that the 

estimate of PSE tends to be higher in the latter case. 

 

 
Figure 3. Distribution of values of the PSE in a design with 8 experiments. (a) when all 

7 effects belong to a N(0,1) and (b) when five belong to the N (0,1) and two to N (2,1) 

(b). 

 

 

 

Depending on the number and magnitude of non-null effects (κ ≠ 0) the overestimation 

of  𝜎𝑒𝑓 can be higher or lower. To show this fact we have simulated a set of situations 

that reflect what one would expect in practice and calculated their PSE. For 16-runs 
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designs we have used the same 6 configurations that both Ye, Hamada and Wu [22] and 

Venter and Steel [20] use in their proposals. They are:  

C1:  𝜅1 = ⋯ = 𝜅14 = 0, 𝜅15 = Δ 

C2:  𝜅1 = ⋯ = 𝜅12 = 0, 𝜅13 = 𝜅14 = 𝜅15 = Δ 

C3:  𝜅1 = ⋯ = 𝜅10 = 0, 𝜅11 = ⋯ = 𝜅15 = Δ 

C4:  𝜅1 = ⋯ = 𝜅8  = 0, 𝜅9 = ⋯ = 𝜅15 = Δ 

C5:  𝜅1 = ⋯ = 𝜅12 = 0, 𝜅13 = Δ, 𝜅14 = 2Δ, 𝜅15 = 3Δ 

C6:  𝜅1 = ⋯ = 𝜅10 = 0, 𝜅11 = Δ, 𝜅12 = 2Δ,  𝜅13 = 3Δ,  𝜅14 = 4Δ,  𝜅15 = 5Δ 

 

Similarly, for eight-run designs, we propose four configurations with up to three 

significant effects: 

C1:  𝜅1 = ⋯ = 𝜅6 = 0, 𝜅7 = Δ 

C2:  𝜅1 = ⋯ = 𝜅5 = 0, 𝜅6 = 𝜅7 = Δ 

C3:  𝜅1 = ⋯ = 𝜅4 = 0, 𝜅5 = 𝜅6 = 𝜅7 = Δ 

C4:  𝜅1 = ⋯ = 𝜅4 = 0, 𝜅5 = Δ, 𝜅6 = 2Δ, 𝜅7 = 3Δ 

 

In all cases, the effects were generated as independent values of a Normal distribution 

with the specified mean and 𝜎𝑒𝑓 = 1 . As Ye, Hamada and Wu [22], we call the ∆ 

parameter Spacing and its value varies from 0.5 to 8 in steps of 0.5. For each of the 

configuration-spacing combinations, 10,000 situations were simulated and for each one 

of them we have calculated the PSE. Figures 4 and 5 clearly confirm that, in eight as well 

as sixteen-run designs, the PSE overestimates the value of 𝜎𝑒𝑓. 
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Figure 4. Eight run design. Average of 10,000 PSE estimates made for each 

configuration-spacing combination. 

 

 

Figure 5. Sixteen run design. Average of 10,000 PSE estimates made for each 

configuration-spacing combination. 
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4. New proposal 

The fact that in practice PSE values tend to be higher than those obtained by simulation, 

suggest to use critical values smaller than the ones deduced by this procedure. At the same 

time it is not possible to propose a critical value that will always produce the desired 

significance level since it depends on the number and magnitude of significant effects, 

which is precisely what we want to know.  

Therefore, using critical values that seem very accurate -with several decimal places- is 

misleading; it conveys the idea that the significance test has a meticulousness that it lacks. 

In accordance with Box’s idea mentioned in abstract that aim of Design of Experiments 

should be to learn about the subject and not to test hypothesis, Box, Hunter and Hunter 

[3] do not perform significance tests for each effect, nor even when they have 

replicates. They place the effect values in a table together with their standard deviation in 

such a way that, in light of this information, the experimenter decides what factors should 

be considered to have an influence on the response. To go further than that when there 

are no replicates and, as such, less information is available, it doesn’t make sense. Lenth 

himself doesn’t even propose conducting formal significance tests, but rather an 

indicative graphical representation, as has been previously mentioned. Depending on 

which area of the graph the effects fall, they should be considered significant or not with 

higher or lower probability. 

Paul Velleman, a student of John Tukey and a statistician at Cornell University, recounts 

that when he asked the reason for the 1.5 value when determining the area of anomalies 

in the boxplots, Tukey answered because 1 was too small and 2 was too large (see web 

reference Exploring Data [11]) and the number halfway between 1 and 2 is 1.5. With this 

same idea of simplicity, and in the absence of an exact value, our proposal is to always 

use a critical value of  𝑡 = 2, independently of the number of runs conducted.  

To show the usefulness and good properties of this value we compare the results produced 

by 𝑡 = 2  with the ones with the 𝑡  values proposed by Ye and Hamada [21]. The 

comparison is made by computing the percentages of type I and type II errors that occur 

in each of the scenarios presented in the previous section. The significant effects 

identification error rates were calculated as the number of errors committed with respect 

to the total number that could have been committed. For example, for eight-run 
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experiments in configuration 1 and with ∆ = 0.5 and considering the critical value 

proposed by Ye and Hamada (t = 2.30) 2759 type I errors  have been obtained (effects 

which are considered significant when in reality they correspond to a distribution with 

𝜅 = 0)  and 9730 type II errors (effects with 𝜅 ≠ 0 but which are considered not 

significant). As in configuration 1, there is only one effect with 𝜅 ≠ 0. The error rates are: 

type I: 
2759

6 ×10000
× 100 = 4.60 % and type II: 

9329

1 ×10000
× 100 = 97.3 %. 

Figures 6 and 7 show the type I error rate for each configuration-spacing combination. 

Except in one case (16 runs experiment, configuration 1, one significant effect) the type 

I error rate is closer to the intended 5% with 𝑡 =  2 than with the values proposed by Ye 

and Hamada [21]. 

Figures 8 and 9 show the type II error rate for each configuration-spacing combination. 

Although the differences seem small, in 8 run designs exceeds 10% in configurations 1, 

2 and 3 and 8% in configuration 4. In designs with 16 runs the difference exceeds 6% in 

configurations 1, 2, 3 and 4 and 3% in 5 and 6. 
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Figure 6. Eight-run designs. Percentage of Type I errors using 𝐭 = 𝟐. 𝟑 (square symbols) 

and  𝐭 = 𝟐 (round symbols). 

 

 

Figure 7. Sixteen-run designs. Percentage of Type I errors using 𝐭 = 𝟐. 𝟏𝟓𝟔 (square 

symbols) and  𝐭 = 𝟐 (round symbols). 
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Figure 8. Eight-run designs. Percentage of type II errors using 𝐭 = 𝟐. 𝟑 (square symbols) 

and  𝐭 = 𝟐 (round symbols).  

 

 

Figure 9. Sixteen-run designs. Percentage of type II errors using 𝐭 = 𝟐. 𝟏𝟓𝟔 (square 

symbols) and  𝐭 = 𝟐 (round symbols). 
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Even with 𝑡 =  2 , the type I error rate is below 5% in many configuration-spacing 

combinations; naturally this implies a higher type II error risk, which is something 

unwanted in industrial contexts (De León et al [7]). To mitigate this and in accordance 

with the already mentioned practice of Box, Hunter and Hunter [3] it seems adequate to 

define a doubtful zone for 𝑡-ratio values; a zone where it is not clear if the effects are 

significant or not but that the experimenter should be aware of this uncertainty. A 

reasonable choice for this zone could be the one corresponding to t-ratios between 1.5 

and 2. 

 

5. Conclusions 

Among the many analytical procedures that have been proposed for identifying 

significant effects in not replicated two level factorial designs, the Lenth method 

constitutes a central reference. It is included in well-known books on experimental design 

(Montgomery [18]; Box, Hunter and Hunter [3]) and it is used by statistical software 

packages commonly employed in technical environments. And this is so, in spite that it 

is well known that the critical values employed lead to a type I error probability that is 

less than what is expected and, as an unwanted consequence, a greater probability of type 

II error. More accurate critical values derived by simulation produce the desired 

probability of a type I error when all factors included in the PSE calculation are inert. 

Unfortunately, the inclusion in the PSE calculation of one or more non-null factors, 

something difficult to avoid in practice, produces an overestimation of the 𝜎𝑒𝑓 with the 

already mentioned undesired consequences.   

The paper proposes a simple solution: to use a critical value of t=2 for any 2k or 2k-p 

design. The value is slightly lower than the best ones proposed by simulation, the 

difference decreases as the number of runs increases. This proposal has several 

advantages:  

 It conveys the idea that the procedure is approximate, it cannot be otherwise, and that 

therefore it requires a dose of good judgment by the experimenter. Completely in line 

with G. Box [2] ideas of sequential experimentation and using DOE to learn. 
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 In a wide range of reasonable scenarios --number and size active effects-- it produces 

type I errors closer to the desired and announced 5% than the values proposed by 

simulation methods 

 

 Finally, it is simple and easy and does not need simulations or tables. 
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