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Abstract

Overdispersion is a problem encountered in the analysis of count data that can lead to invalid 

inference if unaddressed. Decision about whether data are overdispersed is often reached by 

checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater 

than one; however, there is currently no fixed threshold for declaring the need for statistical 

intervention. We consider simulated cross-sectional and longitudinal datasets containing varying 

magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to 

determine an appropriate threshold value of this statistic which indicates when overdispersion 

should be addressed.
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1. Introduction

The assumption of Poisson regression that the conditional mean must be equal to the 

conditional variance often fails in real data situations. Overdispersion occurs when data have 

greater conditional variance than is assumed under the Poisson model (Cox 1983), which 
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may result from population heterogeneity, correlation, omission of important covariates in 

the model, the presence of outliers, zero inflation, or other reasons (Hardin and Hilbe 2007; 

Rigby and Stasinopoulos 2008). A Poisson model estimated on overdispersed data can 

include underestimated standard errors of the parameter estimates. As a consequence, the 

hypotheses on the regression parameters may be rejected more often than they should be 

(Breslow 1990; Faddy and Smith 2011; Hilbe 2011; McCullagh and Nelder 1989). Payne et 

al. previously examined overdispersion occurring in real and simulated datasets resulting 

from outliers, omission of key predictors, and omission of necessary random effects (2015). 

The authors compared six different scaling and modeling methods of analysis via goodness-

of-fit and error statistics. The results showed that negative binomial regression and negative 

binomial generalized linear mixed models were preferred for dealing with overdispersion 

resulting from the sources they considered. Scaling methods and unadjusted Poisson 

regression were less reliable and often produced larger or smaller standard errors than 

expected.

The two most commonly used estimators of dispersion in the literature are the ratio of the 

model deviance to its corresponding degrees of freedom and the ratio of the Pearson χ2 

statistic to its corresponding degrees of freedom (McCullagh and Nelder 1989). For a study 

with sample n and p predictors, the degrees of freedom are typically given by n − p. This 

ratio will equal one when the Poisson assumption or, equivalently, the assumption that the 

conditional mean and variance are equal, holds. Relative to the model, the data are 

considered overdispersed if this ratio is greater than one, with greater magnitudes of 

overdispersion corresponding to higher Pearson χ2 statistics.

A likelihood ratio test may be used to test the difference of the simple Poisson and more 

complex models such as negative binomial regression to assess whether the simpler model 

should be rejected (Cameron and Trivedi 1986). The Wald statistic associated with a test of 

the dispersion parameter in the more complex model may also be used for this assessment 

(Molla and Muniswamy 2012). Score tests for determining the presence of extra-Poisson 

variation are also available in many case-specific variations (Breslow 1990; Collings and 

Margolin 1985; Dean and Lawless 1989; Gurmu 1991; Lee et al. 2007), and may be more 

appropriate than Wald or likelihood ratio tests since the score test requires only an 

estimation of the simpler model and provides greater power (Yang et al. 2007). In addition, 

hypothesis testing of the ratios of negative binomial and Poisson regression log-likelihoods 

may rely on asymptotic distributions which underestimate the evidence against the base 

model and thereby provide results which are misleading (Cameron and Trivedi 1998; Dean 

1992; Lawless 1987). O’Hara Hines provides an overview of numerous score tests which 

have been developed to test for overdispersion (O’Hara Hines 1997). Molla and Muniswamy 

recently demonstrated the superior power of the score test compared to likelihood ratio and 

Wald tests via an extensive Monte Carlo simulation study (2012).

Currently, one of the most commonly used estimators of overdispersion in the literature is 

the goodness-of-fit ratio of the Pearson χ2 statistic to its corresponding degrees of freedom. 

A decision about whether data are overdispersed is made by checking whether this ratio is 

greater than one. The relative variance is defined as the ratio of the variance to the mean and 

is theoretically comparable to the Pearson χ2 ratio with its degrees of freedom. One possible 

Payne et al. Page 2

Commun Stat Simul Comput. Author manuscript; available in PMC 2018 December 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



rule of thumb suggests that if the relative variance is greater than two, then the data may be 

considered overdispersed and require statistical intervention (Cameron and Trivedi 1990). In 

this case, the average of the covariate-pattern specific ratio of the conditional variance to 

conditional mean of the count outcome is more than two, contradicting the Poisson model. 

Smaller values in the average of the ratios of conditional variance to conditional mean may 

still point to an overdispersed model which underestimates the parameter standard errors and 

requires a more complex modeling strategy than simple Poisson regression (Rodriguez 

2015). In some cases, relative variance tests and curves may be more effective in identifying 

the presence of overdispersion than score tests (Lambert and Roeder 1995).

In this paper, we examine count outcomes containing overdispersion represented by varying 

magnitudes of Pearson χ2 ratios in cross-sectional and longitudinal datasets, to determine 

the threshold over one (ratio > 1) at which overdispersion may be considered detrimental to 

data analysis if ignored. We examine scenarios in which overdispersion is the result of either 

outliers or zero inflation in the count outcome. Results from two real case studies containing 

varying magnitudes of overdispersion are also considered. This paper is organized in the 

following manner. Subsequent to the introduction, a description of the statistical models as 

well as measures and tests of overdispersion is given in Section 2. Section 3 provides 

information about the design of the simulation study. Section 4 provides the results of the 

simulation study. Section 5 gives a description and results from our real datasets. Section 6 

gives a conclusion and discussion based on all results.

2. Statistical models and estimation

2.1. Models

For cross-sectional data, let vector Y = (Y1, … , Yn)′ be a response vector with independent 

and identically Poisson distributed random Y values. The variance function is Var(Yi) = μi 

and the probability mass function for the quasi-Poisson is given by

f (yi | μi) =
μi

yie−μi

yi!
(1)

with 0 ≤ yi < ∞ and positive conditional mean parameter μi. The conditional variance as a 

function of the conditional mean is given in general form by ϕμ, with dispersion parameter 

ϕ. There is equidispersion in the dataset when ϕ = 1, while if ϕ < 1 there is under-dispersion, 

and if ϕ > 1 there is overdispersion. The Poisson can be extended to define the generalized 

Poisson regression model including covariates for which the conditional mean is 

E(Y i) = μi = exp(Xi′β) via the following format (Yang et al. 2009):

Pr(Y i | xi, β, φ) =
μi

1 + φμi

yi 1 + φyi
yi!

yi − 1

exp −
μi 1 + φyi

1 + φμi
(2)
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with 0 ≤ yi < ∞ and constant scale parameter φ. This parameterization indicates that the 

variance is Var(Y i) = μi(1 + φμi)
2 such that a value of φ = 0 will reduce to the simple Poisson. 

A score test may then be used to assess the scale parameter φ to determine whether the 

conditional variance exceeds the conditional mean (refer to Section 2.2). If Y |θ Pois(θ) and θ 
is a random variable such that E(θ) = μ and Var(θ) = σ2, then E(Y) = μ and Var(Y) = μ + σ2, 

indicating greater variance compared to the mean. If θ is assumed to be distributed gamma, 

then Y follows a negative binomial distribution with E(Y) = k
λ = μ and Var(Y) = μ + μ2

k

(Payne et al. 2015).

Random effects may also be included to deal with overdispersion. For response vector (Yi) 

and vectors of fixed effect (Xi) and random effect (Zi) for explanatory variables (i = 1, … , 

n) the generalized linear mixed model (GLMM) family is given by,

E(Y i Xi, Zi) = g−1(Xiβ + Zibi) = μi (3)

Here, β is a vector of p fixed coefficients, g is a monotone link function, and bt is a vector of 

unobserved normally-distributed random deviations with zero mean for which the variance 

will be estimated. The conditional variance for this model is given by Var(Y i) = μi + kμi
2. 

The negative binomial GLMM allows for greater conditional variance than assumed by the 

Poisson GLMM. It has previously been shown that negative binomial and negative binomial 

GLMM are superior for dealing with overdispersion compared to other models in various 

scenarios, jointly considering the specified criteria (Payne et al. 2015).

We also consider a generalized linear model setup for longitudinal scenarios with a general 

set of predictor variables. Let Yij be a response, while vector Xij contains m covariates of 

interest (X1ij, … , Xmij) at the jth repeated measure for the ith subject (i = 1, … , n, j = 0, 

… , Ti). Let qi denote the random effects for each individual i which could be assumed to 

have a normal distribution with zero mean and covariance G. Let (β1, … , βm) be the 

regression coefficients corresponding to respective covariates (X1, … , Xm) which gives

ηi j = qi + ∑
p = 1

m
Xpi jβp (4)

We can rewrite this in vector form as for the cross-sectional GLMM above:

ηi = Zibi + Xiβ (5)

Where Xi = (X1i j, ..., Xmi j)′, ηi = g(E[Y i j |qi, β]), β = (β1, ..., βm), g is a monotone link function, 

Zi is the random effects design matrix and bi is the random effects vector for each individual 

i.
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In this paper we address overdispersion resulting from the presence of outliers or zero 

inflation in the count outcome in both cross-sectional and longitudinal datasets. We consider 

four methods for analyzing cross-sectional data: unadjusted Poisson regression (Poisson), 

negative binomial regression (NB), and two GLMM with random intercept, log link, and 

compound symmetry covariance, with outcomes distributed as Poisson and negative 

binomial (Poisson-GLMM, NB-GLMM, respectively) (Payne et al. 2015). In the 

longitudinal scenario, we consider GLMM with random intercept to account for individual 

variability with outcomes distributed as either Poisson or negative binomial (Poisson-

GLMM, NB-GLMM, respectively). SAS 9.4 was utilized in all analyses, particularly the 

Proc GENMOD and Proc GLIMMIX packages.

2.2. Tests and measures of overdispersion

A variety of score, Wald, and likelihood ratio tests have been considered to determine when 

overdispersion is statistically significant. One such score statistic (Yang et al. 2009) for 

testing whether the dispersion parameter indicates extra-Poisson variation H0 : φ = 0 vs. H1 : 

φ > 0 is given by

S1(β) = ∑
i = 1

n
2μi

2
−1

∑
i = 1

n
yi − μi

2 − yi

2
(6)

Under the null hypothesis that overdispersion is not present and the data follow an 

unadjusted Poisson model, the score statistic is distributed according to the χ1
2 distribution 

with one degree of freedom. We can also write this score statistic as

S2(β) = 2 ∑
i = 1

n
μi

2
−1

∑
i = 1

n
yi − μi

2 − yi (7)

which is asymptotically distributed as a standard normal. It is clear from the structure of this 

statistic that greater variability between observed and predicted values will increase the 

magnitude of the score statistic, which implies overdispersion resulting from data 

heterogeneity or other factors. According to this statistic, we can reject the assumption of 

equidispersion at a significance level of 0.05 via a one-sided test if score statistic S2(β) is 

greater than the 95th percentile of the N(0, 1) distribution. This gives us a score statistic 

cutoff of 1.65 for declaring the presence of overdispersion in large samples. Though this is a 

useful paradigm, our interest is in determining a general threshold for declaring the presence 

of overdispersion across datasets using the commonly considered Pearson χ2 ratio to its 

degrees of freedom. We will provide a crossover comparison of rejection via score test at 

each of our Pearson χ2 ratio values under consideration.

Using our notation, the Pearson χ2 statistic is defined for the Poisson distribution within the 

context of GLMs as below (Morel and Neerchal 2012):
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χ2 = ∑
i = 1

n yi − μi
μi

2
(8)

This statistic is commonly utilized to analyze model goodness-of-fit, and is approximately 

distributed χdf
2 (Morel and Neerchal 2012). For a study with sample n and p predictors, the 

degrees of freedom are typically given by n − p. The dispersion statistic σp is therefore 

defined as the ratio of the Pearson χ2 to its degrees of freedom and is a common method 

used to estimate overdispersion (Rodriguez 2015). It is approximately unbiased (Ruoyan 

2004) and can be given as follows:

σp = χ2

n − p (9)

The dispersion statistic σp will equal approximately one where the Poisson model 

assumption of equal mean and variance holds. Our goal is to determine if there is an 

appropriate threshold for declaring outlier or zero inflation dependent overdispersion 

requiring statistical intervention via the proposed method. This value may also be used to 

determine the presence of underdispersion in datasets, though this is a less common scenario 

when working with clinical data.

3. Simulation

3.1. Design

We simulated 200 cross-sectional datasets each with a sample size of 100 random 

observations, to include a Poisson count outcome and m = 2 binary predictor variables X1 

and X2 according to the model log(E(Y im = y | Xim)) = α + ∑m − 1
2 βmXim where β is the 

collection of parameters (β1, β2) and α = 1.0. Outcome count Y for the ith individual was 

determined by exp (α + ∑m = 1
2 βmXim). We alternated assigning true parameter value β1 = 

[0.01, 0.41, 0.92] to yield rate ratios of 1.0, 1.5, and 2.5, respectively, and assigned true 

parameter value β2 = 0.69 to yield a rate ratio of 2.0 as a potential confounder.

We then created overdispersion relative to Poisson via the addition of outliers to the count 

outcome Y. Overdispersion magnitudes of σp = [1.0, 1.2, 1.3, 1.4, 1.5, 2.0, 2.5, 5.0, 10.0] 

were achieved via increasing a random sample of 10% of the Y outcomes such that running 

unadjusted Poisson regression gave each desired value of σp. We created a second scenario 

in which the unadjusted Poisson gave overdispersion magnitudes of σp = [1.0, 1.2, 1.3, 1.4, 

1.5, 2.0, 2.5, 5.0] by setting various percentages of the Y outcome variable to zero to achieve 

the desired values of σp (we could not achieve a value of 10.0 in this scenario).

Recall our discussion of a score test statistic (Yang et al. 2009) to test H0 : φ = 0 vs. H1 : φ > 

0 presented in Section 2.2. The frequency of rejection of H0 : φ = 0 via this score test for 

both outlier and zero inflation dependent overdispersion of all magnitudes is given in Table 
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1. Higher percentages of rejection via the score test statistic in simulations indicate 

overdispersion in the dataset at the given level of σp, suggesting that statistical intervention 

is necessary for valid analysis. From this table we can see that values of 1.5 ≤ σp ≤ 2.0 result 

in a percentage of rejection close to the nominal 95% depending on the effect size of β1, 

indicating rejection of H0 : φ = 0 and conclusion that the data are overdispersed according to 

the score test. Values of σp < 1.5 result in lower rejection percentages under both scenarios 

and therefore do not reject the null hypothesis of equidispersion. Higher effect sizes give 

slightly more conservative results. At values of σp ≥ 2.5, equidispersion is rejected in 100% 

of cases.

We further simulated 200 longitudinal datasets of the same initial sample size of 100 to 

include the time-varying Poisson count outcome and two time-varying binary predictor 

variables according to the model log(E(Y i jm = y | Xi jm)) = α + ∑m = 1
2 βmXi jm with data now 

taken at five continuous time points j = 1, 2, … , 5. Again, β is the collection of parameters 

(β1,β2) and α = 1.0. Outcome count Y for the ith individual was now generated using a mean 

exp (α + ∑m − 1
2 βmXi jm). The overdispersion magnitudes of interest were achieved via data 

manipulation at baseline similar to that utilized in the cross-sectional examples, such that 

running Poisson-GLMM resulted in each of the desired values of σp.

Comparison among models in all scenarios was then made using Type I and II errors, as well 

as coverage probabilities of β1. Type I error is determined via the percentage of simulations 

in which the effect of β1 is detected though not present, i.e. the percentage of false positives; 

here we consider datasets with a true β1 value of 0.01. Type II error is determined via the 

percentage of simulations in which the effect of β1 is not detected though present, i.e. the 

percentage of false negatives. These errors are observed for both true β1 values of 0.41 and 

0.92. Coverage probabilities are considered for all values of β1 = [0.01, 0.41, 0.92] and are 

the percentage of simulations in which parameter 95% confidence intervals contain the true 

β1.

4. Results

4.1. Cross-sectional results

Poisson and negative binomial results for both cross-sectional scenarios are given in Tables 2 

and 3, respectively, and illustrated in Figures 1a-b and 2a-b by model type and value of β1 at 

all values of σp. Increases in magnitude of both outlier and zero inflation dependent 

overdispersion result in increases in Type I and II errors of the β1 estimates as well as a 

decrease in coverage probabilities. Not surprisingly, the Type II error and coverage 

probabilities decrease with the higher effect size (Figure 2a-b). Given the Type I error results 

shown in Figure 1a-b, the unadjusted Poisson regression model and Poisson-GLMM 

perform fairly well for both scenarios with low overdispersion magnitude, particularly when 

σp ≤ 1.2. The corresponding Type II error results and coverage probabilities in Figure 2a-b 

give consistent results. The negative binomial regression models have higher tolerance for 

extra variability considering all criteria, performing well in both scenarios up to about σp ≤ 

1.5. Furthermore, the NB-GLMM gives acceptable results in some cases up to σp ≤ 5.0, 

particularly considering Type I error and coverage probabilities. Based on these results it 
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would appear the simple Poisson model may be utilized in cross-sectional cases where σp ≤ 

1.2. Furthermore, negative binomial regression should be utilized if 1.2 < σp ≤ 1.5 while 

NB-GLMM should be utilized for higher values up to σp ≤ 5.0.

There is clearly an effect of overdispersion on the models for values of σp lower than those 

picked up by the score test. NB-GLMM also results in the highest Type II error of all 

considered models, suggesting that negative binomial regression may be sufficient in some 

cases to address overdispersion of higher magnitude in these scenarios. The contrast 

between negative binomial and Poisson distribution models becomes more obvious as the 

magnitude of σp increases.

4.2. Longitudinal results

Results for both longitudinal scenarios are given in Table 4 and illustrated in Figures 3a-b 

and 4a-b for all considered values of σp, calculated under the Poisson-GLMM model. 

Longitudinal results are similar to those for the cross-sectional analysis. Given the 

percentage values of the Type I errors and coverage probabilities shown in Figure 3a-b, and 

the corresponding Type II error results and coverage probabilities in Figure 4a-b, the 

Poisson-GLMM again performs fairly well in addressing both outlier and zero inflation 

dependent overdispersion when σp ≤ 1.2. For larger magnitudes of overdispersion up to σp ≤ 

2.5, NB-GLMM performs well in both scenarios when considering all criteria. NB-GLMM 

results in considerably lower Type I errors and higher coverage probabilities and comparable 

Type II errors compared to Poisson-GLMM. As the magnitude of σp increases, the 

superiority of the NB-GLMM model becomes more apparent as the difference in errors and 

coverage increases compared to the Poisson-GLMM. Not surprisingly, results become 

overall much less reliable when σp ≥ 5.0 for the Poisson-GLMM given the very low 

coverage probabilities at all effect sizes shown in both figures.

5. Motivating real datasets

5.1. Description

We utilize two real datasets to examine model performance at varying magnitudes of 

overdispersion. We modify the datasets in order to produce samples with different levels of 

overdispersion present when the data is modeled using unadjusted Poisson regression. The 

National Lung Screening Trial (NLST) (Aberle and Adams 2011) randomized 50,263 non-

Hispanic white (NHW) and non-Hispanic black (NHB) patients to compare lung cancer 

mortality rates between those screened via low-dose CT screening and those given chest 

radiography. We consider the relationship between patient race predictor (NHB versus 

NHW) and comorbidity burden count outcome (with possible range from 0 to 31) and 

adjusted for assigned treatment group. The sample dispersion statistic σp for the whole 

cohort is 1.30. When we look into gender based subgroups, the dispersion statistic values for 

comorbidity burden are 1.25 and 1.36 for male and female patients, respectively.

The second example is the classic Ames Salmonella dataset that is known for its highly 

overdispersed count data (Mortelmans and Zeiger 2000). This classic dataset includes a 

count outcome of bacterial colonies by six levels of medication dose on three different plates 

Payne et al. Page 8

Commun Stat Simul Comput. Author manuscript; available in PMC 2018 December 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



and results in a much greater magnitude of overdispersion. The dispersion statistic σp for the 

whole cohort is 5.33. Here, we examine the relationship between bacterial colony count 

outcome and log medication dose predictor.

5.2. Results

All model results are given in Table 5, including rate ratios, AIC goodness-of-fit statistics, 

standard error of the beta parameters, and parameter p-values. We observe that the negative 

binomial regression model results in moderately adjusted standard error values and low AIC 

goodness-of-fit statistics in each of the NLST datasets, with respective dispersion 

magnitudes of 1.25 (male patients), 1.30 (whole cohort), and 1.36 (female patients). The 

standard errors resulting from the NB model for these dispersion magnitudes are, 

respectively, 12.00%, 17.65%, and 20.83% higher than those resulting from the simple 

unadjusted Poisson model. The percent increase in standard error produced by the NB here 

clearly increases with the level of overdispersion in the dataset. The NB-GLMM also 

performs well based on the goodness-of-fit and standard error criteria. The Poisson-GLMM 

results are comparable with the unadjusted Poisson by these criteria.

In the Salmonella dataset, the standard error resulting from the NB model for dispersion 

magnitude of 5.33 is 111.11% higher than that resulting from the simple unadjusted Poisson 

model. The NB-GLMM gives a more moderate increase of 74.07% compared to the 

unadjusted Poisson and may be preferable here. Again, the percent increase in standard error 

appears to correspond with the increase in overdispersion magnitude occurring in this 

sample when the data is modeled using unadjusted Poisson regression. The goodness-of-fit 

statistics further confirm the better fit of the negative binomial models to the data.

6. Conclusion

We assessed threshold for overdispersion under Poisson and negative binomial models via 

simulation study. We considered cross-sectional and longitudinal datasets with two binary 

predictors and count outcome containing overdispersion due to either the addition of outliers 

or zero inflation. Magnitude of overdispersion was measured by dispersion statistic σp, 

defined as the ratio of the Pearson χ2 value to its corresponding degrees of freedom n − p. 

Comparison among models was made using Type I error with a true β1 value of 0.01, Type 

II errors using true β1 values of 0.41 or 0.92, 95% CI, and coverage probability of β1 for all 

effect sizes of β1.

Results of our simulations demonstrate that the unadjusted Poisson regression and Poisson-

GLMM perform fairly well for cross-sectional scenarios when there is low overdispersion 

magnitude, particularly when σp ≤ 1.2. The negative binomial regression model performs 

well at higher magnitudes of overdispersion under both outlier and zero inflation dependent 

scenarios, up to about σp ≤ 1.5. The NB-GLMM gives acceptable results at high magnitudes 

of overdispersion in some cases up to about σp ≤ 5.0. Both the Poisson-GLMM and NB-

GLMM resulted in more conservative Type I errors than their corresponding regression 

models. The Type II errors are higher for negative binomial regression and NB-GLMM 

compared to the unadjusted Poisson and Poisson-GLMM. The Type II error and coverage 

probability also decreased for higher β1 effect sizes. NB-GLMM resulted in the highest Type 
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II errors overall, so negative binomial regression appears to be sufficient to address the 

overdispersion in many of the cross-sectional datasets. Further statistical intervention would 

be required under the most extreme outlier or zero inflation dependent overdispersion 

scenario when σp ≥ 10.0, as our results demonstrate that none of our models would likely 

give reliable results in these cases.

Longitudinal datasets appeared to be somewhat less tolerant of the more moderate levels of 

overdispersion. NB-GLMM gave more conservative Type I errors and higher coverage 

probabilities than Poisson-GLMM, as well as generally comparable Type II errors. Again, 

the Poisson-GLMM performs well in addressing both outlier and zero inflation dependent 

overdispersion when σp ≤ 1.2. For larger magnitudes of overdispersion, up to about σp ≤ 2.5, 

NB-GLMM performs well. The superiority of the NB-GLMM model became more apparent 

as the overdispersion in the dataset increased. Once again, further statistical intervention 

may be required when σp ≥ 5.0 in longitudinal analysis. Our models addressing both outlier 

and zero inflation dependent overdispersion are less reliable in these cases. In a clinical 

setting, the covariates included in the model should be reexamined for errors leading to 

faulty models beyond the issue of overdispersion.

Based on these simulations, it would appear that a general threshold for relying on the 

simple Poisson model for cross-sectional and longitudinal datasets is in cases where σp ≤ 

1.2. For cross-sectional datasets, the negative binomial distribution via NB or NB-GLMM 

should be utilized if 1.2 < σp ≤ 1.5. For higher values of σρ in these scenarios, NB-GLMM 

should be utilized up to about σp ≤ 5.0. However, if σp ≥ 5.0 for longitudinal datasets or if 

σρ ≥ 10.0 for cross-sectional datasets, the model may not be reliable based on adjustment for 

overdispersion and should be checked for additional modeling errors.

We also utilized two real cross-sectional datasets to produce varying magnitudes of 

overdispersion for analysis. We used data from the National Lung Screening Trial (NLST) 

(Aberle and Adams 2011) to examine the relationship between comorbidity count and 

patient race (NHB to NHW), adjusting for assigned treatment group. The σp value for the 

whole cohort was 1.30, and stratifying by gender gave dispersion values of 1.25 and 1.36 for 

male and female patient subgroups, respectively. According to our simulation results, these 

levels of σp would require statistical intervention via negative binomial regression or NB-

GLMM. This was confirmed by decreased goodness-of-fit statistics and moderately adjusted 

standard errors compared to the unadjusted Poisson model. We also considered a higher 

magnitude of overdispersion using the Ames Salmonella dataset (Mortelmans and Zeiger 

2000), which is a classic example of overdispersion in a dataset and includes measures of 

medication dose by plate and a count of Salmonella bacterial colonies. The σp value was 

5.33 for the whole cohort. Our results indicate that this high level of overdispersion requires 

adjustment via the NB or the NB-GLMM, which is also supported by our analysis. The 

percent increase in standard errors resulting from the negative binomial models compared to 

the unadjusted Poisson models increased in correspondence with higher magnitudes of 

overdispersion for both real datasets.

We discussed a score test for overdispersion in Section 2.2 of H0 : φ = 0 vs. H1 : φ > 0 in 

which the score statistic has a standard normal distribution under the null hypothesis. This 
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score test suggests that a dataset which results in a score statistic greater than or equal to 

1.65 allows us to reject the assumption of equidispersion at a significance level less than or 

equal to 0.05. In our simulations, this translated into a level of overdispersion given by a 

value of σp at about 1.5 ≤ σp ≤ 2.0 for both overdispersion scenarios dependent on effect 

size, as demonstrated by the nominal 95% rejection of equidispersion by the score test at 

these levels. It is clear from our simulations, however, that the presence of overdispersion is 

harmful to our analyses and should be addressed at even lower values of σp, particularly at 

σp > 1.2, although the assumption of equidispersion may not be rejected at these levels by 

the score test. Lastly, it should be noted that these results may not be applicable in all 

clinical cases where overdispersion is present. Additional simulation studies and real data 

analyses are required to make further generalizations.
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Figures 1. 
a-b. Percentage of simulations with Type I errors and in which parameter coverage included 

the true parameter given a true parameter value of 0.01 in the cross-sectional scenario, for a.) 

outlier dependent overdispersion and b.) overdispersion caused by zero inflation.
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Figures 2. 
a-b. Percentage of simulations with Type II errors and in which parameter coverage included 

the true parameter given true parameter values of 0.41 and 0.92 in the cross-sectional 

scenario, for a.) outlier dependent overdispersion and b.) overdispersion caused by zero 

inflation.
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Figures 3. 
a-b. Percentage of simulations with Type I errors and in which parameter coverage included 

the true parameter given a true parameter value of 0.01 in the longitudinal scenario, for a.) 

outlier dependent overdispersion and b.) overdispersion caused by zero inflation.
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Figure 4. 
a-b. Percentage of simulations with Type II errors and in which parameter coverage included 

the true parameter given true parameter values of 0.41 and 0.92 in the longitudinal scenario.
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Payne et al. Page 17

Table 1.

Percent of simulations at varying levels of overdispersion in which the score test did in fact reject the null 

hypothesis and affirm the presence of overdispersion in the dataset.

σp

Outlier Dependent Zero Inflation

β1 = 0.01 β1 = 0.41 β1 = 0.92 β1 = 0.01 β1 = 0.41 β1 = 0.92

1.0 6.50 6.50 6.50 6.50 6.50 6.50

1.2 55.50 50.50 28.50 46.50 43.50 51.50

1.3 71.50 53.00 47.00 63.50 64.00 56.50

1.4 79.00 71.50 68.00 74.50 77.00 69.00

1.5 95.50 88.00 87.50 90.00 90.00 85.00

2.0 99.50 99.50 98.50 100.00 100.00 99.00

2.5 100.00 100.00 100.00 100.00 100.00 100.00

5.0 100.00 100.00 100.00 100.00 100.00 100.00

10.0 100.00 100.00 100.00 — — —

σp is defined as the ratio of the Pearson χ2 to its degrees of freedom
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Table 5.

Standard error and rate ratio by overdispersion magnitude for NLST and Salmonella datasets.

NLST

Description Model σp AIC RR SE P-Value

Male Patients Poisson 1.25 86772.4 1.127 0.025 <0.0001

Poisson-GLMM 86499.0 1.102 0.025 0.0001

NB 86070.3 1.127 0.028 <0.0001

NB-GLMM 85861.2 1.200 0.020 0.0005

Whole Cohort Poisson 1.30 151861.2 1.211 0.017 <0.0001

Poisson-GLMM 151314.1 1.190 0.018 <0.0001

NB 150147.2 1.211 0.020 <0.0001

NB-GLMM 149741.7 1.190 0.021 <0.0001

Female Patients Poisson 1.36 64958.8 1.296 0.024 <0.0001

Poisson-GLMM 64709.1 1.279 0.025 <0.0001

NB 63952.0 1.296 0.029 <0.0001

NB-GLMM 63787.5 1.279 0.030 <0.0001

Salmonella

Description Model σp AIC RR SE P-Value

Whole Cohort Poisson 5.33 171.77 1.119 0.027 <0.0001

Poisson-GLMM 152.85 1.119 0.027 0.0009

NB 140.43 1.134 0.057 0.0275

NB-GLMM 141.02 1.132 0.047 0.0194
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