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Abstract

We present global and local likelihood-based tests to evaluate stationarity in tran-

sition models. Three motivational studies are considered. A simulation study was carried

out to assess the performance of the proposed tests. The results showed that they present

good performance with the control of the type-I error, especially for ordinal responses, and

control of the type-II error, especially for the nominal case, and asymptotically they are close

to the classical test performance. They can be executed in a single framework without the

need to estimate the transition probabilities, incorporating both categorical and continuous

covariates, and used to identify sources of non-stationarity.

1. Introduction

The class of transition models are based on the Generalized Linear Model (GLM).

This methodology is useful for the analysis of longitudinal data, especially, with categori-

cal data. In these cases, the possible dependence within longitudinal data is incorporated

through a Markov-type stochastic process, where the response categories form the state-

space, i.e., S = {1, 2, 3, . . . , k}, for a k-category response. Additionally, for an ordinal

response, the state-space is considered to have the natural ordering of the integers. Here,

we consider a discrete-time process, where τ = {0, 1, 2, . . . , T}, corresponds to the set of

specific time points at which the data are observed. The first-order Markov assumption for



responses {Yτ} is described by the conditional probability:

P (Yt = b | Y(t−1) = a, Y(t−2) = c, . . . , Y(0) = u) = P (Yt = b | Y(t−1) = a) = πab(t− 1, t) (1)

with a, b, c, . . . , u ∈ S = {1, 2, . . . , k} and t ∈ τ = {0, 1, . . . , T}. This assumption (1) defines

the transition probabilities in a Markov chain and it means that an individual’s state at the

time t does not depend the complete history of the process but only on the state at time

t − 1 (Jones and Smith, 2001). These probabilities may be represented in a one-step k × k

transition matrix:

P (t− 1, t) =



π11(t− 1, t) π12(t− 1, t) . . . π1k(t− 1, t)

π21(t− 1, t) π22(t− 1, t) . . . π2k(t− 1, t)
...

... . . .
...

πk1(t− 1, t) πk2(t− 1, t) . . . πkk(t− 1, t)


.

In order to simplify the mathematical notation we hereafter write πab(t−1, t) = πab(t)

and P (t − 1, t) = P (t), where the argument t indicates time dependence of the transition

probabilities. Also, if these transition probabilities are homogeneous over time, we have

πab(t) = πab for all t ∈ τ . In this case we can say the process is stationary and there

is a unique transition matrix, P . This assumption is very important in transition models

because it simplifies the matrix of transition probabilities as well as the number of unknown

parameters. Hence, general hypotheses of interest are:

H0 : πab(t) = πab for all t = 1, 2, . . . T, for all a, b ∈ S = {1, 2, . . . , k};

H1 : πab(t) 6= πab(s) for some t 6= s and some a, b ∈ S. (2)

In matrix notation, the hypotheses (2) are H0 : P (t) = P , for all t = 1, 2, . . . T against H1 :

P (t) 6= P (s), for some t 6= s. To evaluate these hypotheses, Anderson and Goodman (1957)

presented the test:

ξ =
T∑
t=1

k∑
a=1

k∑
b=1

na(t− 1)[π̂ab(t)− π̂ab]2

π̂ab
, (3)

where na(t−1) is the number of individuals that are in category a at time t−1, and π̂ab and

π̂ab(t) are estimates of transition probabilities under H0 and H1, respectively. It is shown
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that, asymptotically, the ξ statistic has a χ2
v distribution, for some appropriate degrees

of freedom v. This test (3) was originally proposed for nominal data from homogeneous

populations (see Anderson and Goodman, 1957), i.e., without the effect of stratifications,

giving v = k(k − 1)(T − 1). Sometimes, the number of states that influence the present

individual state is greater than one and this leads to a q-order Markov chain, q > 1. For

more details on Markov chains and stochastic processes, see Stirzaker (2005) and Jones and

Smith (2001). For the estimation of the transition matrix elements, Good (1955), Anderson

and Goodman (1957), Goodman (1962), Lindsey (1995, 2004) and Agresti (2012) describe

the likelihood estimation procedure, where the estimators π̂ab(t) and π̂ab coincide with the

observed relative frequencies of specific contingency tables.

In this paper, these transition probabilities are estimated using a GLM, which is

more flexible as it allows the inclusion of covariates. These corresponds to the so-called

Markov transition models (see Diggle et al., 2002 and Molenberghs and Verbeke, 2005),and

allow the study of what happens to a response category from one moment of time to an-

other, as well as assessing the effects of covariates on the transition probabilities. The aim

of this work is to present a new test to assess stationarity in such transition models and

also to identify sources of non-stationarity. This is particularly relevant because when the

stationarity assumption is met there are fewer parameters to be estimated and the model is

more easily interpreted, but, often in practice, this important condition is not checked.

2. Examples and Methods

2.1. Examples

We present three experimental studies as motivational examples in which transition

models can be applied.

2.1.1. Example 1: respiratory data

This study assessed the individual respiratory condition of 111 patients with respi-

ratory problems, at baseline and four further visits during the study period. The patients

were followed up by two medical centres and were randomized to receive either an active

or placebo treatment. The respiratory condition of each patient was classified according to
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a set of five ordinal classes, which reflects a response scale of the less favourable to more

favourable (1=terrible, 2=bad, 3=moderate, 4=good, 5=excellent). The covariates for this

study were sex and age. More details are given by Koch et al. (1990).

2.1.2. Example 2: pig behaviour data

This data set was a part of a study developed by Castro (2016), with 124 animals

measured monthly over 4 time occasions, from March to July 2014. The design was com-

pletely randomized with a 2×4 factorial treatment structure, corresponding to combinations

of two environmental enrichment levels (E1: with nvironmental enrichment and E2: without

environmental enrichment) and four genetic lineages (L1; L2; L3; L4). In this experiment,

environmental enrichment consists of the use of simple objects in the pens (suspended chains

and plastic containers of two different sizes). The response variable of interest is a score mea-

suring the degree of lesions at the front of the animal, that were classified as: 1: absence of

lesions; 2: moderate degree of lesions; and 3: serious lesions. The lesion degree is an indica-

tor of aggressive behaviour among the animals. More details on this data set and design are

available in Castro (2016).

2.1.3. Example 3: agronomic data

The research studies from Pereira et al. (2015a, 2015b), involve an experiment on

an elephant grass pasture grazed by dairy cows. The experiment was a complete randomized

block design with a 2 × 2 factorial treatment structure, corresponding the combinations of

two pre-grazing conditions and two post-grazing heights. The response variable was the type

of vegetation observed in the field, which was classified as 1: tussocks, 2: bare ground, and

3: weeds. Observations were taken at 40 points in each one of the four paddocks present in

each block over six seasons, from January 2011 to April 2012. As there are always 40 points

observed in each paddock we have repeated measures and there were, initially, 40×16 = 640

points per season. However, in early spring, one of the paddocks was lost and so the total

number of observations was 600. In this work, we used this study as motivation and the

original data set was used to obtain simulated data with first order stochastic dependence,

but without block effects for the sake of simplicity.
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2.2. Methods

2.2.1. Transition models

When Yt represents a response at time t, which depends on the previous responses,

i.e., {y0, y1, . . . , yt−1}, as well as a set of covariates, we have the so called transition models.

If f(y0, y1, . . . , yT ) is a joint distribution of the vector (Y0, Y1, . . . , YT ), disregarding the co-

variate effects, these models use the factorization:

f(y0, y1, . . . , yT ) = f(y0)f(y1 | y0)f(y2 | y0, y1) . . . f(yT | y0, y1, . . . , yT−1), (4)

and are, therefore, conditional models (Agresti, 2012). Considering the first-order Markov

assumption (1) the expression (4) reduces to

f(y0, y1, . . . , yT ) = f(y0)f(y1 | y0)f(y2 | y1) . . . f(yT | yT−1). (5)

while for general order q dependence we can write (4) as

f(y0, y1, . . . , yT ) = f(y0, . . . , yq−1)f(yq | y0, . . . , yq−1) . . . f(yT | yT−q, . . . , yT−1)

= f(hq)f(yq | hq)f(yq+1 | hq+1) . . . f(yT | hT ). (6)

where ht = (yt−1, yt−2, . . . , yt−q).

These concepts can be extended to longitudinal data with covariates by using GLMs

and extensions, in which the parameters that relate to covariates and previous responses are

defined in the linear predictor (see, for example, Zeger and Liang, 1992; Diggle et al., 2002;

Molenberghs and Verbeke, 2005). Due to the decomposition in (6), conditional transition

models (conditioning on the initial history hq) can be fitted to data by standard techniques

for GLMs with independent data. The data dependence is incorporated by the presence of

the previous responses (history) in the linear predictor.

In this context, let yi = (yi0, yi2, . . . , yiT )′ be the (T + 1) × 1) vector of response

variables for the i-th individual (i = 1, 2, . . . , N), xit = (xit1, . . . , xitp)
′ an associated (p ×

1) vector of covariates and hit = (yi(t−1), yi(t−2), . . . , yi(t−q)) the (q × 1) vector of previous

responses, i.e., the q-step history for individual i at time t. According to Diggle et al. (2002), a
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Markov transition model specifies a generalized linear model for the random variable Yit | hit,

that is assumed to have a distribution that belongs to the canonical exponential family and

the conditional expectation, µCit = E(Yit | hit), is defined as:

g(µCit) = ηit = x′itβ +
s∑
r=1

αrf
∗
r (hit), (7)

where g(µCit) is a link function and f ∗r are functions that define the structure of the transition

model in the linear predictor (stochastic dependence). Also, the conditional variance is given

by vCit = Var(Yit | hit) = φv(µCit), where v(.) is a variance function and φ a known dispersion

parameter. The vector δ = (β,α) represents the weights that the explanatory variables have

on transition probabilities, in which β, of dimension p× 1, is associated with the covariates,

and α is associated with the history (the previous responses) and has a dimension that

depends on both the order q and the specific form of the functions f ∗r . These parameters

are estimated by maximum likelihood and when the model is assumed to be stationary,

only one model is fitted using a sum of individual contributions to the likelihood function

(Azzalini, 1983; Diggle et al., 2002; Molenberghs and Verbeke, 2005). Thus, considering a

stationary transition model of order q, from (6) the contribution to the likelihood function

of the i-th individual is given by:

f(yi0, yi2, . . . , yi(q−1))
T∏
t=q

f(yit | yi(t−1), yi(t−2), . . . , yi(t−q)).

Conditioning on the initial history hit, a conditional likelihood for the regression parameters

δ in a generalised linear model is given by

L(δ) ∝
N∏
i=1

f(yiq, . . . , yiT | yi0, . . . , yi(q−1)) =
N∏
i=1

T∏
t=q

f(yit | hit) =
T∏
t=q

N∏
i=1

f(yit | hit), (8)

which preserves the relation of stochastic dependence through the vector hit. To maximize

the conditional likelihood function (8), a Newton-Raphson iterative method can be used that

reduces to iteratively reweighted least squares, for regressing Yit, t = q, . . . , T , against the

(p+ s) covariates (xit, f
∗
1 (hit), . . . , f

∗
s (hit)) in the GLM framework. As noted, this procedure

is analogous to the estimation of GLMs for independent data, except for the fact that
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we now have additional parameters and terms in the linear predictor for the stochastic

dependence. Diggle et al. (2002) give more details about this procedure, as well as its close

relationship with the classic procedure for GLM. If all parameters in the model are non-

stationary, i.e. vary over t = q, . . . , T , then δt can be found from just the t-th factor in

the full product likelihood (8), as was done by Anderson and Goodman (1957), but if any

parameter components are stationary then it is necessary to use the full likelihood over all

times t = q, . . . , T .

For the non-stationary case, differing from the proposal of Diggle et al. (2002), Ware

et al. (1988) suggest to fit a model for each occasion as in a cross-sectional study. To fit a

first-order transition model we need to add the response category at the preceding time as an

additional covariate in the regression model, i.e. xit = (xit1, xit2, . . . , xitp, xit(p+1))
′ represents

the vector of (p + 1) covariates associated with the i-th individual at the t-th transition,

and xit(p+1) is the previous state. For example, if τ = {0, 1, 2, 3, 4, 5} then there are 6 time

occasions, which corresponds to 5 first-order transition models. For the first transition, we

consider the response at time t = 0 as an additional covariate. In the second transition, the

additional covariate is the response at time t = 1 and so on. Then, the vectors δt are speci-

fied for each occasion and are obtained through the separate maximization of the likelihood

functions, one for each transition. Ware et al. (1988) presented this theory, originally for

ordinal data, but it is also applicable to nominal responses. For more general q-order depen-

dent models we simply needs to incorporate the q previous responses as additional covariates.

However, as we have noted above this requires conditioning on the first q transitions and is

only feasible if T is sufficiently large. Also, rather that simply using the previous states as

transitions we could consider functions of these f ∗r , r = 1, . . . , s, as in (7), which allows for

more flexible modelling of potential time dependence in the transitions.

It is important to note that in this paper, when we discuss stationarity, we are refer-

ring to homogeneous transition probabilities matrices over time, otherwise it is understood

that these matrices vary over time (hence the parameter notation with argument t). Thus,

assuming that the process is stationary of first order, the fitted single model allows us to
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estimate, δ̂, and by the invariance principle of likelihood we can estimate the transition

probabilities matrix, P̂ . On the other hand, assuming no stationarity or non-homogeneity

of transition probabilities over time, but still first order dependence, the T fitted models give

esitimates δ̂(t), and therefore, allow us to estimate separate matrices of transition probabil-

ities, P̂ (t), t = 1, 2, . . . , T .

Some classical references for the binary case are Cox (1970), Korn and Whitte-

more (1979), Azzalini (1983), Bonney (1987), Zeger and Liang (1992), Fitzmaurice and

Laird (1993) and Heagerty (2002). For multinomial response (nominal or ordinal) the pro-

cedure is similar when we consider extensions of the GLM through generalized logits and

proportional odds models (Ware et al., 1988; Lee and Daniels, 2007; De Rooij, 2011). In

both cases, the response of the i-th individual on the t-th occasion becomes a (k× 1) vector,

yit = (yit1, yit2, . . . , yitk)
′, where {yitj} represent a set of index variables for the response cat-

egories, with yitj = 1 if the i-th individual is in the j-th category at the time t, and yitj = 0

otherwise, corresponding to a multivariate response.

In the following sections (2.2.2 and 2.2.3) we show the models that can usually be

used with first order dependence, with obvious simple extension to higher order. Also, in

the section 2.2.4, we present a new procedure to assess stationarity in which we do not

use separate models for the assumption of non-stationarity, instead we incorporate into a

single structure (linear predictor) additional parameters to explore the dependence, or not,

with respect to t. However, in the simulation study, we use the two fitting approaches,

since the classical test requires the fitted model under stationarity and the individual fitted

models under non-stationarity. When necessary we use a partition of the explanatory vector

xit to separate the parts that refer only to the covariates, x∗it = (xit1, xit2, . . . , xitp)
′, and

the previous response(s) giving xit = (x∗it, xit(p+1))
′. Also, note that we can write xit =

(x∗it, xit(p+1))
′ = (x∗it, y(t−1))

′, where y(t−1) is the observed response at time t− 1.

2.2.2. Proportional odds transition model

For ordinal responses we can use the proportional odds model (McCullagh, 1980),

that reduces the number of estimated parameters because it assumes the same δt effects
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for each logit. The proportional odds transition model provides estimates of cumulative

probabilities through:

γab(t)(x) =
exp(λbt + δ′tx)

1 + exp(λbt + δ′tx)
, with b = 1, 2, . . . , k − 1 and t = 1, 2, . . . , T, (9)

where γab(t)(x) = P(Yjt ≤ b | Ya(t−1))(x) = πa1(t)(x) + . . . + πab(t)(x) and when using the

canonical link function,

ηt = log
(

γab(t)(x)

1− γab(t)(x)

)
= λbt + δ′tx, (10)

in which λbt is an intercept (there will be one for each level of response), x is set of the

covariates values, δ′t = (βt1, . . . , βtp, αt) is the vector of the unknown parameters of interest

and the index t is to denote the non-stationary process, in which there are T models of

first-order. For stationary processes the structure of the model is the same but without the

index t.

In this work model (10) is used to analyse and simulate data related to examples 1

and 2, in which we consider a first-order Markov chain and the following linear predictor:

ηt = λbt + [βttreatment + αtprevious response], (11)

where treatment represents the “drug” or “enrichment” effect, as is the case. There are

other possibilities for the linear predictor (11), including interaction terms, but these were

not significant in this study.

2.2.3. Generalized logits transition model

For nominal responses, we can adapt the generalized logits model, that is use-

ful to describe all logits of pairs of response categories with a common reference level

(Agresti, 2012). Now, let δ′bt = (βbt1, . . . , βbtp, αbt) be the vector of unknown parameters

that is associated with the category b and let k be the reference response category. Then

the generalized logits transition model is written as:

ηt = log
(
πab(t)(x)

πak(t)(x)

)
= λbt + δ′btx, (12)
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in which b = 1, 2, . . . , k − 1; t = 1, 2, . . . , T and λbt is an intercept as defined for model (9)

but here the vector δ′bt varies with each category of response level as well as depending on

the transition t.

Model (12) gives the effect of each covariate on the (k− 1) logits and the transition

probabilities are given by:

πab(t)(x) =
exp(λbt + δ′btx)

1 +
∑k−1
b=1 exp(λbt + δ′btx)

.

We used model (12) to analyse the simulated data-sets derived from example 3, with the

following functional structure:

ηt = λbt + [βbt1pre-grazing + βbt2post-grazing + αbtprevious response], (13)

i.e., the linear predictor includes the effects of the factorial treatment structure (without

interaction) and previous response.

2.2.4. The proposed test to assess stationarity

To apply the test proposed by Anderson and Goodman (1957) it is necessary to fit

(T + 1) models, the T first order transition models under non stationarity and the transition

model supposing stationarity. Moreover, the transition probabilities need to be estimated.

In this paper, we propose another approach to assess stationarity in transition models. This

strategy is a simple technique, since it can be done by analysing appropriate interaction

parameters in the transition model using a stacked structure of the data and calculation of

the transition probabilities, under stationarity and non-stationarity, is not required. Working

with the conditional likelihood function (8), the idea consists of including an additional

covariate for the transition time occasion in the linear predictor (7), i.e. t∗ = (1, 2, . . . , T )′,

and checking its interaction with other covariates, especially with the previous response. In

this context, let

ηo = log
(

γab(x)

1− γab(x)

)
= λb + δ′x (14)

be the proportional odds transition model for ordinal data and

ηn = log
(
πab(x)

πak(x)

)
= λb + δ′bx, (15)
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the generalized logits transition model for nominal data, both with longitudinal structure

(stacked data). The inclusion of the indices o and n is to differentiate the ordinal and nominal

cases, respectively.

Next, we consider models with additional terms in equations (14) and (15), giving

nested models in both cases. Then, for the ordinal case, we can consider the following

different models to reflect alternative hypotheses of time dependence :

ηo(1) = λb + δ′x+ β∗
′
t∗, (16)

ηo(2) = λb + δ′x+ β∗
′
t∗ + γ ′(t∗ : yt−1), (17)

ηo(3) = λb + δ′x+ β∗
′
t∗ + ϑ′(t∗ : x∗), (18)

ηo(4) = λb + δ′x+ β∗
′
t∗ + γ ′(t∗ : yt−1) + ϑ′(t∗ : x∗). (19)

where the models (14), (16), (17) and (19) are nested, as also are the models (14), (16),

(18) and (19). Equation (14) corresponds to the predictor of a model under stationarity,

while the structures (16), (17), (18) and (19) are variations of this model, in which we

incorporate possible sources of non-stationarity related to the dependence on the vector

t∗ = (1, 2, . . . , T )′. If the process is non-stationary, that is, the transition probabilities are

non-homogeneous in time, then the parameters of model are not homogeneous in time, and

there will be one or more causes of variations of these parameters under transitions. The

sequences of nested models evaluate some possibilities.

In model (16) we evaluated the possibility of the non-stationarity cause due to

only the variation of the vector of regression parameters (β∗) over time, the effect of the

Markov covariate is considered to be the same across all transitions. In model (18), we

also considered the possibility of interaction of the covariates with transition time, again

except for the Markov covariate. The variation of the Markov covariate over transition is

evaluated through the inclusion of the interaction term, in the model (17). Therefore, in the
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models (17) and (18) there are two sources of non-stationarity. Model (19) is a more general

(complete) form in which all sources of possible non-stationarity are considered.

For examples 1 and 2, we have that:

i. (14) corresponds to the stationary model with additive effects of treatment and previous

response, which is referred to as “OTM0” (Ordinal transition model 0);

The models that incorporate sources of non-stationarity are:

ii. (16) corresponds to the additive effects of treatment, previous response and time factor,

which is referred to as “OTM1” (Ordinal transition model 1);

iii. (17) corresponds to the additive effects of treatment, previous response and time factor

and the interaction between the previous response and time factor, which is referred

to as “OTM2” (Ordinal transition model 2);

iv. (18) corresponds to the additive effects of treatment, previous response and the time

factor and the interaction between treatment and time factor, which is referred to as

“OTM3” (Ordinal transition model 3);

v. (19) corresponds to the additive effects of treatment, previous response and the time

factor as well as the interactions between previous response and time factor and treat-

ment and time factor, which is referred to as “OTM4” (Ordinal transition model 4).

For nominal case, we define a similar set of models with the same interpretation as

above, but now denoted the models for non-stationary processes by NTM1, NTM2, NTM3

and NTM4, with the stationary model denoted by NTM0 (15) and respective linear predictors

with suffix n instead of o. Again, the models NTM0, NTM1, NTM2 and NTM4 are nested

as well as the models NTM0, NTM1, NTM3 and NTM4. Reiterating that OTM0 and

NTM0 correspond to stationary structures and the others form (OTM1, OTM2, OTM3,

OTM4 and NTM1, NTM2, NTM3, NTM4) are non-stationary structures. In this context,

let ϕ = (β∗,γ,ϑ) and ϕb = (β∗b ,γb,ϑb) be the vectors of additional parameters for ordinal
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and nominal response, respectively. Then, based on equations (14) and (19), we can rewrite

the hypotheses (2) for a global test for the ordinal case as:

H0 : (δ,ϕ) = (δ,0) and H1 : (δ,ϕ) 6= (δ,0), (20)

and for the nominal case

H0 : (δb,ϕb) = (δb,0),∀ b ∈ S and H1 : (δb,ϕb) 6= (δb,0), for some b ∈ S. (21)

For nominal response, the sum of the logarithms of the likelihood functions of T

separate transitions, as well as the number of parameters, correspond exactly to the values

for model NTM4. In the ordinal case, the structure of the proportional odds model does not

allow for this identity to hold due to different cut points (thresholds), but the results are quite

close, justifying the proposed method. Moreover, comparing model OTM0 (14) (or NTM0

(15)) with models (OTM1, OTM2, OTM3 and OTM4) (or NTM1, NTM2, NTM3, NTM4)

corresponds to testing the stationary structure against the different potential non-stationary

forms.

First, we can perform the global likelihood ratio test to evaluate hypotheses (20) and

(21). If the null hypothesis is not rejected it is indicative that the process is stationary, since

the transition probabilities will not change over time, the intrinsic assumption of stationarity

for transition models. If the process is stationary, the likelihood test for the sequence of

nested models will select models (14) or (15), because the additional parameters due to t∗

will not significantly contribute to the log-likelihoods.

Here: Figure 1

However, when the process is non-stationary and we are led to the selection of

models involving t∗, in addition to the general time-varying structures, OTM4 and NTM4,

there will be several possibilities to explore for how additional time-related parameters may

influence the transition process. Local tests of the nested hypotheses are useful to select

a parsimonious model with fewer parameters, especially for nominal responses where for

each additional covariate we have (k − 1) additional parameters, and to try to identify the

form/source of non-stationarity. Figure 1 represents this scheme for global and local tests.
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2.2.5. Simulation study

Two sets of real data served as the basis for the initial simulation process (examples

1 and 3). To generate new data we started by using the estimates of the parameters and

the probability transition matrices obtained from these examples. Note that from a non-

stationary base, we can generate data for a stationary process, using only a single transition

matrix. Also from a stationary base we may obtain data for a non-stationary process. We

established some quantiles from the distribution of the test statistic proposed by Anderson

and Goodman (1957) to select the first sets with different patterns of stationarity. To

simulate data for the non-stationary process, we decided to work with an average level of

non-stationarity, which approximately corresponds to the 25th percentile.

From these first sets we then implemented new simulations to get new categorical

data (ordinal and nominal) under two scenarios: stationary and non-stationary processes,

for which we varied the number of time occasions, T=4, T=5 and T=6 as well as the

sample size, N= 100, N=200 N=500 and N=1000. For each scenario we performed 10,000

simulations. In all cases we considered a first-order Markov chain and for the ordinal case,

the linear predictor included the effects of treatment and previous response, as described by

the equations (11) and (13).

After that, the proposed test as described in Section 2.2.4 and the classical test

(Anderson and Goodman, 1957) based on equation (3) were applied. The degree of agreement

between the tests was assessed by means of correlation measures. Additionally, for each

scenario, we computed the rejection rates of the tests for significance levels of 1%, 5%, and

10% in order to assess type-I and type-II error rates. The computational implementation was

made using the R system (R Core Team, 2015), with the aid of packages nnet (Ripley and

Venables, 2016) and ordinal (Christensen, 2011) to fit transition models and the package

markovchain (Spedicato, 2015) to assist in the data simulation process.

3. Results and discussion

3.1. Respiratory data analysis

Figure 2 shows the observed transition frequencies of individuals on respiratory
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condition with 5 states: terrible, bad, moderate, good and excellent. At each time occasion

there are 111 individuals and the total number of first-order transitions is 444. This indicates

that there is an increase in the number of individuals in terrible, good and excellent condition.

Here: Figure 2

Table 1 shows the models that were used to assess stationarity in the first example,

with the respiratory data. The structure ηo, with the effects of drug and previous response

was selected at a significance level of 1%. As this study involved 5 times, there are 4

transitions of first order,with a sum of log-likelihoods of −491.06 (on 36 degrees of freedom),

quite close the value −494.44 for the combined single general non-stationary model OTM4.

The result for the global likelihood-ratio test is 25.47 on 18 degrees of freedom, and is not

significant (p=0.1124). In fact, the classical test statistic (Anderson and Goodman, 1957)

for this example is 36.55, on 27 degrees of freedom is also not significant (p=0.1037). The

structure ηo was selected by local tests applied in the upper and lower parts of Table 1, in

both directions (forward or backward), using a 5% significance level.

Here: Table 1

The results show that in this example the process is stationary, i.e., the transition

probabilities are homogeneous over time. Table 2 shows the parameters estimates, standard

errors and p-values of the first order stationary transition model in this respiratory condition

study. Apart from the intercepts, all parameters are significant in this model.

Here: Table 2

Note the increasing values of α. This result is very common in transition models, in

which the previous response is more important to explain the transition of the individuals

(Diggle et al., 2002). Using the coefficients of the parameters available in Table 2, we can

estimate the transition probability matrices for the groups Active (A) and Placebo (P), that

are shown in Figure .

Here: Figure 3
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The first row from bottom to top of the Figure 3 describes the transition probabilities

from state 1 (terrible) for the conditions: 1 (terrible), 2 (bad), 3 (moderate), 4 (good) and 5

(excellent). The second line describes the transition probabilities from state 2 (bad) for the

others conditions and so until the last line that describes transitions from state 5 for others.

As the effect of treatment is significant (see Table 2) , the matrices are statistically different.

In general, the transition probabilities for states good and excellent (two last columns) are

more favorable for the active treatment group.

3.2. Pig behaviour data analysis

Figure 4 illustrates the frequency of animals in the states 1 (absence), 2 (moderate)

and 3 (serious), on each occasion of the study period. On each time occasion there are 124

animals and the total number of first-order transitions is 372. A drop in the frequency of

animals with serious lesions over time was observed.

Here: Figure 4

Table 3 shows the sequences of nested models for the second example, on pig be-

haviour. There are 4 times and 3 transitions of first order, with log-likelihood sum of −317.90

(on 15 degrees of freedom), close of the log-likelihood for model OTM4 that is −322.71 (on 13

degrees of freedom). The statistic for the global likelihood-ratio test is 82.34 on 8 degrees of

freedom is significant (p< 0.01). This result is in agreement of the classical test of Anderson

and Goodman (1957), whose statistic is 78.32, on 10 degrees of freedom (p< 0.01). There-

fore, the process is non-stationary and OTM0 was not selected. However, this result does

not mean that the OTM4 is the best model. Note that only the inclusion of a time factor

is significant in the local tests, and model ATM1 gives a more parsimonious non-stationary

structure. In some applications we will require the full model OTM4, but this can be verified

by performing the step-by-step local tests for specific aspects of time dependence..

Here: Table 3

Specifically, since the transitions in the pig behavior study are not homogeneous

over time, we select the linear predictor structure through the local tests. From the upper
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part of Table 3, the first local test comparing for OTM4 vs. OTM2, is significant (L.R.

statistic = 8.88 on 2 d.f. and p = 0.0117). Subsequently, a test of OTM4 vs. OTM1, is not

significant for the interactions with the time factor (L.R. statistic = 10.15 on 6 d.f. and p

= 0.1185). When we compare the models OTM1 vs. OTM0, the result is significant for the

time factor (L.R. statistic = 62.56 on 2 d.f, p< 0.001), i.e., the model OTM1 is selected in

the first part a the simplest parsimonious model.

From the lower part of Table 3, comparing OTM4 vs. OTM3, is not significant

(L.R. statistic = 0.7012 on 4 d.f. and p = 0.9512). Finally, comparing OTM1 vs. OTM3,

the likelihood ratio local tests is significant (L.R. statistic = 9.44 on 2 d.f and p = 0.0088).

Therefore the selected final linear predictor, that represents non-stationary process in the

pig behaviour study is the model OTM3, that includes the additive effects of treatment and

previous response and the interaction between treatment and time factor. The same model

would be established if we used the forward direction.

Here: Table 4

Table 4 shows the estimates for the parameters of the selected non-stationary model

(OTM3). Note that the effects of the time factor, interaction between treatment (enrichment)

and time factor and previous response are significant. It means that previous response has

a strong influence on pig behaviour and, under transition (time factor) the environment

enrichment is important as well. In fact, the enrichment effect is significant in the second

transition. According to Castro (2016) there is an explanation for this: At the beginning of

the experiment the pigs were learning to play with the objects and the end of study they

lost interest. The transition probability matrices are given in Figure .

The first rows from bottom to top of the Figure 5 describe the transition probabilities

from state 1 (absence of lesions) for the conditions: 1 (absence of lesions), 2 (moderate) and

3 (serious). The second line describes the transition probabilities from state 2 (moderate) to

the other conditions and the third line describes transitions from state 3 to others. Focussing

attention on the first column of these matrices, at the second and third transitions, it is

possible to note that the transition probabilities for the state “absence of lesions” are higher
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for the treated group (with environment enrichment).

Here: Figure 5

3.3. Agronomic data analysis

Figure 6 shows the frequency of points in the three categories: tussocks, bare ground

and weeds, on each time occasion. There are 600 points and the total number of first-order

transitions is 3000. The number of units classified as “bare ground” is greater than those

classified “tussocks” and “weeds”.

Here: Figure 6

The structure of the data appears to have a pattern with few changes of state,

in contrast to the two first examples. This is not a serious problem for the simulation

process, because it is still possible to get new data with different patterns of stationarity

and dependence. In Table 5 we present the sequences of nested models for this motivational

example with simulated data. In this study, there are 5 transitions of first order, whose

sum of the log-likelihoods is −2163.83 (on 50 degree of freedom), whose value is the same

for model ηo(4), as here we have no cut-points to be estimated and so both forms of the full

model are the equivalent. Thus, the result for the global likelihood-ratio test (ηo versus ηo(4))

is 43.28 (p=0.3330). Here, the inclusion of time is not significant in all possible sequences

(local tests), which guides the choice of the stationary structure, ηo, with the effects of

treatment and previous response. Moreover, the classical test statistic of Anderson and

Goodman (1957) is 43.17, on 40 degrees of freedom and also not significant (p=0.3371).

Here: Table 5

Finally, Table 6 shows the parameter estimates for the first order stationary tran-

sition model for the agronomic data. The effects of treatment and previous response were

significant.

Here: Table 6
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Here: Figure 7

The transition matrices for each combination of pre-grazing and post-grazing are

shown in Figure 7. For each combination, the space was occupied by the types 1 (tussocks)

and 2 (bare ground), and the transition probability for it coming to be occupied by 3 (weeds)

is smaller. Indeed spaces occupied by vegetation 1 (tussocks) as well as those occupied by 3

(weeds) have a greater probability of moving to condition 2 (bare ground).

3.4. Results from simulation study

Next we present the results of the simulation studies. We start by discussing the

number of times each model was selected in all scenarios, using the local tests with the

significance level of 5%. Also, we consider the two possible sequences of nested models as

presented in Section 2.2.4, i.e., (OTM0, OTM1, OTM2, OTM4) or (OTM0, OTM1,OTM3,

OTM4) for the ordinal case, and, (NTM0, NTM1, NTM2, NTM4) or (NTM0, NTM1, NTM3,

NTM4) for the nominal case.

For the stationary scenario, for ordinal and nominal data, in more than 80% of

the simulations, OTM0 or NTM0 were selected in both sequences. There is an effect of

sample size and the number of occasions because as they increase this percentage increases

to values close to 85%. In contrast, for the non-stationary scenario, smaller percentages of

selection of OTM0 and NTM0 were observed, specifically, for N = 500 or N = 1000, where

these numbers are less than 0.07%. Also, for these sample sizes the highest percentages of

selection were to OTM2 and OTM4 (or OTM3 and OTM4) for ordinal response and NTM2

and NTM4 (or NTM3 and NTM4) for nominal response, corresponding to more than 95%

of selections. For N = 200, less than 22% of the simulations selected the models OTM0

or NTM0. Finally, for N = 100, we observed the highest percentages of OTM0 or NTM0,

but smaller than 48%, and these were considered within the usual variation expected for the

simulation process with a moderate degree of non-stationarity.

In fact, as already mentioned in section 2.2.5, our simulations for the non-stationary

scenario were made with a moderate degree of non-stationarity in order to assess the perfor-

19



mance of the test in not-so-favourable conditions, in contrast with the situation of motiva-

tional example 2, in which the degree of non-stationarity is very high. Under this condition

we would have inevitably a power function close to 1, even in small samples and T = 4. As an

illustration, in the scenario with an ordinal response and a strong degree of non-stationarity

(10,000 simulations, N = 100 and T = 4), we had the numbers 736, 83, 2163 and 7018 for

models OTM0, OTN1, OTM2, and OTM4, and 705, 75, 2251 and 6969 for models OTM0,

OTN1, OTM3, and OTM4, respectively.

Here: Table 7

Table 7 shows the rejection rates for the classical test and the proposed tests (global

and local tests) for scenario 1 (assuming stationarity) with ordinal and nominal data. The

global likelihood ratio test involves the models OTM0 and OTM4 for ordinal response (or

NTM0 and NTM4 for nominal response) and we present three local tests: (1) that involving

models OTM0 and OTM1 for ordinal response (or NTM0 and NTM1 for nominal response),

(2) that for OTM0 and OTM2 for ordinal response (or NTM0 and NTM2 for nominal

response) and (3) that for OTM0 and OTM3 for ordinal response (or NTM0 and NTM3 for

nominal response). In this case it is possible to study the test size (type-I error). For nominal

responses, the classical test was a little more conservative than the global test. However,

for some local tests, especially the local test 1, we observe lower nominal levels than the

classical test. Also, as the samples size increases, all tests tend to maintain the level of

significance, i.e., they have equivalent performance asymptotically. On the other hand, for

ordinal responses, in most cases, the proposed tests are more conservative than the classical

test.

Here: Table 8

Table 8 shows the rejection rates for scenario 2 (non-stationarity process). It was

possible to study the power of each test. There was clearly an effect of sample size on the

power of the tests. Note, for example, at T = 4 and N = 100, in both scenarios, there

is a higher propensity to type-II error, but it decreases as we consider larger sample sizes
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and/or more time occasions. Specifically, in the ordinal case, for N = 100 and N = 200, the

power of the global test is smaller than the classical one, a likely consequence of the different

handling of cut-point estimation for the ordinal scale. On the other hand, in the nominal

case, the power of the proposed global test is greater than the classical, but, asymptotically,

they are equivalent. From the Table 8 it is possible to notice that local tests also have a

good power function, in some cases very close to their global competitors, which shows their

efficiency.

We also consider agreement in terms of correlation between the test statistics (clas-

sical and global), as measured by the usual Pearson correlation coefficient. For ordinal

responses, the correlation values increased with the values of N (sample size) in both sce-

narios (stationary or not), all correlations were greater than 0.80 at T = 4 and T = 5 and

all correlations were larger than 0.77 at T = 6. Also, for nominal responses, the correlation

values increased with the values of N (sample size) in both scenarios (stationary or not),

and all correlations were larger than 0.97 for all time occasions. It shows there is a strong

association between the tests.

4. Conclusion

The assumption of stationarity is important in the use of transition models. When

it is satisfied the model is simpler and therefore, there are fewer parameters. However,

sometimes, this is not true. In this article we presented an alternative method to assess

stationarity in these models for a categorical response. The procedure has been illustrated

with three applications, one being a study with a nominal response. Our goal was to show

that the procedure is very simple, composed of local and global tests, applied to a nominal or

ordinal response but without the necessity of computing the transition probabilities matrices.

Also, there are some advantages of the proposed procedure: it can be carried out in a

single modelling framework using the stacked form of the data and, therefore, demands less

computational effort and it can be applied to evaluate stationarity in longer-range chains.

Also, it allows categorical and continuous covariates and the local tests can be used for the

selection of a linear predictor that corresponds to a specific non-stationary model.
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We verified that when the process is stationary, local tests for the inclusion of an

additional covariate for time are not significant. In this case, the global test also selects the

stationary model. However, if the process is non-stationary, some local tests are significant

for additional parameters, showing that the inclusion of time is important and the global

test rejects the null hypothesis. There is a difference between the nominal and ordinal case,

because in the latter the number of parameters involved changes a little for global test, but

this is not a problem, it is a consequence of the use of the proportional odds model with

estimated cut-points.

It is important to note that both tests are valid asymptotically. However, in some

situations, for example, with small sample sizes or a large amount of missing data, the

convergence of the model fitting can be difficult, especially in non-stationary cases that

involve more parameters. For the classical test, the problem is greater because the successive

stratification leads to sparse tables and this test cannot applied.

The simulation studies showed that the proposed test presented good performance

with the control of type-I and type-II error rates and the results were quite close to the

classical test available in the literature (Anderson and Goodman, 1957). It is noteworthy

that the studies for scenario 2 were carried out with a moderate degree of non-stationarity,

since we wanted to assess the proposed test under not-so-favourable conditions. With a high

degree of non-stationarity, the proposed test has the best performance, even for small sample

sizes.
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Tables

Table 1: Analysis of the nested models to assess stationarity in the respiratory study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (OTM0) −507.17 9

ηo(1) (OTM1) −504.72 12 3 0.1782

ηo(2) (OTM2) −500.06 24 12 0.6756

ηo(4) (OTM4) −494.44 27 3 0.0104

ηo (OTM0) −507.17 9

ηo(1) (OTM1) −504.72 12 3 0.1782

ηo(3) (OTM3) −499.20 15 3 0.0115

ηo(4) (OTM4) −494.44 27 12 0.6581

Table 2: Parameter estimates of the proportional odds stationary transition model of first

order fitted to the respiratory condition study data.

Parameters Estimates Standard errors p-value

λ2 0.9834 0.5137

λ3 2.3490 0.5455

λ4 4.3310 0.5634

λ5 5.7059 0.5731

β (Placebo) −0.6550 0.1899 0.0005

α(2) 3.1353 0.5781 < 0.001

α(3) 4.1805 0.5579 < 0.001

α(4) 5.4542 0.5773 < 0.001

α(5) 6.9298 0.5933 < 0.001
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Table 3: Analysis of the nested models to assess stationarity in the pig behavior study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (OTM0) −359.07 5

ηo(1) (OTM1) −327.79 7 2 < 0.001

ηo(2) (OTM2) −327.16 11 4 0.8680

ηo(4) (OTM4) −322.71 13 2 0.0117

ηo (OTM0) −359.07 5

ηo(1) (OTM1) −327.79 7 2 < 0.001

ηo(3) (OTM3) −323.07 9 2 0.0088

ηo(4) (OTM4) −322.71 13 4 0.9511

Table 4: Parameter estimates and standard errors (s.e.) for the three first order proportional

odds transition models, under a non-stationary process, fitted to the pig behaviour data.

Parameters Estimates Standard errors p-value

λ2 −1.2811 0.3485

λ3 1.5811 0.3462

β(E2) −0.0120 0.3595 0.9733

β∗(t∗2) −2.8284 0.3958 < 0.001

β∗(t∗3) −1.6235 0.3864 < 0.001

α(2) 0.6820 0.2829 0.0159

α(3) 1.3013 0.3303 < 0.001

ϑ(E2:t∗2) 1.5462 0.5284 0.0034

ϑ(E2:t∗3) 0.3596 0.5041 0.4755
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Table 5: Analysis of the nested models to assess stationarity in the agronomic study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (NTM0) −2185.47 10

ηo(1) (NTM1) −2180.35 18 8 0.2491

ηo(2) (NTM2) −2169.51 34 16 0.1538

ηo(4) (NTM4) −2163.83 50 16 0.7860

ηo (NTM0) −2185.47 10

ηo(1) (NTM1) −2180.35 18 8 0.2491

ηo(3) (NTM3) −2174.65 34 16 0.7442

ηo(4) (NTM4) −2163.83 50 16 0.1547

Table 6: Parameter estimates for the generalized logits transition model of first order fitted

to the agronomic data.

Parameters Estimates Standard errors p-value

λ2 1.4053 0.1851 < 0.001

λ3 2.0842 0.1792 < 0.001

β21 (pre2) 0.3706 0.1678 0.0272

β31 (pre2) 0.1055 0.1648 0.5220

β22 (post2) 0.6751 0.1720 < 0.001

β32 (post2) 0.5129 0.1691 0.0024

α2(2) −0.0217 0.1920 0.9097

α2(3) −0.2662 0.1879 0.1566

α3(2) −0.6557 0.2343 0.0051

α3(3) −1.0512 0.2303 < 0.001
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Table 7: Rejection rates for the classical and proposed tests, resulting from 10,000 simula-

tions, for the scenario 1 (test size).

Time T=4 T=5 T=6

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Ordinal Data

Sample Size Tests

Classical 0.1396 0.0799 0.0181 0.1333 0.0724 0.0194 0.1416 0.0784 0.0199

Local 1 0.1009 0.0491 0.0100 0.1022 0.0482 0.0099 0.0981 0.0522 0.0094

100 Local 2 0.1142 0.0581 0.0116 0.1079 0.0545 0.0088 0.1065 0.0566 0.0109

Local 3 0.1067 0.0569 0.0129 0.1064 0.0540 0.0108 0.1029 0.0525 0.0111

Global 0.1221 0.0625 0.0139 0.1137 0.0559 0.0121 0.1176 0.0604 0.0143

Classical 0.1167 0.0599 0.0117 0.1227 0.0652 0.0135 0.1258 0.0636 0.0137

Local 1 0.0970 0.0503 0.0099 0.1048 0.0522 0.0090 0.1023 0.0526 0.0118

200 Local 2 0.1089 0.0566 0.0111 0.1152 0.0599 0.0116 0.1193 0.0603 0.0121

Local 3 0.1004 0.0518 0.0095 0.1055 0.0515 0.0088 0.1016 0.0522 0.0112

Global 0.1110 0.0544 0.0119 0.1150 0.0599 0.0130 0.1213 0.0622 0.0120

Classical 0.1043 0.0534 0.0109 0.1101 0.0528 0.0118 0.1101 0.0581 0.0131

Local 1 0.1008 0.0517 0.0110 0.1007 0.0517 0.0118 0.0978 0.0490 0.0103

500 Local 2 0.1028 0.0509 0.0113 0.1037 0.0548 0.0118 0.0103 0.0438 0.0118

Local 3 0.1029 0.0519 0.0097 0.1038 0.0524 0.0113 0.1037 0.0505 0.0084

Global 0.1006 0.0494 0.0108 0.1054 0.0555 0.0102 0.1044 0.0551 0.0122

Classical 0.1032 0.0525 0.0113 0.1099 0.0573 0.0115 0.1039 0.0501 0.0095

Local 1 0.0995 0.0535 0.0107 0.1032 0.0534 0.0122 0.0993 0.0470 0.0087

1000 Local 2 0.1061 0.0538 0.0108 0.1073 0.0537 0.0105 0.1032 0.0505 0.0091

Local 3 0.0988 0.0478 0.0094 0.1030 0.0533 0.0110 0.1025 0.0490 0.0094

Global 0.1024 0.0484 0.0112 0.1104 0.0557 0.0103 0.1055 0.0504 0.0091

Nominal Data

Sample Size Tests

Classical 0.1359 0.0744 0.0166 0.1253 0.0663 0.0145 0.1374 0.0751 0.0190

Local 1 0.0898 0.0452 0.0102 0.1124 0.0563 0.0116 0.0788 0.0371 0.0068

100 Local 2 0.1486 0.0795 0.0160 0.1400 0.0732 0.0156 0.1401 0.0711 0.0155

Local 3 0.1218 0.0674 0.0152 0.1185 0.0657 0.0134 0.1214 0.0640 0.0129

Global 0.1630 0.0910 0.0206 0.1436 0.0810 0.0188 0.1675 0.0894 0.0212

Classical 0.1253 0.0663 0.0145 0.1251 0.0660 0.0148 0.1337 0.0688 0.0166

Local 1 0.1124 0.0563 0.0116 0.1052 0.0522 0.0097 0.1029 0.0520 0.0097

200 Local 2 0.1400 0.0732 0.0156 0.1358 0.0717 0.0158 0.1436 0.0803 0.0167

Local 3 0.1185 0.0657 0.0134 0.1200 0.0632 0.0133 0.1218 0.0645 0.0146

Global 0.1436 0.0810 0.0188 0.1456 0.0769 0.0185 0.1578 0.0844 0.0201

Classical 0.1034 0.0500 0.0113 0.1108 0.0570 0.0112 0.1163 0.0590 0.0112

Local 1 0.1022 0.0525 0.0094 0.0989 0.0495 0.0097 0.1051 0.0529 0.0109

500 Local 2 0.1067 0.0555 0.0119 0.1103 0.0564 0.0118 0.1147 0.0571 0.0110

Local 3 0.1030 0.0504 0.0113 0.1067 0.0544 0.0103 0.1122 0.0584 0.0123

Global 0.1092 0.0544 0.0123 0.1162 0.0613 0.0124 0.1225 0.0616 0.0122

Classical 0.1017 0.0472 0.0082 0.1031 0.0509 0.0096 0.1047 0.0534 0.0115

Local 1 0.0989 0.0500 0.0098 0.1016 0.0494 0.0093 0.1025 0.0521 0.0113

1000 Local 2 0.1042 0.0532 0.0093 0.1019 0.0503 0.0099 0.1085 0.0572 0.0127

Local 3 0.0975 0.0482 0.0074 0.1033 0.0521 0.0097 0.1098 0.0519 0.0098

Global 0.1039 0.0495 0.0083 0.1062 0.0532 0.0097 0.1074 0.0545 0.0115
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Table 8: Rejection rates for the classical (1) and proposed (2) tests, resulting from 10,000

simulations, for the scenario 2 (test power).

Time T=4 T=5 T=6

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Ordinal Data

Sample Size Tests

Classical 0.7257 0.6090 0.3636 0.8079 0.7094 0.4792 0.8403 0.7426 0.5086

Local 1 0.2329 0.1418 0.0438 0.3935 0.2795 0.1135 0.1400 0.0749 0.0177

100 Local 2 0.5226 0.3911 0.1690 0.6682 0.5433 0.2986 0.5634 0.4217 0.1958

Local 3 0.5287 0.4035 0.1968 0.5443 0.4214 0.2132 0.2164 0.1339 0.0413

Global 0.6981 0.5755 0.3287 0.7528 0.6389 0.3898 0.6133 0.4704 0.2263

Classical 0.9670 0.9386 0.8162 0.9881 0.9734 0.9117 0.9959 0.9907 0.9546

Local 1 0.3793 0.2593 0.1032 0.6462 0.5315 0.3037 0.1890 0.1118 0.0279

200 Local 2 0.8513 0.7652 0.5438 0.9524 0.9097 0.7696 0.9210 0.8633 0.6773

Local 3 0.8210 0.7230 0.4913 0.8432 0.7563 0.5445 0.3579 0.2362 0.0904

Global 0.9596 0.9214 0.7899 0.9793 0.9548 0.8642 0.9448 0.8946 0.7366

Classical 1.0000 0.9999 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Local 1 0.7021 0.5829 0.3397 0.9548 0.9158 0.7915 0.3329 0.2296 0.0757

500 Local 2 0.9987 0.9962 0.9828 1.0000 1.0000 0.9998 1.0000 0.9999 0.9991

Local 3 0.9963 0.9913 0.9585 0.9976 0.9935 0.9749 0.7144 0.5942 0.3409

Global 1.0000 0.9999 0.9994 1.0000 1.0000 0.9999 1.0000 1.0000 0.9998

Classical 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Local 1 0.9291 0.8754 0.7091 0.9993 0.9979 0.9885 0.5722 0.4336 0.1984

1000 Local 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Local 3 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 0.9605 0.9261 0.7938

Global 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Nominal Data

Sample Size Tests

Classical 0.4654 0.3344 0.1423 0.5655 0.4324 0.2101 0.6586 0.5218 0.2815

Local 1 0.2115 0.1257 0.0374 0.1799 0.1010 0.0243 0.2313 0.1441 0.0454

100 Local 2 0.3898 0.2605 0.0945 0.4860 0.3445 0.1408 0.6170 0.4796 0.2369

Local 3 0.4046 0.2781 0.1075 0.4038 0.2819 0.1066 0.4430 0.3076 0.1250

Global 0.5355 0.3953 0.1811 0.6291 0.4933 0.2485 0.7248 0.5960 0.3360

Classical 0.7932 0.6876 0.4465 0.8833 0.8080 0.5990 0.9518 0.9092 0.7635

Local 1 0.3920 0.2771 0.1186 0.3364 0.2308 0.0871 0.4918 0.3679 0.1648

200 Local 2 0.6469 0.5189 0.2801 0.7654 0.6499 0.4136 0.9124 0.8459 0.6530

Local 3 0.6881 0.5634 0.3255 0.7100 0.5847 0.3430 0.7755 0.6679 0.4244

Global 0.8252 0.7286 0.4961 0.9006 0.8305 0.6420 0.9635 0.9291 0.8043

Classical 0.9972 0.9940 0.9709 1.0000 0.9994 0.9961 1.0000 1.0000 1.0000

Local 1 0.7321 0.6203 0.3930 0.6684 0.5436 0.3131 0.8733 0.7944 0.5944

500 Local 2 0.9616 0.9276 0.8026 0.9934 0.9840 0.9378 0.9996 0.9995 0.9963

Local 3 0.9808 0.9622 0.8773 0.9877 0.9735 0.9062 0.9966 0.9915 0.9586

Global 0.9971 0.9947 0.9735 0.9999 0.9995 0.9964 1.0000 1.0000 1.0000

Classical 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Local 1 0.9614 0.9262 0.8088 0.9361 0.8844 0.7197 0.9948 0.9885 0.9519

1000 Local 2 1.0000 0.9994 0.9956 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

Local 3 1.0000 1.0000 0.9990 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

Global 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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