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Abstract 

In this paper, we consider a linear regression model with AR(p) error terms with the assumption that the 

error terms have a t distribution as a heavy tailed alternative to the normal distribution. We obtain the 

estimators for the model parameters by using the conditional maximum likelihood (CML) method. We 

conduct an iteratively reweighting algorithm (IRA) to find the estimates for the parameters of interest. We 

provide a simulation study and three real data examples to illustrate the performance of the proposed 

robust estimators based on t distribution.  
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1. Introduction 

Consider the following linear regression model 

𝑦𝑡 = ∑𝑥𝑡,𝑖

𝑀

𝑖=1

𝛽𝑖 + 𝑒𝑡   ,  𝑡 = 1,2,… ,𝑁                                                                                                 (1) 

where, 𝑦𝑡  is the response variable,  𝑥𝑡,𝑖  are the explanatory variables,  𝛽𝑖  are the unknown regression 

parameters and 𝑒𝑡 is the error term. In classical regression analysis, the general assumptions on the error 

term are zero mean, constant variance and not correlated with each other. It is well known that under these 

assumptions the ordinary least squares (OLS) estimator is the best. However, one of the problems in 

application is that the error term may be correlated with each other. In this case, although, the OLS 

estimators are unbiased and consistence, they may be no longer efficient even in large sample cases, and 

hence this may cause large estimated standard errors for the estimators of the regression parameters (see 

Olaomi and Ifederu [13]). There are many ways to deal with autocorrelated structures in the disturbances; 

the most common way is to assume autoregressive error terms in regression model. 

 We assume that 𝑒𝑡 is a stationary autoregressive error process of order p (AR(p)) given as  

𝑒𝑡 = 𝜙1𝑒𝑡−1 + ⋯+ 𝜙𝑝𝑒𝑡−𝑝 + 𝑎𝑡 ,                                                                                                     (2) 
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where 𝜙𝑗 , for 𝑗 = 1,2,… , 𝑝, are unknown autoregressive parameters.  

For simplicity we use   𝑎𝑡 = 𝑒𝑡 − 𝜙1𝑒𝑡−1 − ⋯− 𝜙𝑝𝑒𝑡−𝑝 = Φ(𝐵)𝑒𝑡, where 𝐸(𝑎𝑡) = 0, 𝑉𝑎𝑟(𝑎𝑡) = 𝜎2 and 

𝑎𝑡’s are uncorrelated random variables with constant variance. Here 𝐵 is called the backshift operator and 

where Φ(∙) is the function defining the autoregression. Then using the backshift operator the regression 

model given in (1) can be rewritten as  

Φ(𝐵)𝑦𝑡 = ∑ 𝛽𝑖
𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖 + 𝑎𝑡 ,    𝑡 = 𝑝 + 1,2,… ,𝑁,                                                                        

(3) 

where  

Φ(𝐵)𝑦𝑡 = 𝑦𝑡 − 𝜙1𝑦𝑡−1 − ⋯− 𝜙𝑝𝑦𝑡−𝑝,                                                                                                    (4)

 Φ(𝐵)𝑥𝑡,𝑖 = 𝑥𝑡,𝑖 − 𝜙1𝑥𝑡−1,𝑖 − ⋯− 𝜙𝑝𝑥𝑡−𝑝,𝑖                                                                                             (5)                                                                      

In general, it is assumed that 𝑎𝑡 is normally distributed. For instance, Alpuim and El-Shaarawi [2] 

estimated the parameters of the regression model with AR(p) error term using the OLS estimation method. 

They also used the maximum likelihood (ML) estimation and CML estimation method under the 

assumption of normality and studied the asymptotic properties of the resulting estimators. Beach and 

Mackinnon [5] used ML estimation method to estimate the parameters of AR(1) error term regression 

models. Tiku [17] estimated the parameters by using the modified maximum likelihood (MML) method 

for the regression model with AR(1) error terms under the assumption that the error term has the Long 

Tailed Symmetric (LTS) distribution. There are some other studies used heavy tailed distributions in time 

series. For instance, Hill [7] used tail-trimming and/or weighting to show how robust to any type of light 

or heavy tailed distribution in infinite variance autoregressions case. Also, heavy tailed asymmetrically 

distributed errors in GARCH model were discussed with tail-trimmed QML estimator in Hill [8,9].  

Another challenging problem in a regression analysis is the presence of outliers in data. Since the 

parameter estimators based on normal distribution are very sensitive to the outliers, the corresponding 

estimators will be no longer efficient. One way to combat with the outliers is to use heavy tailed 

distributions as alternatives to the normal distribution. Thus, the t distribution provides a useful alternative 

to the normal distribution for statistical modelling of data sets that have heavier tailed empirical 

distribution. The motivation of this paper is to propose conditional maximum likelihood estimators for 

unknown parameters of a linear regression model with autoregressive errors under the assumption that the 

independent identically distributed (iid) error term 𝑎𝑡 given in equation (2) has a t distribution with known 

degrees of freedom. The estimators for the parameters of interest obtained under this assumption will be 

robust in terms of the influence function. It is known that if the degrees of freedom is estimated along with 

the other parameters the influence function of the resulting estimators will be unbounded and hence they 

are not going to be robust (Lucas [10]). Therefore, the degrees of freedom is usually taken as fixed and 

treated as a robustness tuning parameter in robustness studies, for example see Lange et al. [11].  

  The rest of the paper is organized as follows. In section 2, we first summarize the CML estimation 

method. Then, we move on the CML estimation for the parameters of regression model with AR(p) error 

terms under the assumption that 𝑎𝑡’s have t distribution. We also give the observed Fisher information 

matrix for the estimators. Note that the observed Fisher information matrix will be used in section 4 to 

form confidence intervals and to compute the standard errors of the estimators. In section 3, we give an 
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IRA to compute the estimates. A simulation study and three real data examples are given in section 4 to 

illustrate the performance of the proposed estimators. Finally we conclude the paper with a discussion 

section. 

2. Parameters estimation of the AR(p) error term regression model 

In this section, since the exact likelihood function could be well approximated by the conditional 

likelihood function (Ansley [1]) we will first give the CML estimation method. CML estimators are used 

mainly in cases where ML estimators are difficult to compute. We will briefly give the conditional 

likelihood estimators under the normality assumption and move on the t distribution case. We also provide 

observed Fisher matrices for both cases.  

2.1 Conditional likelihood under normality    

Let  𝑎𝑡’s have the probability density function 𝑓(𝑎𝑡 , 𝜽). If we condition on 𝑎1, 𝑎2, … , 𝑎𝑝, the conditional 

log-likelihood function will be 

𝑙𝑛𝐿 = ∑ 𝑙𝑛𝑓(𝑎𝑡|𝑎1, 𝑎2, … , 𝑎𝑡−𝑝, 𝜽).

𝑁

𝑡=𝑝+1

                                                                                                   (6) 

 Consider the regression model given in (3). If it is assumed that 𝑎𝑡’s are normally distributed the 

conditional log-likelihood function will be as follows (Alpuim and El-Shaarawi [2]). 

𝑙𝑛𝐿 = 𝑐 −
𝑁 − 𝑝

2
𝑙𝑛𝜎2 −

1

2𝜎2
∑  

𝑁

𝑡=𝑝+1 

(Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)

2

                                               (7) 

Taking the derivatives of the conditional log-likelihood function with respect to unknown parameters and 

setting to zero yield the following estimating equations.  

𝜕𝑙𝑛𝐿

𝜕𝛽𝑘
=

1

𝜎2
∑ (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)

𝑁

𝑡=𝑝+1

Φ(𝐵)𝑥𝑡,𝑘 = 0                                                             (8) 

𝜕𝑙𝑛𝐿

𝜕𝜙𝑙
=

1

𝜎2
∑ (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)

𝑁

𝑡=𝑝+1

 (𝑦𝑡−𝑙 − ∑𝛽𝑖

𝑀

𝑖=1

𝑥𝑡−𝑙,𝑖) = 0                                     (9) 

𝜕𝑙𝑛𝐿

𝜕𝜎2
= −

𝑁 − 𝑝

2𝜎2
+

1

2𝜎4
∑ (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)

2𝑁

𝑡=𝑝+1

 = 0                                                  (10) 

Rearranging these equations we get the following estimators. 
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�̂� = [ ∑ Φ̂(𝐵)𝑥𝑡Φ̂(𝐵)𝑥𝑡
𝑇

𝑁

𝑡=𝑝+1

]

−1

[ ∑ Φ̂(𝐵)𝑦𝑡Φ̂(𝐵)𝑥𝑡

𝑁

𝑡=𝑝+1

]                                                                   (11) 

�̂� = 𝑅−1(�̂�)𝑅0(�̂�)                                                                                                                                       (12) 

�̂�2 =
1

𝑁 − 𝑝
∑ (Φ̂(𝐵)𝑦𝑡 − �̂�Φ̂(𝐵)𝑥𝑡)

2
                                                                                           (13)

𝑁

𝑡=𝑝+1

 

where 

𝑅0(𝛽) =

[
 
 
 
 
 
 
 
 
 

∑ 𝑒𝑡𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑒𝑡𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋮

∑ 𝑒𝑡𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1 ]
 
 
 
 
 
 
 
 
 

, 𝑅(𝛽) =

[
 
 
 
 
 
 
 
 
 

∑ 𝑒𝑡−1
2

𝑁

𝑡=𝑝+1

∑ 𝑒𝑡−1𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑒𝑡−1𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1

∑ 𝑒𝑡−2𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑒𝑡−2
2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑒𝑡−2𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1

⋮ ⋮ ⋱ ⋮

∑ 𝑒𝑡−𝑝𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑒𝑡−𝑝𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑒𝑡−𝑝
2

𝑁

𝑡=𝑝+1 ]
 
 
 
 
 
 
 
 
 

     (14) 

 

and Φ̂(𝐵) is the backshift operator with the estimates of  𝜙𝑗. 

Using these equations we can rewrite �̂� and �̂�2, 

�̂� = [�̂�(𝑩)𝑿𝑻�̂�(𝑩)𝑿]
−1

[�̂�(𝑩)𝑿𝑻Φ̂(𝐵)𝑌]                                                                                           (15) 

�̂�2 =
1

𝑁 − 𝑝
[Φ̂(𝐵)𝑌 − �̂�(𝑩)𝑿�̂�]𝑇[Φ̂(𝐵)𝑌 − �̂�(𝑩)𝑿�̂�]                                                                   (16) 

where 

�̂�(𝑩)𝑿 = [Φ̂(𝐵)𝑥𝑡,𝑖], 

Φ̂(𝐵)𝑌 = [Φ̂(𝐵)𝑦𝑡]. 

These estimators depend on the estimators of the other parameters. Therefore, the values of the estimators 

should be computed using numerical methods. We use IRA to compute these estimators to guarantee the 

convergence (see Lange et al. [11], Arslan and Genç [4]).  These estimators correspond also to the OLS 

estimators obtained through the minimization of the sum of squares of the 𝑎𝑡 . These estimators are 

sensitive to the outliers in the data. Therefore, an alternative error distribution should be considered to deal 
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with this problem. In the following section we will assume that 𝑎𝑡’s have a t distribution with known 

degrees of freedom and carry out the estimation under this assumption. 

Further, we also give the observed Fisher information matrix for the unknown parameters of the 

regression model defined in equation (3) with normally distributed error terms. Note that the observed 

Fisher information matrices will be used to compute the standard errors and the confidence intervals in 

simulation study and the real data examples. 

After some straightforward algebra the observed Fisher information matrix for the normal distribution 

case can be obtained as follows. 

   

 

2

2

4

1 ˆ ˆ( ) 0 0
ˆ

1ˆ ˆ ˆ( , , ) 0 0
ˆˆ ( )

0 0
ˆ

TB X B X

F
R

N p



  
 



 
  
 
 

  
 
 

 
  

                                             (17)  

 

2.2 Parameters estimation under t distribution  

Consider the regression model given in equation (3) and assume that 𝑎𝑡’s  have t distribution with the 

density function 

𝑓(𝑎𝑡) =
𝑐𝑣

𝜎
(𝜈 +

𝑎𝑡
2

𝜎2)

−
𝑣+1
2

,                                                                                                                        (18) 

where 𝑐𝑣 =
Γ(

ν+1

2
)𝜈𝜈/2

√𝜋Γ(
𝑣

2
)

 , 𝜈 > 0 degrees of freedom and 𝜎 > 0 scale parameter. Under this assumption the 

conditional log-likelihood function will be obtained as 

𝑙𝑛𝐿 = 𝑙𝑛𝑐𝑣 − (𝑁 − 𝑝)𝑙𝑛𝜎 −
𝑣 + 1

2
∑ ln

𝑁

𝑡=𝑝+1 

[𝑣 +
(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖 )

2
 

𝜎2 ].                 (19) 

Taking the derivatives of log-likelihood function with respect to the unknown parameters and setting them 

to zero yield the following estimating equations. 

𝜕𝑙𝑛𝐿

𝜕𝛽𝑘
=

(𝑣 + 1)

𝜎2
∑

(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖
𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)Φ(𝐵)𝑥𝑡,𝑘

[𝑣 +
(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2 ]

𝑁

𝑡=𝑝+1

= 0,                                               (20) 
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𝜕𝑙𝑛𝐿

𝜕𝜙𝑙
=

(𝑣 + 1)

𝜎2
∑

(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖
𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)(𝑦𝑡−𝑙 − ∑ 𝛽𝑖

𝑀
𝑖=1 𝑥𝑡−𝑙,𝑖)

[𝑣 +
(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2 ]

𝑁

𝑡=𝑝+1

= 0,                                 (21) 

𝜕𝑙𝑛𝐿

𝜕𝜎
= −

(𝑁 − 𝑝)

𝜎
+ (

𝑣 + 1

𝜎3
) ∑

(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖
𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2

[𝑣 +
(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2 ]

 

𝑁

𝑡=𝑝+1

= 0.                        (22) 

Rearranging these equations we get 

𝜕𝑙𝑛𝐿

𝜕𝛽𝑘
=

1

𝜎2
∑ 𝑤𝑡(𝜈) (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)Φ(𝐵)𝑥𝑡,𝑘

𝑁

𝑡=𝑝+1

= 0,                                             (23) 

𝜕𝑙𝑛𝐿

𝜕𝜙𝑙
=

1

𝜎2
∑ 𝑤𝑡(𝜈) (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)(𝑦𝑡−𝑙 − ∑𝛽𝑖

𝑀

𝑖=1

𝑥𝑡−𝑙,𝑖) =

𝑁

𝑡=𝑝+1

0,                       (24) 

𝜕𝑙𝑛𝐿

𝜕𝜎
= −

(𝑁 − 𝑝)

𝜎
+

1

𝜎3
∑ 𝑤𝑡(𝜈) (Φ(𝐵)𝑦𝑡 − ∑𝛽𝑖

𝑀

𝑖=1

Φ(𝐵)𝑥𝑡,𝑖)

2𝑁

𝑡=𝑝+1

= 0                                      (25) 

where  

𝑤𝑡(𝜈) =
𝑣 + 1

[𝑣 +
(Φ(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2 ]

 .                                                                                (26) 

 

These equations yield the following estimators provided that [∑ 𝑤𝑡(𝜈)Φ̂(𝐵)𝑥𝑡Φ̂(𝐵)𝑥𝑡
𝑇𝑁

𝑡=𝑝+1 ]
−1

 

and 𝑅𝑤
−1(�̂�) exist. 

�̂� = [ ∑ 𝑤𝑡(𝜈)Φ̂(𝐵)𝑥𝑡Φ̂(𝐵)𝑥𝑡
𝑇

𝑁

𝑡=𝑝+1

]

−1

[ ∑ 𝑤𝑡(𝜈)Φ̂(𝐵)𝑦𝑡Φ̂(𝐵)𝑥𝑡

𝑁

𝑡=𝑝+1

],                                           (27) 

 

�̂� = 𝑅𝑤
−1(�̂�)𝑅𝑤0(�̂�),                                                                                                                                 (28) 
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�̂�2 =
1

𝑁 − 𝑝
∑ 𝑤𝑡(𝜈) (Φ̂(𝐵)𝑦𝑡 − Φ̂(𝐵)𝑥𝑡

𝑇�̂�)
2
                                                                               (29)

𝑁

𝑡=𝑝+1

 

where 

𝑅𝑤0(𝛽) =

[
 
 
 
 
 
 
 
 
 

∑ 𝑤𝑡𝑒𝑡𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑤𝑡𝑒𝑡𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋮

∑ 𝑤𝑡𝑒𝑡𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1 ]
 
 
 
 
 
 
 
 
 

, 𝑅𝑤(𝛽) =

[
 
 
 
 
 
 
 
 
 

∑ 𝑤𝑡𝑒𝑡−1
2

𝑁

𝑡=𝑝+1

∑ 𝑤𝑡𝑒𝑡−1𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑤𝑡𝑒𝑡−1𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1

∑ 𝑤𝑡𝑒𝑡−2𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑤𝑡𝑒𝑡−2
2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑤𝑡𝑒𝑡−2𝑒𝑡−𝑝

𝑁

𝑡=𝑝+1

⋮ ⋮ ⋱ ⋮

∑ 𝑤𝑡𝑒𝑡−𝑝𝑒𝑡−1

𝑁

𝑡=𝑝+1

∑ 𝑤𝑡𝑒𝑡−𝑝𝑒𝑡−2

𝑁

𝑡=𝑝+1

⋯ ∑ 𝑤𝑡𝑒𝑡−𝑝
2

𝑁

𝑡=𝑝+1 ]
 
 
 
 
 
 
 
 
 

.      (30) 

Further, these equations can be rewritten as  

�̂� = [�̂�(𝑩)𝑿𝑻𝑾�̂�(𝑩)𝑿]
−1

[�̂�(𝑩)𝑿𝑻𝑾Φ̂(𝐵)𝑌],                                                                                 (31) 

�̂�2 =
1

𝑁 − 𝑝
[Φ̂(𝐵)𝑌 − �̂�(𝑩)𝑿�̂�]𝑇𝑾[Φ̂(𝐵)𝑌 − �̂�(𝑩)𝑿�̂�],                                                            (32) 

by using vector notation. Here 

�̂�(𝑩)𝑿 = [Φ̂(𝐵)𝑥𝑡,𝑖]𝑡=𝑝+1,…,𝑁
𝑖=1,…,𝑀

, 

Φ̂(𝐵)𝑌 = [Φ̂(𝐵)𝑦𝑡]𝑡=𝑝+1,…,𝑁
, 

𝑾 = 𝑑𝑖𝑎𝑔{𝑤𝑡}𝑡=𝑝+1,…,𝑁. 

Since the weight function 𝑤𝑡 is a decreasing function of  
(Φ(𝐵)𝑦𝑡−∑ 𝛽𝑖

𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2   the observations with 

larger residuals receive small weights. Therefore, the effect of the corresponding point on the estimator 

will be downweighted. This behavior of the t distribution guarantees the robustness of the resulting 

estimators (Lucas [10], Arslan and Genç [3, 4]). Note that as 𝜈 tends to infinity 𝑤𝑡(𝜈) → 1 and this case 

gives the estimators given in equations (11)-(13).  

Similarly the observed Fisher information matrix for the unknown parameters of the regression model 

defined in equation (3) with the t distributed error terms can be obtained as follows.  
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We should also note that since the estimators given in (27)-(29) are dependent on the weights and 

since the weights are also functions of the estimators these equations cannot be solved explicitly. 

Therefore, the numerical methods are also needed to solve these equations to get the estimates. Because of 

the form of the equations the IRA can be easily implemented to get the estimates as it is done for all the 

procedures based on t distribution. Note that in the t distribution case the IRA is an expectation-

maximization (EM) algorithm so that its convergence is guaranteed (see Lange et al. [11], McLachlan and 

Krishnan, [12] Arslan and Genç [4]). The following section is devoted to the IRA.   

3. Iteratively reweighted algorithm  

Using the updating equations (28, 31, 32) and the weight function given in equation (26) the following 

iteratively reweighted algorithm can be formed to calculate the estimates for, 𝛽, 𝜙 and 𝜎2. Note that the 

degrees of freedom of the t distribution will be taken as known and fixed. 

(i) Set the initial values 𝛽(0), 𝜙(0) 𝑎𝑛𝑑 𝜎2(0)
  and fix a stopping rule 𝛿. 

(ii) Calculate the following weight function for  𝑚 = 0,1,2…      

  

𝑤𝑡
(𝑚)

=
𝑣 + 1

[𝑣 +
(Φ(𝑚)(𝐵)𝑦𝑡 − ∑ 𝛽𝑖

(𝑚)𝑀
𝑖=1 Φ(𝑚)(𝐵)𝑥𝑡,𝑖)

2
  

𝜎2(𝑚) ]

 .                                                                (34) 

 (iii) Using these values calculate    

𝜙(𝑚+1) = 𝑅𝑤
−1(𝑚)(�̂�(𝑚))𝑅𝑤0

(𝑚)
(�̂�(𝑚)).                                                                                                  (35) 

  

(iv) Using 𝑤𝑡
(𝑚)

 and 𝜙(𝑚+1) calculate   

𝛽(𝑚+1) = [𝚽(𝑚+1)(𝑩)𝑿𝑻𝑾(𝑚)𝚽(𝑚+1)(𝑩)𝑿]
−1

[𝚽(𝑚+1)(𝑩)𝑿𝑻𝑾(𝑚)Φ(𝑚+1)(𝐵)𝑌].                (36) 
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(v) Using  𝑤𝑡
(𝑚)

 , 𝜙(𝑚+1) and 𝛽(𝑚+1) calculate  

(𝜎2)(𝑚+1) =
1

𝑁 − 𝑝
[Φ(𝑚+1)(𝐵)𝑌 − 𝚽(𝑚+1)(𝑩)𝑿𝛽(𝑚+1)]

𝑇
𝑾(𝑚) [Φ(𝑚+1)(𝐵)𝑌 − 𝚽(𝑚+1)(𝑩)𝑿𝛽(𝑚+1)]                  (37) 

  

(vi) Repeat the steps (ii)-(v) until the convergence condition 𝑚𝑎𝑥(‖𝛽(𝑚+1) − 𝛽(𝑚)‖, ‖𝜙(𝑚+1) − 𝜙(𝑚)‖, 

‖(𝜎2)(𝑚+1) − (𝜎2)(𝑚)‖) < 𝛿 is satisfied. 

In section 4, we will use this algorithm to compute the CML estimates in simulation and the real data 

examples. 

 

4. Numerical study 

In this section, we give a small simulation study and three real data examples to illustrate the performance 

of the regression estimators obtained from the t distribution (with AR (2) error terms for finite sample 

case) with and without outliers in the data.  The CML estimates are computed using the IRA given in 

section 3. Note that throughout the simulation study and the real data examples the degrees of freedom (𝜈) 

of the t distribution is taken as 3 since the small values such as 3 are suggested for the sake of robustness 

in literature (e.g see Lange et.al, 1989).  

4.1 A simulation study 

Simulation design.  Firstly we generate three independent variables  𝑥𝑡 from standard normal distribution 

( 𝑥𝑡,𝑖 ∼ 𝑁(0,1) ). The values of the parameters are 𝛽 = (𝛽1, 𝛽2, 𝛽3)
′ = (0.1,  0.5,  0.9)′  and  𝜙 =

(𝜙1, 𝜙2)′ = (−0.7, 0.12)′. Note that the AR (2) model values of 𝜙 are taken to guarantee the stationarity 

assumption for the model of the error terms.  Then the values of the response variable are generated using 

Φ(𝐵)𝑦𝑡 = ∑ 𝛽𝑖
𝑀
𝑖=1 Φ(𝐵)𝑥𝑡,𝑖 + 𝑎𝑡.  

Simulation cases. In first case the 𝑎𝑡 ’s in (3) are generated from standard normal distribution 

(𝑎𝑡~𝑁(0,1)) and parameters are estimated by using normal distribution’s conditional likelihood and t 

distribution’s conditional likelihood. In the second case the 𝑎𝑡’s are generated from t distribution with 𝜈 =

3 degrees of freedom (𝑎𝑡~𝑡𝜈(0,1)) and parameters are estimated by using normal and t assumptions 

again. The last case is for the symmetric Pareto distributed error terms, where we use the Pareto 

distribution symmetric by zero as given in [6] with the tail index (shape) parameter  𝜅 = 1.25. For the 

Pareto error case we compute the values of the estimators obtained from the normal and the t distributions.  

Outlier case. To add some outliers to the data 10 percent of 𝑌 is replaced by the points generated from 

𝑁(0, 100).  

Performance measures. Mean squared error (MSE) and bias values are calculated to compare the 

estimators.  These values are calculated by using 𝑅 = 100 replications for the sample sizes 𝑛 = 25, 50 

and 100. Also, using the observed Fisher information matrix given in section 2, the standard errors (SE) 

and the confidence intervals (CIL - CIU) are calculated. 
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 The MSE values and the biases are calculated using 

𝑀𝑆𝐸(�̂�) =
1

𝑅
∑ (�̂�𝑖 − 𝛽)

2𝑅
𝑖=1 , 𝑏𝑖𝑎𝑠(�̂�) = �̅� − 𝛽,  

𝑀𝑆𝐸(�̂�) =
1

𝑅
∑ (�̂�𝑖 − 𝜙)

2𝑅
𝑖=1 , 𝑏𝑖𝑎𝑠(�̂�) = �̅� − 𝜙,  

𝑀𝑆𝐸(�̂�2) =
1

𝑅
∑ (�̂�𝑖

2 − 𝜎2)
2𝑅

𝑖=1 , 𝑏𝑖𝑎𝑠(�̂�2) = 𝜎2̅̅̅̅ − 𝜎2,  

where  �̅� =
1

𝑅
∑ �̂�𝑖

𝑅
𝑖=1  , �̅� =

1

𝑅
∑ �̂�𝑖

𝑅
𝑖=1  ,𝜎2̅̅̅̅ =

1

𝑅
∑ 𝜎�̂�

2𝑅
𝑖=1 . 

Simulation results. Simulation results are given in Tables 1 and 2.  

Simulation results without outliers 

Table 1. Bias, MSE, SE, CIL and CIU values of the estimates without outliers 

True Values (𝛽1, 𝛽2, 𝛽3)
′ = (0.1,  0.5,  0.9)′ , (𝜙1, 𝜙2)′ = (−0.7, 0.12) and 𝜎 = 1 

         Normal Error t Error Paretian Error (𝜅 = 1.25) 

n      Norm    St-t    Norm    St-t   Norm   St-t 

25 

𝛽1 

�̂�1 0.0854 0.0749 0.1135 0.1360 25.3813 -0.2909 

Bias 0.0230 0.0302 -0.0136 -0.0075 25.2813 -0.3909 

MSE 0.0453 0.0578 0.0789 0.0708 26940.5 20.0117 

SE 0.1598 0.3965 0.2678 0.5131 5.0918 0.7380 

CIL 0.0501 -0.0366 0.0082 0.0272 23.4241 -0.5746 

CIU 0.1754 0.2484 0.2189 0.2449 27.3385 -0.0073 

𝛽2 

�̂�2 0.4817 0.4717 0.4945 0.4600 24.2895 -0.0754 

Bias 0.0182 -0.0293 -0.0263 0.0086 23.6061 -0.5754 

MSE 0.0372 0.0656 0.0945 0.1150 61730.1 56.5089 

SE 0.2119 0.2997 0.2235 0.4930 5.4498 1.8644 

CIL 0.4044 0.3513 0.4045 0.3677 22.1946 -0.7921 

CIU 0.6008 0.6417 0.5846 0.5522 26.3843 0.6412 

𝛽3 

�̂�3 0.8959 0.9039 0.8800 0.9008 -20.515 0.6152 

Bias 0.0128 0.0130 0.0112 -0.0125 -21.415 -0.2848 

MSE 0.0468 0.0537 0.0901 0.1110 17290.3 10.3356 

SE 0.1813 0.3596 0.3182 0.4130 2.9110 0.4780 

CIL 0.8266 0.7264 0.7574 0.7370 -21.634 0.4315 

CIU 0.9687 1.0499 1.0025 1.0645 -19.396 0.7989 

𝜙1 

�̂�1 -0.7034 -0.5273 -0.7484 -0.5611 -0.5226 -0.5219 

Bias -0.0326 0.0923 -0.0240 0.0818 0.1774 0.2995 

MSE 0.0715 0.0810 0.0699 0.0618 0.0973 0.1307 

SE 0.0261 0.1414 0.0826 0.2476 0.1617 0.1971 

CIL -0.7136 -0.6208 -0.7833 -0.6007 -0.5845 -0.4763 

CIU -0.6931 -0.4338 -0.7136 -0.5214 -0.4606 -0.3247 

𝜙2 

�̂�2 0.0276 0.0626 0.0283 0.0413 0.2662 0.2888 

Bias -0.1222 -0.1412 -0.1013 -0.1295 0.1462 0.1251 

MSE 0.0832 0.0854 0.0825 0.0669 0.0857 0.0404 

SE 0.1403 0.1397 0.1227 0.1835 0.9441 0.1710 

CIL -0.0644 -0.0111 -0.0213 -0.0027 -0.0987 0.1794 

CIU 0.1196 0.1364 0.0778 0.0852 0.6310 0.3108 
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 �̂� 0.8711 0.6923 1.3911 0.8149 169.849 0.9941 

𝜎 

 

Bias -0.1101 0.3134 0.4137 0.2423 168.849 -0.0059 

MSE 0.0349 0.1105 0.3948 0.1188 652360   0.2501 

SE 0.1241 0.0963 0.2948 0.1381 34.675 0.2017 

CIL 0.7894 0.6490 1.2774 0.7606 156.522 0.9166 

 CIU 0.9300 0.7264 1.5048 0.8692 183.176 1.0717 

   Normal Error t Error Paretian Error (𝜅 = 1.25) 

        Norm   St-t      Norm     St-t      Norm   St-t 

 

𝛽1 

�̂�1 0.0863 0.0792 0.0677 0.0883 -2.9119 0.3695 

50 Bias -0.0137 -0.0208 -0.0323 -0.0117 -3.0119 -0.2695 

MSE 0.0198 0.0258 0.0557 0.0399 499.264 4.5549 

SE 0.3551 0.2667 0.2473 0.3190 1.8167 0.3675 

CIL -0.0121 0.0229 0.0069 0.0252 -3.4155 0.2693 

CIU 0.1847 0.1555 0.1346 0.1513 -2.4083 0.4697 

𝛽2 

�̂�2 0.5004 0.4949 0.5349 0.5310 -1.0789 0.3599 

Bias 0.0004 -0.0051 -0.0349 0.0310 -1.5789 -0.1401 

MSE 0.0118 0.0163 0.0401 0.0307 353.475 2.4658 

SE 0.1746 0.2404 0.2325 0.2985 0.9547 0.9719 

CIL 0.4520 0.4787 0.4687 0.4448 -1.3435 0.0898 

CIU 0.5488 0.5112 0.6010 0.6172 -0.8142 0.6300 

𝛽3 

�̂�3 0.8986 0.9083 0.9122 0.9088 1.7127 1.1110 

Bias -0.0014 0.0083 -0.0122 0.0088 -2.6127 0.2110 

MSE 0.0186 0.0196 0.0496 0.0310 792.217 1.4357 

SE 0.2209 0.1215 0.1092 0.2660 2.0044 1.3471 

CIL 0.8363 0.8831 0.8832 0.8802 -2.2683 0.7256 

CIU 0.9610 0.9531 0.9411 0.9374 -1.1572 1.4965 

𝜙1 

�̂�1 -0.7449 -0.6906 -0.6860 -0.5060 -0.5743 -0.4243 

Bias -0.0449  0.1968 0.0140 0.1932 0.1257 0.2757 

MSE  0.0264 0.0431 0.0273 0.0567 0.0426 0.1184 

SE 0.2443 0.0962 0.0974 0.1196 0.0725 0.3794 

CIL -0.8122 -0.8290 -0.7127 -0.5345 -0.6029 -0.5284 

CIU -0.6775 -0.5575 -0.6593 -0.4747 -0.5627 -0.3202 

𝜙2 

�̂�2 0.0543 0.0803 0.0788 0.0945 0.1740 0.1980 

Bias -0.0657 -0.0441 -0.0412 -0.0896 0.1078 0.0780 

MSE 0.0309 0.0206 0.0279 0.0199 0.0347 0.0210 

SE 0.1643 0.1237 0.1146 0.1161 0.0825 0.3210 

CIL 0.0076 0.0390 0.0464 0.0559 0.1512 0.1090 

CIU 0.1010 0.1127 0.1112 0.1250 0.1969 0.2871 

𝜎 

�̂� 0.9334 0.7397 1.5421 0.9104 60.540 1.1750 

Bias -0.0666 -0.2603 0.5421 -0.0896 59.540 0.1750 

MSE 0.0170 0.0742 0.4703 0.0199 25203 0.3459 

SE 0.1347 0.0836 0.2265 0.1157 8.7382 0.1975 

CIL 0.8960 0.7178 1.4804 0.8772 58.1179 1.1198 

CIU 0.9707 0.7616 1.6038 0.9435 65.9622 1.2303 

         

   Normal Error t Error Paretian Error (𝜅 = 1.25) 

        Norm    St-t      Norm    St-t      Norm   St-t 

100 

𝛽1 
�̂�1 0.1001 0.0964 0.1288 0.1085 4.9025 0.1551 

Bias 0.0001 -0.0036 0.0288 0.0085 4.8025 0.0551 

MSE 0.0072 0.0106 0.0186 0.0103 2028.2 0.7551 
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SE 0.1271 0.1666 0.2197 0.1995 3.0280 0.3802 

CIL 0.0805 0.0769 0.0929 0.0653 4.2516 0.0596 

CIU 0.1197 0.1159 0.1647 0.1516 5.5535 0.3095 

𝛽2 

�̂�2 0.5123 0.5129 0.5054 0.4990 19.0216 0.3903 

Bias 0.0123 0.0129 0.0054 -0.0010 18.5216 -0.1097 

MSE 0.0078 0.0101 0.0186 0.0135 9080.24 1.5062 

SE 0.1415 0.1827 0.2314 0.2146 3.0746 0.4928 

CIL 0.4969 0.4885 0.4890 0.4632 18.3705 0.1974 

CIU 0.5277 0.5372 0.5217 0.5348 19.6726 0.5832 

𝛽3 

�̂�3 0.8996 0.9047 0.9211 0.9197 20.3116 0.7991 

Bias -0.0004 0.0047 0.0211 0.0197 19.4116 -0.1009 

MSE 0.0062 0.0083 0.0174 0.0146 3555.75 0.6635 

SE 0.1340 0.1736 0.2144 0.1940 3.1505 0.2957 

CIL 0.8745 0.8754 0.8888 0.8853 19.8952 0.7643 

CIU 0.9248 0.9341 0.9534 0.9541 20.7280 0.8339 

𝜙1 

�̂�1 -0.7217 -0.5309 -0.6996 -0.5160 -0.6227 -0.3619 

Bias -0.0217 0.1691 0.0004 0.1840 0.0773 0.3381 

MSE 0.0148 0.0389 0.0091 0.0425 0.0188 0.1393 

SE 0.0881 0.0795 0.1357 0.0807 0.6589 0.7619 

CIL -07408 -0.5467 -0.7180 -0.5330 -0.6344 -0.3768 

CIU -07026 -0.5150 -0.6812 -0.4990 -0.6110 -0.3469 

𝜙2 

�̂�2 0.0912 0.0980 0.1072 0.0973 0.1961 0.2485 

Bias -0.0288 -0.0220 -0.0128 -0.0227 0.0761 0.1285 

MSE 0.0161 0.0101 0.0110 0.0070 0.0161 0.0276 

SE 0.0882 0.0772 0.1359 0.0724 1.0997 0.7410 

CIL 0.0693 0.0797 0.0868 0.0807 0.1826 0.2337 

CIU 0.1131 0.1162 0.1276 0.1139 0.2096 0.2632 

𝜎 

 

�̂� 0.9748 0.7721 1.5719 0.9178 175.337 1.2211 

Bias -0.0252 -0.2279 0.5719 -0.0822 174.332 0.2211 

MSE 0.0064 0.0550 0.4113 0.0126 444540 0.3115 

SE 0.0891 0.0612 0.1660 0.0843 16.5886 0.1521 

CIL 0.9555 0.7603 1.5407 0.9012 191.887 1.1916 

CIU 0.9941 0.7839 1.6030 0.9345 159.144 1.2507 

         

Table 1 displays the simulation results for the case without outlier in the data with different sample sizes. 

From the table we can say that error terms based on normal distribution and t distribution cases have 

similar performance. When the error distribution is normal the CML estimators based on the normal 

distribution perform the best and the performance of the CML estimator based on the t distribution is 

comparable with the estimators based on the normal distribution. On the other hand, if the error 

distribution is the t distribution the estimators based on t distribution are the best, and it is followed by the 

normal distribution. Finally, for the Pareto distributed error case the estimators based on the normal 

distribution drastically affected and give the worst results with the larger MSE and the bias values. But, 

for the Pareto distributed error case the estimators obtained from the t distribution behave much better 

than the normal case. 
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Simulation results with 10% outliers 

Table 2. Bias, MSE, SE, CIL and CIU values of the estimates with outliers  

True Values (𝛽1, 𝛽2, 𝛽3)
′ = (0.1,  0.5,  0.9)′ , (𝜙1, 𝜙2)′ = (−0.7, 0.12) and 𝜎 = 1 

   Normal Error t Error 

n Parameter  Normal           t Normal                   t 

  �̂�1 -0.1805 0.1277 -0.7210 -0.0001 

25 
𝛽1 

Bias -0.2805 0.0277 -0.8210 -0.1001 

MSE 14.395 0.0666 24.5021 0.1529 

 SE 0.7206 0.6763 0.6216 0.6371 

 CIL -0.3517 -0.2601 -0.8925 -0.2184 

 CIU -0.0094 0.5154 -0.5494 0.2182 

 �̂�2 1.1081 0.5161 0.4523 0.5571 

𝛽2 
Bias 0.6081 0.0161 -0.0477 0.0571 

MSE 19.419 0.1170 14.6355 0.2807 

 SE 2.2292 0.7016 0.6484 0.5687 

 CIL 0.9673 0.1159 0.2394 0.2805 

 CIU 1.2490 0.9163 0.6652 0.8336 

 �̂�3 0.2261 0.9344 0.6559 0.9139 

𝛽3 
Bias -0.6739 0.0344 -0.2441 0.0139 

MSE 15.333 0.0984 18.1168 0.1785 

 SE 2.2848 0.8055 0.9610 0.9656 

 CIL 0.0442 0.7948 0.5443 0.7959 

 CIU 0.4079 1.0740 0.7674 1.0320 

 �̂�1 -0.0335 -0.2303 0.0294 -0.2678 

𝜙1 
Bias 0.6665 0.4697 0.7294 0.4322 

MSE 3.0020 0.3129 2.1621 0.3226 

 SE 5.2471 0.0421 0.3258 0.0030 

 CIL -0.2352 -0.3086 -0.1113 -0.3572 

 CIU 0.1683 -0.1521 0.1701 -0.1784 

 �̂�2 -2.0472 0.1866 -1.7184 0.2123 

𝜙2 
Bias -2.1672 0.0666 -1.8384 0.1005 

MSE 19.1661 0.0970 13.2772 0.0923 

 SE 2.2688 0.0995 0.3081 0.1152 

 CIL -2.1668 0.0904 -2.2067 0.1214 

 CIU -1.9275 0.2829 -1.2301 0.3031 

 �̂� 17.8423 0.9916 19.3621 1.1540 

𝜎 

 

Bias 16.8423 -0.0084 18.3621 0.1540 

MSE 417.615 0.0277 452.471 0.0759 

  SE 87.2684 0.1956 4.2045 0.2637 

  CIL 16.3839 0.9112 17.7795 1.0451 

  CIU 19.3007 1.0720 20.9447 1.2628 

   Normal Error t Error 

   Normal                  t Normal                    t 

  �̂�1 -0.2296 0.1139 -0.2276 0.0913 

50 
𝛽1 

Bias -0.3296 0.0139 -0.3276 -0.0087 

MSE 11.890 0.0363 9.6600 0.0531 

 SE 30.410 0.4740 2.9891 0.7061 

 CIL -0.8091 -0.0874 -0.6726 -0.0615 

 CIU 0.3500 0.3152 0.2173 0.2440 
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 �̂�2 0.9483 0.4933 0.3304 0.5128 

𝛽2 
Bias 0.4483 -0.0067 -0.1696 0.0128 

MSE 14.957 0.0228 13.637 0.0557 

 SE 25.740 0.3973 2.8076 0.4466 

 CIL 0.3299 0.3797 -0.2893 0.3497 

 CIU 1.5667 0.6069 0.9501 0.6758 

 �̂�3 0.4665 0.8961 0.9969 0.9010 

𝛽3 
Bias -0.4335 -0.0039 0.0969 0.0010 

MSE 16.155 0.0307 10.6562 0.0540 

 SE 31.805 0.2983 1.4603 0.7257 

 CIL 0.1967 0.7335 0.5512 0.8402 

 CIU 0.7363 1.0587 1.4426 0.9619 

 �̂�1 0.0013 -0.2284 0.0789 -0.2730 

𝜙1 
Bias 0.7013 0.4716 0.7789 0.4270 

MSE   0.9785 0.2699 1.0454 0.2211 

 SE 3.8399 0.1041 0.3321 0.1633 

 CIL -0.0391 -0.2299 0.0054 -0.2899 

 CIU 0.0417 -0.2269 0.1524 -0.2560 

 �̂�2 -0.3809 0.2138 -0.3230 0.1971 

𝜙2 
Bias -0.7013 0.0938 -0.4430 0.0771 

MSE 0.9788 0.0449 1.4744 0.0450 

 SE 0.3777 0.1455 0.9165 0.1320 

 CIL -0.5184 0.1850 -0.5298 0.1826 

 CIU -0.2434 0.2427 -0.1163 0.2116 

 �̂� 23.1810 1.0546 22.1079 1.2178 

𝜎 

 

Bias 22.1810 0.0546 21.1079 0.2178 

MSE 557.262 0.0189 592.552 0.0812 

  SE 3.3555 0.1666 3.3084 0.2140 

  CIL 22.2536 1.0101 21.2234 1.1584 

  CIU 24.1085 1.0991 22.9924 1.2771 

   Normal Error t Error 

   Normal                  t Normal                   t 

  �̂�1 0.3444 0.0977 0.5861 0.1064 

100 
𝛽1 

Bias 0.2444 -0.0023 0.4861 0.0064 

MSE 6.6409 0.0164 7.8438 0.0199 

 SE 5.4338 0.3981 4.7214 0.4410 

 CIL -0.2259 0.0287 0.3555 0.0258 

 CIU 0.9146 0.1668 0.8168 0.1869 

 �̂�2 0.5080 0.5049 0.9318 0.4921 

𝛽2 
Bias 0.0080 0.0049 0.4318 -0.0079 

MSE 8.6819 0.0164 8.2327 0.0310 

 SE 8.2289 0.4066 4.1940 0.3476 

 CIL -0.2487 0.4306 -0.6039 0.4320 

 CIU 1.2647 0.5793 2.4675 0.5521 

 �̂�3 0.9028 0.9085 0.6209 0.9054 

𝛽3 
Bias 0.0028 0.0085 -0.2791 0.0054 

MSE 5.9380 0.0162 11.6861 0.0278 

 SE 9.1633 0.2197 5.5664 0.1939 

 CIL -0.0449 0.8551 -1.4063 0.8350 

 CIU 1.8505 0.9619 2.6481 0.9759 



15 

 

 �̂�1 0.0245 -0.1722 -0.0047 -0.2039 

𝜙1 
Bias 0.7245 0.5278 0.6953 0.4961 

MSE 0.6194 0.3110 0.5554 0.2652 

 SE 0.7856 0.0835 0.0976 0.0734 

 CIL 0.0101 -0.1792 -0.0167 -0.2183 

 CIU 0.0389 -0.1653 0.0073 -0.1894 

 �̂�2 -0.1095 0.2172 -0.0639 0.2186 

𝜙2 
Bias -0.2295 0.5278 -0.1839 0.0986 

MSE 0.1745 0.0259 0.1300 0.0281 

 SE 0.3773 0.0513 0.0244 0.0555 

 CIL -0.1226 0.2068 -0.0763 0.1989 

 CIU -0.0965 0.2275 -0.0515 0.2383 

 �̂� 27.4424 1.1533 28.8648 1.3182 

𝜎 
Bias 26.4424 0.1533 27.8648 0.3182 

MSE 770.938 0.0422 755.250 0.1214 

  SE 2.9298 0.1340 2.7141 0.1875 

  CIL 26.8991 1.1269 28.2933 1.2838 

  CIU 27.9858 1.1796 29.4363 1.3526 

 

Table 2 shows the simulation results with 10 percent outlier in the data. When outliers are introduced in 

the data the estimators based on normal distribution are drastically worsen which is reflected to the higher 

MSE values. However, the estimators based on t distribution still have excellent performance with 

outliers. The estimators based on t distribution superior to the estimators of the normal distribution in 

terms of MSE and bias values.  

4.2 Real data examples 

Example 1. In this example we will analyze the data set given by Sheather [16]. The data shows that 

Australian Film Commission’s (ACF) yearly gross box office receipts from movies screened in Australia. 

Table 3 shows the data set. In that book two different scenarios have been applied to this data set. The first 

one is the ordinary regression model and the second one is the regression model with autoregressive error 

terms. In this paper we also consider two models and estimate the parameters of interest using the normal 

and t distributions. Table 4 shows the summary of the estimates, standard errors and the 95% confidence 

intervals for �̂�  and �̂� . We calculated the standard errors and the 95% confidence intervals using the 

observed Fisher information.  

                        

      Table 3. Australian Gross Box Office Results from 1976 to 2007  

Gross box office 

($M) Year 

Gross box office 

($M) Year 

95.3 1976 334.3 1992 

86.4 1977 388.7 1993 

119.4 1978 476.4 1994 

124.4 1979 501.4 1995 

154.2 1980 536.8 1996 

174.3 1981 583.9 1997 
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210 1982 629.3 1998 

208 1983 704.1 1999 

156 1984 689.5 2000 

160.6 1985 812.4 2001 

188.6 1986 844.8 2002 

182.1 1987 865.8 2003 

223.8 1988 907.2 2004 

257.6 1989 817.5 2005 

284.6 1990 866.6 2006 

325 1991 895.4 2007 

 

 

We consider the following model 

𝐺𝑟𝑜𝑠𝑠𝐵𝑜𝑥𝑂𝑓𝑓𝑖𝑐𝑒 = 𝛽0 + 𝛽1𝑌𝑒𝑎𝑟𝑠 + 𝑒𝑡                                                                          

and we assume that the error terms have AR(1) model. The LS estimates show that 𝛽0 is insignificant so 

that 𝛽0 is not included in the model. The LS estimates are used as the initial values for the algorithms.  

Table 4. Parameter estimates for Australian Gross Box Office Results 

  Normal t 

 �̂�1 27.1927 26.7505 

𝛽1 SE 0.4263 0.7030 

 95% CI (27.0449) – (27.3404) (26.5069) – (26.9941) 

 �̂� 0.8816 0.2558 

𝜙 SE 2.9578 0.0066 

 95% CI (-0.1436) – (1.9067) (0.2358) – (0.2817) 

AIC 

BIC 

344.2041   344.2835 

347.1356   347.2149 

 

Table 4 gives a summary of estimation with both cases. The table shows the estimates standard errors and 

95% confidence intervals for two different estimation methods.  
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Figure 1.  Australian Gross Box Office Results data set estimated by t and normal distributions methods 

Figure 1 shows the fitted regression lines on the data. The solid line shows the fitted regression obtained 

from the t distribution and the dashed line corresponds to the normal case. When data has no outlier the 

fitted lines obtained from the normal and the t distributions have similar behavior. 

   

Example 2. In this example we will analyze the data set given by Rousseeuw and Leroy [15]. The data 

shows the proportion of the number of ten million international phone calls from Belgium in the years 

1950-1973. From Figure 2 we can observe that there are outliers in the data.  Rousseeuw and Leroy [15] 

modeled this data set with a linear regression model to illustrate the performance of the robust regression 

method the least median of squares (LMS). The following table displays the data.  

Table 5. Number of International Calls from Belgium  

Number of Callsa 

(𝑦𝑖) 

Year 

(𝑥𝑖) 

Number of Callsa 

(𝑦𝑖) 

Year 

(𝑥𝑖) 

0.44 50 1.61 62 

0.47 51 2.12 63 

0.47 52 11.90 64 

0.59 53 12.40 65 

0.66 54 14.20 66 

0.73 55 15.90 67 

0.81 56 18.20 68 

0.88 57 21.20 69 

1.06 58 4.30 70 

1.20 59 2.40 71 

1.35 60 2.70 72 

1.49 61 2.90 73 
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a In tens of millions.  

We observe that the OLS residuals show an autocorrelated structure with type AR(1). This observation 

based on autocorrelation function and the partial autocorrelation function graphs of the OLS residuals. 

Therefore, we use a regression model with autoregressive error term with AR(1)  to model this data set 

and use normal and the t distribution to obtain estimates for the parameters.  The following table gives the 

summary of the estimates along with the standard errors and the 95% confidence intervals. We also 

provide the values of the AIC and BIC criteria. The values of AIC and BIC show that the t distribution 

gives the better fit then the normal distribution. It should be noticed that the estimates obtain from t 

distribution are much closed to the values obtained from the LMS. 

 

Table 6. Parameter Estimates for International Calls From Belgium 

  Normal t 

 �̂�0 -13.8142 -5.3724 

𝛽0 SE 10.9242 11.6686 

 95% CI (-18.1848) – (-9.4436) (-10.0408) – (-0.7040) 

 �̂�1 0.2980 0.1131 

𝛽1 SE 0.1796 0.1918 

 95% CI (0.2262) – (0.3699) (0.0363) – (0.1898) 

 �̂� 0.7366 0.1627 

𝜙 SE 50.0647 0.2422 

 95% CI (-19.2934) – (20.7667) (0.0658) – (0.2596) 

AIC 

BIC 

61.3656 37.4305 

120.2654 72.3951 

 

 

Figure 2.  Number of International Phone Calls from Belgium Data Set Estimated by t and Normal 

Distributions 
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Figure 2 depicts the scatter plot of the data with the fitted regression lines obtain from normal and the t 

distributions. From this figure we observe that unlike the fitted line obtain from the normal distribution, 

the fitted line from the t distribution is not affected from the outliers. 

Example 3. We use the data set has been previously analyzed by Ramanathan [14] to show the 

performance of autoregressive error terms regression model. The data provides consumption of electricity 

by residential customers served by San Diego Gas and Electric Company. This data set consists of 87 

quarterly observations for each 4 covariates from the second quarter of 1972 through fourth quarter of 

1993. The response variable is electricity consumption as measured by the logarithm of the kwh (LKWH) 

sales per residential customer. The explanatory variables are the per-capita income (LY), the price of 

electricity (LPRICE), cooling degree days (CCD) and heating degree days (HDD). The linear regression 

model and the expected signs of the 𝛽’s considered in Ramanathan [14] are as follows:  

𝐿𝐾𝑊𝐻 = 𝛽0 + 𝛽1𝐿𝑌 + 𝛽2𝐿𝑃𝑅𝐼𝐶𝐸 + 𝛽3𝐶𝐷𝐷 + 𝛽4𝐻𝐷𝐷 + εt 

𝛽1 > 0,  𝛽2 < 0, 𝛽3 > 0, 𝛽4 > 0. 

 

It is pointed out by Ramanathan [14] that when the OLS method is used to obtain the estimates the signs 

of LPRICE, CDD and HDD are consistent with the expected ones, but estimation of LY has the reverse 

sign. They note that this unexpected result may happen due to ignoring the autocorrelation structure of the 

error term, hence they suggest using autoregressive error term regression model to model the data. They 

select the AR order 4 which minimizes the BIC. Then, they used the OLS method to find the estimators 

for the parameters, and they observed that the sign of the LY is changed towards the expectations. 

Here we use the normal and the t distributions as the error distribution and obtain the estimators for the 

parameters of interest. In Table 7 we give the estimates and the AIC values obtained from the normal and 

the t cases. Note that the estimates obtained from the normal distribution are the same with the OLS 

estimates for the AR(4) model given in Ramanathan [14].  

Table 7. The estimated coefficients without outlier 

  OLS LS LASSO Bridge MMLASSO MMBridge 

LY �̂�𝟏 -0.00234 0.18625 0.05879 - 0.14879 - 

LPRICE �̂�2 -0.01856 -0.09354 -0.08455 -0.08563 -0.06455 -0.08563 

CDD �̂�3 0.06365 0.00029 0.00028 0.00028 0.00028 0.00028 

HDD �̂�4 0.08564 0.00022 0.00022 0.00023 0.00022 0.00023 

AR order  - 4 4 4 4 4 

 

Table 7. The estimated coefficients with outlier 

  OLS LS LASSO Bridge MMLASSO MMBridge 

LY �̂�𝟏 -2.69756 1.69845 3.65769 - 0.25654 - 

LPRICE �̂�2 -0.96123 -0.00154 -0.98555 -0.64786 -0.00547 -0.02645 

CDD �̂�3 0.57743 0.07264 0.64135 0.91231 0.00072 0.00036 

HDD �̂�4 0.96874 0.04622 0.95344 0.84521 0.00095 0.00041 

AR order  - 4 4 4 4 4 
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We notice from this table that unlike the OLS estimate without AR(4) structure the sign of 𝛽1 is positive 

when the autoregressive errors are assumed as Ramanathan [14] reported. Further, when the estimation is 

carried out using the t distribution, the AIC value is smaller than the AIC obtained from the normal 

distribution. Thus, it can be concluded that the t distribution may provide better fit than the normal 

distribution for this data. 

 

5. Discussion 

In this paper, we have proposed to use the t distribution as an alternative to the normal distribution as the 

error distribution in linear regression model with autoregressive error terms. The simulation results and the 

real data examples have shown that the t and the normal distributions give similar results when there is no 

outlier in the data. On the other hand, when the data have some outliers the t distribution has better 

performance than the normal distribution for all the settings. Further, Example 3 has shown that the OLS 

method may fail to accurately estimate the unknown parameters when the error terms have autocorrelation 

structure. However, when the autoregressive error form is introduced into the model the estimates are 

correctly obtained in terms of sign from the OLS method, the normal and the t distributions. For the same 

example we have also noticed that the result obtained from the t distribution is better than the result 

obtained from the normal according to AIC values, which may show that the t distribution can be better 

model than the normal distribution. To sum up, all of these results show that the t distribution can be used 

as an alternative to the normal distribution for parameter estimation in a linear regression model with 

autoregressive error terms when the data sets have outliers and/or heavy tailed error distributions.  
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