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Abstract 

Competing risks data arise frequently in clinical trials. When the proportional 

subdistribution hazard assumption is violated or two cumulative incidence function 

(CIF) curves cross, rather than comparing the overall treatment effects, researchers 

may be interested in focusing on a comparison of clinical utility at some fixed time 

points. This paper extend a series of tests that are constructed based on a pseudo-value 

regression technique or different transformation functions for CIFs and their variances 

based on Gaynor’s or Aalen’s work, and the differences among CIFs at a given time 

point are compared. 
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1  Introduction 

Competing risks data arise frequently in clinical trials. Subjects in such trials may fail 

owing to multiple causes, and failure as a result of one cause precludes the 

observation of failure as a result of any of the other causes. One of the most important 

problems encountered is the overall homogeneity of cumulative incidence function 

(CIF) curves (Berry et al. 2010, Iacobelli et al. 2013), Gray (1998) developed a 

log-rank type test is based on the subdistribution hazard (SDH), and Pepe and Mori 

(1993) and Bajorunaite and Klein (2007) proposed tests based on the CIF that have 

different variance estimators. However, these methods lose power when the 

assumption of proportional SDH is violated, especially when two CIF curves cross 

each other (Geskus 2015). The Renyi-type test (Bajorunaite and Klein 2007) and 

Kolmogorov-Smirnov (KS)-type test (Lin 1997, Freidlin and Korn 2005), which 

compare the maximum difference between SDHs and CIFs, respectively, do not rely 

on this assumption, but these tests exhibit only slightly improved power relative to the 

aforementioned methods in this situation (Bajorunaite and Klein 2007, Freidlin and 

Korn 2005, Bajorunaite and Klein 2006). For example, in a pediatric cancer trial study 

(Tai, Grundy, Machin 2010) with an ependymoma group and another brain tumor 

group, irradiation after disease progression was the event of interest, and declining 

radiotherapy (RT) and opting for elective RT were competing events. The main results 

are summarized in Figure 4a in Tai et al. (2010). However, because the original data 

are not publicly available, we reconstructed similar data (Fig. 1) via simulation. The 

results of Gray’s test )174.0,851.1( 2 == Pχ and Pepe and Mori’s test 



)793.0,069.0( 2 == Pχ  indicate that the CIF of the event of interest is not 

significantly different between the two groups. However, the two CIF curves cross 

each other at an early time, near 3 years, and a goodness-of-fit test (Li, Thomas, 

Zhang 2015) of the proportional SDH assumption indicates that the assumption is 

violated (P=0.002). Gray’s test (Gray 1998) and Pepe and Mori’s test (Pepe and Mori 

1993) generally fail in the case of assumption violations, with crossing CIFs or 

crossing SDHs, because positive differences are cancelled by negative differences, 

leaving the test methods unable to detect the overall differences, similar to the 

log-rank test for single endpoint data (Li et al. 2015, Klein and Moeschberger 2003). 

Moreover, the Renyi-type test (Bajorunaite and Klein 2007) 

)479.0,175.1( == PStat and the KS-type test (Lin 1997, Freidlin and Korn 2005) 

)092.0,221.0( == PStat  also fail to identify a significant difference between the two 

groups. However, the treatment effectiveness before or after the crossing of two CIF 

curves might differ, as evident from Fig. 1; in particular, there is a clear difference 

after 3 years. The phenomenon of crossing CIF curves is common (Fine and Gray 

1999) when two treatments offer different benefits before and after the crossing point. 

Therefore, rather than comparing entire CIF curves, investigators might be interested 

in comparing the (cumulative) probability of occurrence for an event of interest at a 

fixed time point in the presence of other risks (Lin 1997). As in the pediatric cancer 

trials described above, the 5-year treatment effectiveness is often used as an indicator 

of disease progression or prognosis (Tonorezos et al. 2015).  

One approach used to compare the differences between two CIF curves at 



specific time points involves the construction of point-wise confidence intervals (CIs) 

for two CIF curves. Unfortunately, a normal-approximation CI procedure for CIF 

curves can result in the bounds being negative or greater than 1 when the sample size 

is small. However, some transformation functions can help restrict the CI coverage 

(Choudhury 2002, Hong and Meeher 2014). Another approach involves constructing a 

test statistic. Klein et al. (2007) and Su et al. (2011) proposed five test methods based 

on linear, logarithmic, log-log, arcsine-square-root and logit transformations to 

compare the difference between two independent samples for a single endpoint at 

time point t, and a method based on the pseudo-value regression technique (Klein and 

Andersen 2005, Klein et al. 2008, Andersen, Klein and Rosthøj 2003) was proposed 

to similarly compare the difference between paired or clustered samples. Lin (1997) 

also discussed the occurrence probability of an event of interest at some time points 

with competing risks; however, he did not evaluate any approaches. In addition, 

corresponding variance estimation for the CIF has been discussed (Braun and Yuan 

2007, Allignol, Schumacher and Beyersmann 2010), and although Aalen’s variance 

(Aalen 1978) has been programmed and documented for general use (via the cuminc 

package of R), it tends to overestimate the true variance (Braun and Yuan 2007). The 

approaches of Gaynor et al. (1993) and Betensky and Schoenfeld (2001), which are 

equivalent to one another and are based on Dinse and Larson’s work (Dinse and 

Larson 1986) are fairly accurate, even with small samples (Braun and Yuan 2007). 

Thus, in the present work, several of the above-mentioned methods (Klein et al. 2007, 

Su et al. 2011) are extended to the analysis of competing risks data by applying the 



variance estimation of Gaynor et al. (1993), as suggested by Braun and Yuan (2007), 

and of Aalen (1978). 

    The article is organized as follows. In Section 2, we extend the tests described in 

Klein et al. (2007) and Su et al. (2011) for testing the equality of two CIFs at a fixed 

point in time by applying the variance estimator based on Gaynor's (Gaynor et al. 

1993) and Aalen’s variance. In Section 3, we investigate the powers and type I error 

rates of the six test methods, with variance based on the methods of Aalen (1978) and 

Gaynor et al. (1993), using Monte Carlo simulation. In Section 4, the six methods are 

illustrated using two examples. Finally, we summarize our findings and present a 

general discussion. 

 

2  The extended two sample test methods 

Let CIF Irk(t) be the probability of failure as a result of cause k before a given time t in 

group r, where we focus on only two groups, r=1 and 2. The CIF of cause k in group r 

is given as  

),()( kDtTPtIrk =≤= , 

where T and D are random variables representing the time until the first observed 

event and the type of event, respectively. In the presence of competing risks, the CIF 

of cause k in group r can be estimated as 
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where )(ˆ tS  is the Kaplan-Meier estimator at time t in group r for all causes; trj 

denotes the jth ordered event time in group r; and drkj/arj is defined as the 



cause-specific hazard rate, where drkj is the number of events of cause k, and arj is the 

risk set at time tj in group r. This estimator was first considered by Aalen (1978) and 

Aalen and Johansen (1978). The Aalen’s variance (Aalen 1978) of the CIF estimator 

of cause k in group r is given by  
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where drj is the number of events at time trj in group r for all causes. However, Aalen’s 

variance (Aalen 1978) tends to overestimate the true variance (Braun and Yuan 2007), 

whereas Gaynor’s variance (Gaynor et al. 1993) is fairly accurate, even with small 

samples. Using a Taylor series linear approximation, Gaynor’s variance (Gaynor et al. 

1993) equals 
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. This formula was 

presented in the more general context of a semi-Markov model by Dinse and Larson 

(1986). To compare the difference between two CIFs at time point t, the null 

hypothesis is specified as )()(: 210 tItIH kk = , where I1k(t) and I2k(t) are the CIFs of 

cause k at a fixed t for two groups. Some transformation functions have been studied 



(Klein and Moeschberger 2003). A set of suitable transformations φ  of )(ˆ tI rk  is 

defined by ))(ˆ( tIrkφ . Applying the delta method, the estimated variances can be 

expressed as 

2)))(ˆ()]((ˆ[ˆ))](ˆ([ tItIVtIV rkrkrk φφ ′= .                (3)  

Thus, classes of test statistics based on suitable transformations φ  of CIFs for two 

independent samples are defined as follows:  

                ))](ˆ([ˆ))](ˆ([ˆ
))](ˆ())(ˆ([

21

2
212

tIVtIV

tItI
X

kk

kk

φφ
φφ

+
−= .

                    
 (4)   

 

2.1  The linear transformation test 

The first test, which is based on a linear transformation of the CIFs, is extended. Let 

)(ˆ))(ˆ( tItI rkrk =φ , which naively compares the values of the CIFs between two samples; 

the statistic defined in equation (4) for this transformation is given by 
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    This simple test has an asymptotic chi-squared distribution with one degree of 

freedom under the null hypothesis. Here, we consider a number of transformations, all 

of which asymptotically yield chi-squared distributed statistics when )()( 21 tItI kk = , 

and the original variance estimator is as defined in equation (1) or (2). 

 

2.2  The logarithmic transformation test 

The second extended test is constructed based on a logarithmic transformation of the 

CIFs. Let ))(ˆlog())(ˆ( tItI rkrk =φ . The estimated variances of equation (3) can be 

expressed as 
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and the statistic in equation (4) is given by 
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2.3  The log-log transformation test 

The third test is constructed based on the log(-log(·)) transformation of the CIF. Let 

)))(ˆlog(log())(ˆ( tItI rkrk −=φ . The estimated variances of formula (3) can be expressed 

as 
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2.4  The arcsine-square-root transformation test 

The fourth test is constructed based on an arcsine-square root transformation. Let 

))(ˆarcsin())(ˆ( tItI rkrk =φ . The estimated variances defined by equation (3) can be 

expressed as 
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and the statistic in equation (4) is given by 
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2.5  The logit transformation test 

The fifth test is based on the logit transformation. Let 

)))(ˆ1()(ˆlog())(ˆ( tItItI rkrkrk −=φ . The estimated variances defined by equation (3) can 

be expressed as 
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and equation (4) yields 
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2.6  The pseudo-value regression test 

The last test is a method based on a pseudo-value regression technique (Klein and 

Andersen 2005, Klein and Gerster 2008, Andersen, Klein and Rosthøj 2003). We fix a 

set of time points τh, where h=1, ..., m. At each time point, we compute the pooled 

sample CIF, )(ˆ
hC τ , based on the entire sample of size N for two groups and the 

estimated CIF based on the sample of size N-1 with the ith observation removed for 

two groups, )(ˆ )(
h

iC τ . Then, we define the ith pseudo-value at time hτ  as 

mhNiCNCN h
i

hih ,...,1,,...,1),(ˆ)1()(ˆˆ )( ==−−= ττθ
 

when there is no censoring, where )(ˆ
hCN τ

 
is the number of events with cause k 



occurring prior to hτ . In this situation,  

),(),...,,((),...,1,ˆ(ˆ
1 ktIktImh imiiiihi =≤=≤=== δτδτθθ ,

 

where the iθ̂ s
 
are independent. When there is censoring, the pseudo-values are close 

to the indicators and are approximately independent. Pseudo-values can be used in 

generalized linear models to model the effects of covariates on an outcome (Andersen 

PK, Klein JP, Rosthøj 2003). Let g(·) be a link function. Possible choices of the link 

function in models for the cumulative incidence are the logit link, the complementary 

log-log function on x and the complementary log-log function on 1−x (Klein and 

Andersen 2005). The following generalized linear model is assumed: 

mhNiZg ih
T

ih ,...,1,,...,1)( === ，βθ ,
 

where Tβ  stands for the transpose of β , and ihZ  is a vector of covariates. For the 

two-sample problem, we let 11 =ihZ  for group 1 and 02 =ihZ  for group 2. The 

inverse link is defined as 

)()(1
ih

T
ih

T
ih ZZg βμβθ == − . 

We use the generalized estimating-equation approach (GEE) of Liang and Zeger 

(1986) to estimate β . Let T
imii )ˆ,...,ˆ(ˆ

1 θθθ =  and T
imii ZCZCc ))|(),...,|(( 1 ττ= . 

Define )(βμid  to be the mpm ×+ )(  matrix of partial derivatives of )( i
T Zβμ  

with respect to the parameters. Let )(βiV  be a working covariance matrix. The 

estimating equations to be solved are then 

0)()ˆ)(()()( 1 ==−=  − βθββμβ
i

iiii
i

i UcVdU . 

Let β  be the solution to this system of equations, and note that using results from 

Liang and Zeger (1986), under standard regularity conditions, we can see that 



)ˆ(21 ββ −n  is asymptotically normal with mean zero and a covariance that can be 

estimated consistently using the “sandwich” estimator given by  

11 )ˆ())ˆ((ˆ)ˆ(ˆ −−= βββ DUVD , 

where T
ii

i
i dVdD )()()()( 1 βμββμβ −=  and

 

T

i
ii UUUV = )()())((ˆ βββ . There are 

three possible suggestions for the working covariance matrix (Klein and Andersen 

2005). Therefore, a test of the equality at time t of the CIFs between two samples 

based on β̂  and covariance ̂  can be proposed, with the hypothesis 0: 20 =βH  

at a fixed time. The link functions we focus on are the logit link and the log-log 

function on x.   

           

3  Simulations 

A Monte Carlo simulation study was designed to evaluate the performance of the test 

methods in terms of type I error and power. We used the terms Linear, Log, Llog, Arcs, 

and Logit to refer to the tests of the linear, logarithmic, log-log, arcsine-square-root 

and logit transformations based on Gaynor’s variance (Gaynor et al. 1993) or Aalen’s 

variance (Aalen 1978). We considered equal sample sizes (n1=n2=50, 100, 200) and 

unequal sample sizes (n1=50, n2=100; n1=100, n2=200) in each group. The censoring 

times for the two groups were generated from uniform distributions, and the overall 

censoring fraction in either setup was fixed at 0%, 15%, 30% or 45%. All tests with 

nominal level 05.0=α  were applied to each sample, and all simulations were 

performed using 10000 replications. 

The failure times of an event of interest were generated from the CIF: 



)exp(
1 )]1(1[1)( ZteptI β−−−−= , where 66.0=p ; thus, the maximum cumulative 

incidence of the event was set to 66%. Z was used as the group indicator (group 1: 

0=Z , group 2: 1=Z ). The failure times of the competing event were generated 

from the CIF: )1()1()( )exp()exp(
2

ZtZ eptI ββ −−−= . The subdistribution hazard ratio 

(SHR) equals )exp(β , which means that the SDH of the event for group 2 is )exp(β  

times the SDH for group 1. The type I error rate was evaluated under the null 

hypothesis by setting SHR: 1)exp( =β , and failure times for both groups were 

generated from the same CIFs for the event of interest and the competing event. 

Power was evaluated for the two different scenarios by setting SHR=1.5 or 2. The 

fixed time was set as 5.0=t or 1.  

Table 1 shows the empirical type I error rates. All extended tests preserve 

reasonable type I error rates as the sample size becomes large (n1>50, n2>50). The 

performances of the log-log transformation test based on Gaynor’s variance (Gaynor 

et al. 1993) and arcsine-square-root transformation test based on Aalen’s variance 

(Aalen 1978) are much better (type I error rates close to 0.05) than the performances 

of the other tests. However, Aalen’s variance (Aalen 1978) tends to overestimate the 

true variance (Braun and Yuan 2007), whereas Gaynor’s variance (1993) is fairly 

accurate. Table 2 presents the power of the tests based on Gaynor’s variance (Gaynor 

et al. 1993). The power of the tests increases as the sample size increases, the SHR 

increases, or the fixed time point increases. In contrast, the power of the tests 

decreases as the censoring proportion increases.  

   To summarize the considerable simulation results from table 1 and table 2, we 



applied analysis of variance (ANOVA) techniques (Klein et al. 2007, Su et al. 2011) 

to evaluate both the type I error and power. To evaluate the type 1 error rate, the 

response variable, Y, was defined as the percent rejection rate minus the nominal 5% 

level. In this way, good performance of the test is implied by absolute small, 

close-to-zero estimates for the expectation E(Y) in the ANOVA. To evaluate power, 

the outcome variable, Y, was defined as the percent rejection rate; good performance 

is indicated by large estimated values of E(Y). Here we considered four different 

factors: TEST, with 12 levels; NUM1_NUM2, with 5 levels; TIME, with 2 levels; and 

CEN, with 4 levels. These factors represent the test method, sample size of each group, 

fixed time point and censoring proportion, respectively. We fit four models for E(Y) 

without intercepts as follows: 

    Model 1: CENTIMENUMNUMTESTYE ++×= 21 _)( ,             

    Model 2: CENNUMNUMTIMETESTYE ++×= 21 _)( ,               

    Model 3: 21 _)( NUMNUMTIMECENTESTYE ++×= , and            

Model 4: 21 _)( NUMNUMTIMECENTESTYE +++= .  

For example, if we focus on the situations with equal and unequal sample sizes, 

we can fit model 1 to evaluate the factor TEST × NUM 1_NUM2 adjusted for the 

effects of the other two factors. To illustrate the performance of tests according to the 

factors fixed time point and censoring proportion, we can fit Models 2 and 3. For 

comparison, we also fit the additive Model 4.  

Table 3 lists the average deviations from the nominal 5% level of the twelve 

proposed tests through fitted Models 1-4, and the last row presents the marginal 



effects of TEST from Model 4. We see that the tests based on the linear and 

arcsine-square-root transformations tend to have slightly elevated type I error rates, 

whereas the other tests are slightly conservative. The log-log transformation test based 

on Gaynor’s variance (Gaynor et al. 1993) and the arcsine-square-root transformation 

test based on Aalen’s variance (Aalen 1978) perform the best, with average deviations 

from the nominal 5% level close to 0. However, Aalen’s variance (Aalen 1978) tents 

to overestimate the true variance (Braun and Yuan 2007), whereas Gaynor’s variance 

(Gaynor et al. 1993) is fairly accurate. The average deviations of the Logit test based 

on pseudo-values were less than those of the log-log test based on pseudo-values. 

Table 4 presents the average rejection rates for the twelve tests using ANOVA with 

Models 1-4. Power increases with increasing sample size, increasing SHR, increasing 

fixed time point and decreasing censoring proportion. The log transformation tests 

have lower power. Although the linear transformation and arcsine-square-root 

transformation tests have higher power, they are anti-conservative. The power of the 

Logit test based on pseudo-values was greater than that of the log-log test based on 

pseudo-values. In summary, the simulation suggests that log-log transformation based 

on Gaynor’s variance (Gaynor et al. 1993) is a satisfactory method for comparing 

competing risks data at a fixed time point.  

 

4  Examples 

Example 1: Tai et al. (2010) described data from trials conducted from December 

1992 to April 2003 that were designed to delay or avoid irradiation of children with 



malignant brain tumors. The original data are not publicly available; thus, we 

generated similar data using a simulation method (Royston and Parmar 2011). After 

pathology review, the following diagnostic groups were included: ependymoma 

(n=104) and other brain tumors (n=75), the latter of which included astrocytoma, 

medulloblastoma, choroid-plexus carcinoma and mixed glioma. Each group had two 

causes: the event of interest was irradiation after disease progression, and the 

competing event was declining radiotherapy (RT) or opting for elective RT. For 

ependymoma, there were 48 patients for the event of interest and 31 patients for the 

competing event. For other brain tumors, there were 26 patients for the event of 

interest and 44 patients for the competing event. However, the proportional SDH 

assumption was violated (P=0.002). As presented in table 5, Gray’s test, Pepe and 

Mori’s test, the Renyi test and the KS test for the overall hypothesis of CIFs all 

indicated that there was no significant difference in the CIF for the interesting event 

between the two groups (P>0.05). However, comparing the CIFs at 1, 3, 5 and 7 years 

between the two groups, the log-log transformation test based on Gaynor’s variance 

(Gaynor et al. 1993) indicated that there were significant statistical differences 

(P<0.05) at 1, 5 and 7 years but not at 3 years. The CIFs of the other brain tumors 

group were greater than those of the ependymoma group at 1 year; conversely, the 

differences between the two groups had opposite signs at 5 and 7 years. 

Example 2: Data were obtained from the European Group for Blood and Marrow 

Transplantation (EBMT) registry on 2279 acute lymphoid leukemia patients who had 

an allogeneic bone marrow transplant from an HLA-identical sibling donor between 



1985 and 1998 (de Wreede, Fiocco and Putter 2011). For the purposes of the present 

study, we defined the event of interest as death from transplantation, and the 

competing event was relapse from transplantation. Group one comprised patients with 

donor-recipient gender mismatch (n=1734), and group two comprised patients with no 

gender mismatch (n=545). For group one, there were 90 patients for the event of 

interest, and 145 patients for the competing event. For group two, there were 388 

patients for the event of interest, and 280 patients for the competing event. However, 

the proportional SDH assumption was violated (P=0.001). Fig. 2 shows that the two 

CIF curves close nearly at an early time point and that there is a clear difference at a 

later time. Gray’s test, Pepe and Mori’s test and the Renyi test for the overall 

hypothesis of the CIFs all indicated no significant difference (P>0.05) for the event of 

interest between the two groups (table 6), whereas the KS test indicated a significant 

difference. In comparing the CIFs at 1000, 2000, 3000, 4000 and 5000 days between 

the two groups, all methods indicated significant statistical differences (P<0.05) at 

4000 and 5000 days but not at 1000, 2000 or 3000 days. In summary, the CIFs of the 

gender-mismatch group were greater than those of the no-gender-mismatch group at 

4000 and 5000 days but not at 1000, 2000 or 3000 days. 

 

5  Concluding remarks  

In this paper, we extended a series of transformation test methods based on Gaynor’s 

(1993) or Aalen’s variance (Aalen 1978) at a fixed time point for competing risks data. 

When the proportional SDH assumption is violated, in particular by the crossing of 



two CIF curves, Gray’s test and Pepe and Mori’s test for overall CIFs are not reliable 

for comparing the overall homogeneity. In this situation, researchers might be 

interested in comparing the differences at specific time points rather than comparing 

the overall hypotheses of the CIFs. ANOVA of the Monte Carlo simulation results 

confirmed that the log-log transformation test based on Gaynor’s variance (Gaynor et 

al. 1993) had robust power under various situations, with reasonable type I error rates. 

In each of the examples presented in this paper, the two CIF curves crossed each other, 

and the overall homogeneity tests revealed no significant difference between the two 

groups. However, the point tests for comparing two CIFs at a fixed time yielded 

appropriate results at the same fixed time points. 

   Faced with the problem of comparing the CIFs of more than two sample groups at 

a fixed time, the extension of the test methods to the case of R>2 groups might be of 

interest. Tests based on different transformations of CIFs can be defined in a similar 

manner and can be constructed using a quadratic form TAAX 12 −Σ= , where A is the 

vector ))](ˆ())(ˆ()),...,(ˆ())(ˆ([ 121 tItItItI Rkkkk φφφφ −−  and   is the 

)1()1( −×− RR matrix with diagonal elements 

))](ˆ())(ˆ()),...,(ˆ())(ˆ([ 121 tItItItI Rkkkk φφφφ −−  and off-diagonal elements 

))](ˆ([))](ˆ([ 1 tIVtIV rkk φφ + . The pseudo-value technique can be generalized to the R>2 

group situation using R-1 indicator variables or dummy variables. 
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Figure captions: 

Fig. 1  Cumulative incidence of progression/irradiation for ependymoma (solid line) 

and other brain tumor (dashed line) for the event irradiation after disease progression 

 

Fig. 2  Cumulative incidence of death/relapse for no gender mismatch (solid line) 

and gender mismatch (dashed line) for the event death from transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 1  Empirical type I error rates of several tests for competing risks data 

    Gaynor Aalen Pseudo 

t point n1 n2 cens Linear  Log Llog Arcs Logit Linear Log Llog Arcs  Logit Llog Logit 

0.5 50 50 0 0.055  0.039  0.051 0.054 0.046 0.053 0.042 0.050  0.053  0.048  0.048 0.053 
0.15 0.055  0.039  0.050 0.053 0.045 0.053 0.039 0.049  0.052  0.045  0.047 0.049 
0.30 0.052  0.038  0.047 0.051 0.043 0.051 0.038 0.047  0.049  0.042  0.044 0.046 
0.45 0.051  0.036  0.048 0.050 0.043 0.050 0.036 0.047  0.049  0.042  0.043 0.045 

150 150 0 0.050  0.046  0.049 0.050 0.048 0.050 0.046 0.048  0.050  0.048  0.048 0.050 
0.15 0.051  0.047  0.050 0.051 0.048 0.051 0.046 0.049  0.050  0.048  0.048 0.049 
0.30 0.050  0.046  0.049 0.050 0.048 0.050 0.045 0.049  0.050  0.047  0.048 0.049 
0.45 0.049  0.044  0.048 0.049 0.047 0.049 0.044 0.047  0.048  0.046  0.046 0.047 

200 200 0 0.050  0.047  0.049 0.050 0.048 0.049 0.047 0.049  0.049  0.048  0.048 0.049 
0.15 0.052  0.048  0.050 0.051 0.049 0.052 0.048 0.050  0.051  0.049  0.050 0.050 
0.30 0.050  0.047  0.049 0.049 0.048 0.050 0.047 0.048  0.049  0.047  0.048 0.048 
0.45 0.049  0.045  0.048 0.048 0.047 0.048 0.045 0.047  0.048  0.046  0.047 0.047 

50 100 0 0.050  0.040  0.046 0.049 0.044 0.049 0.040 0.047  0.048  0.044  0.045 0.045 
0.15 0.055  0.042  0.049 0.052 0.045 0.053 0.041 0.048  0.051  0.044  0.044 0.046 
0.30 0.054  0.039  0.049 0.051 0.044 0.052 0.039 0.047  0.050  0.042  0.043 0.044 
0.45 0.053  0.040  0.048 0.051 0.043 0.052 0.040 0.046  0.050  0.042  0.043 0.044 

100 200 0 0.055  0.047  0.051 0.052 0.050 0.055 0.047 0.052  0.052  0.049  0.051 0.050 
0.15 0.055  0.047  0.052 0.053 0.049 0.055 0.047 0.050  0.052  0.048  0.049 0.049 

0.30 0.054  0.049  0.052 0.053 0.050 0.054 0.048 0.051  0.053  0.050  0.050 0.051 

0.45 0.053  0.047  0.050 0.052 0.049 0.052 0.046 0.050  0.051  0.047  0.049 0.049 
1 50 50 0 0.055  0.044  0.055 0.055 0.055 0.055 0.039 0.050  0.055  0.050  0.055 0.055 

0.15 0.057  0.044  0.051 0.054 0.051 0.053 0.042 0.047  0.051  0.046  0.051 0.052 
0.30 0.056  0.044  0.050 0.053 0.049 0.053 0.040 0.046  0.050  0.046  0.050 0.051 
0.45 0.059  0.042  0.049 0.054 0.049 0.052 0.040 0.044  0.049  0.045  0.048 0.048 

150 150 0 0.054  0.051  0.053 0.054 0.053 0.054 0.048 0.051  0.053  0.051  0.054 0.054 
0.15 0.051  0.048  0.050 0.050 0.050 0.050 0.047 0.049  0.050  0.049  0.050 0.050 
0.30 0.049  0.044  0.046 0.048 0.046 0.047 0.042 0.045  0.046  0.045  0.046 0.046 
0.45 0.050  0.046  0.048 0.049 0.048 0.049 0.044 0.046  0.048  0.046  0.047 0.048 

200 200 0 0.049  0.049  0.049 0.049 0.049 0.049 0.049 0.049  0.049  0.049  0.049 0.049 
0.15 0.052  0.048  0.050 0.051 0.050 0.050 0.047 0.049  0.050  0.049  0.050 0.050 
0.30 0.051  0.048  0.050 0.050 0.050 0.050 0.048 0.049  0.050  0.049  0.050 0.050 
0.45 0.054  0.050  0.051 0.053 0.051 0.052 0.049 0.050  0.051  0.050  0.051 0.051 

50 100 0 0.055  0.043  0.048 0.053 0.049 0.051 0.042 0.046  0.048  0.043  0.047 0.049 
0.15 0.055  0.047  0.048 0.051 0.048 0.051 0.043 0.045  0.048  0.045  0.049 0.048 
0.30 0.054  0.046  0.048 0.051 0.048 0.051 0.042 0.045  0.048  0.044  0.046 0.047 
0.45 0.057  0.045  0.049 0.054 0.048 0.053 0.041 0.045  0.050  0.043  0.046 0.045 

100 200 0 0.056  0.049  0.051 0.054 0.053 0.054 0.048 0.050  0.052  0.050  0.050 0.053 
0.15 0.055  0.050  0.052 0.053 0.051 0.053 0.049 0.050  0.050  0.049  0.051 0.051 
0.30 0.056  0.051  0.052 0.054 0.052 0.054 0.049 0.051  0.052  0.050  0.052 0.052 
0.45 0.061  0.055  0.055 0.059 0.057 0.058 0.053 0.053  0.056  0.054  0.055 0.055 



 

 

 

 

 

 

 

Table 2  Empirical power of several tests based on Gaynor’s variance for competing risks data 

    SHR=1.5 SHR=2 

t point n1 n2 cens Linear  Log Llog Arcs Logit Linear Log Llog Arcs  Logit

0.5 

50 50 

0 0.407  0.381  0.398 0.403 0.392 0.882 0.863 0.881  0.881  0.881 

0.15 0.402  0.359  0.387 0.395 0.381 0.863 0.838 0.850  0.858  0.849 
0.30 0.387  0.345  0.369 0.380 0.364 0.834 0.808 0.817  0.826  0.817 
0.45 0.359  0.319  0.341 0.352 0.338 0.782 0.760 0.759  0.775  0.765 

150 150 

0 0.852  0.844  0.850 0.851 0.849 1.000 1.000 1.000  1.000  1.000 
0.15 0.835  0.825  0.830 0.833 0.829 0.999 0.999 0.999  0.999  0.999 
0.30 0.810  0.801  0.805 0.808 0.804 0.999 0.999 0.999  0.999  0.999 
0.45 0.770  0.763  0.766 0.769 0.766 0.997 0.997 0.997  0.997  0.997 

200 200 

0 0.937  0.933  0.936 0.936 0.935 1.000 1.000 1.000  1.000  1.000 
0.15 0.924  0.921  0.922 0.923 0.922 1.000 1.000 1.000  1.000  1.000 
0.30 0.911  0.908  0.909 0.911 0.909 1.000 1.000 1.000  1.000  1.000 
0.45 0.883  0.880  0.881 0.883 0.882 1.000 1.000 1.000  1.000  1.000 

50 100 

0 0.545  0.445  0.526 0.524 0.500 0.957 0.926 0.956  0.956  0.948 
0.15 0.527  0.427  0.509 0.506 0.475 0.946 0.915 0.944  0.942  0.936 
0.30 0.504  0.401  0.485 0.482 0.453 0.932 0.894 0.929  0.927  0.919 
0.45 0.471  0.363  0.449 0.448 0.417 0.897 0.857 0.892  0.890  0.881 

100 200 

0 0.814  0.774  0.810 0.808 0.798 0.999 0.999 0.999  0.999  0.999 
0.15 0.801  0.755  0.795 0.790 0.777 0.999 0.998 0.999  0.999  0.999 
0.30 0.776  0.728  0.768 0.765 0.752 0.998 0.997 0.998  0.998  0.998 
0.45 0.741  0.692  0.733 0.730 0.719 0.996 0.994 0.996  0.996  0.995 

1 

50 50 

0 0.572  0.519  0.572 0.572 0.572 0.955 0.952 0.954  0.955  0.955 
0.15 0.524  0.489  0.498 0.514 0.501 0.924 0.913 0.912  0.921  0.915 
0.30 0.474  0.435  0.438 0.460 0.445 0.809 0.795 0.781  0.801  0.789 
0.45 0.327  0.301  0.277 0.311 0.291 0.683 0.674 0.600  0.660  0.631 

150 150 

0 0.950  0.940  0.945 0.950 0.948 1.000 1.000 1.000  1.000  1.000 
0.15 0.929  0.925  0.925 0.927 0.926 1.000 1.000 1.000  1.000  1.000 
0.30 0.896  0.892  0.891 0.894 0.893 0.999 0.999 0.999  0.999  0.999 
0.45 0.793  0.791  0.777 0.789 0.784 0.980 0.982 0.974  0.979  0.977 

200 200 

0 0.987  0.987  0.987 0.987 0.987 1.000 1.000 1.000  1.000  1.000 
0.15 0.979  0.978  0.978 0.978 0.978 1.000 1.000 1.000  1.000  1.000 
0.30 0.960  0.958  0.957 0.959 0.958 1.000 1.000 1.000  1.000  1.000 
0.45 0.893  0.894  0.885 0.891 0.888 0.997 0.997 0.996 0.996 0.996

50 100 

0 0.687  0.606  0.687 0.687 0.670 0.987 0.982 0.989  0.988  0.988 
0.15 0.639  0.564  0.647 0.633 0.626 0.979 0.968 0.980  0.979  0.980 
0.30 0.586  0.508  0.587 0.579 0.571 0.950 0.931 0.950  0.950  0.949 
0.45 0.482  0.411  0.471 0.472 0.460 0.816 0.781 0.790  0.808  0.794 

100 200 

0 0.929  0.904  0.929 0.929 0.925 1.000 1.000 1.000  1.000  1.000 
0.15 0.898  0.878  0.901 0.897 0.897 1.000 0.999 1.000  1.000  1.000 
0.30 0.858  0.831  0.860 0.856 0.855 1.000 0.999 1.000  1.000  1.000 
0.45 0.764  0.732  0.763 0.761 0.757 0.978 0.973 0.974  0.977  0.975 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3  Average deviations from nominal 5% level of twelve tests using ANOVA for competing risks data 

  Gaynor Aalen  Pseudo 

  TEST Linear  Log Llog Arcs  Logit Linear Log Llog  Arcs  Logit  Llog Logit 

NUM1, 

NUM2 

50,50 0.496  -0.929 0.009  0.301 -0.261 0.238 -1.054 -0.256 0.089  -0.456   -0.186 -0.013 

150,150 0.045  -0.369 -0.094  0.000 -0.171 -0.023 -0.466 -0.195 -0.079  -0.256   -0.163 -0.104 

200,200 0.066  -0.220 -0.055  0.013 -0.104 -0.004 -0.275 -0.118 -0.049  -0.158   -0.106 -0.075 

50,100 0.401  -0.723 -0.200  0.140 -0.415 0.153 -0.919 -0.403 -0.111  -0.660   -0.489 -0.394 

100,200 0.566  -0.065 0.195  0.365 0.118 0.436 -0.169 0.087 0.225  -0.040   0.070 0.106 

TIME 0.5 0.212  -0.644 -0.086  0.090 -0.349 0.128 -0.658 -0.148 0.011  -0.391   -0.320 -0.198 

1.0 0.418  -0.279 0.027  0.238 0.015 0.193 -0.495 -0.206 0.019  -0.238   -0.030 0.006 

CEN 0.00 0.286  -0.448 0.014  0.195 -0.066 0.176 -0.538 -0.088 0.080  -0.221   -0.074 0.059 

0.15 0.366  -0.404 0.019  0.178 -0.158 0.206 -0.513 -0.132 0.035  -0.276   -0.119 -0.064 

0.30 0.258  -0.486 -0.093  0.107 -0.246 0.114 -0.618 -0.226 -0.044  -0.378   -0.248 -0.165 

0.45 0.350  -0.506 -0.056  0.175 -0.197 0.144 -0.637 -0.261 -0.011  -0.381   -0.258 -0.213 

  0.315  -0.461 -0.029  0.164 -0.167 0.160 -0.577 -0.177 0.015  -0.314   -0.175 -0.096 

Upper panel: deviations given by NUM1_NUM2 using Model 1; Middle panel: deviations given by TIME using Model 2; Lower panel: 

deviations given by CEN using Model 3; Last line: marginal effects of TEST from Model 4. 



 

 

 

 

 

 

 

 

Table 4  Average rejection rates for six tests using ANOVA for competing risks data 

  Gaynor Aalen Pseudo 

  TEST Linear  Log Llog Arcs Logit Linear Log Llog  Arcs  Logit Llog Logit 

NUM1, 

NUM2 

50,50 63.645  60.939 61.454  62.886 61.780 61.952 59.139 58.103 60.826  58.838 62.124 62.901 

150,150 92.560  92.234 92.227  92.459 92.302 92.354 92.073 91.594 92.033  91.751 92.370 92.484 

200,200 96.684  96.583 96.564  96.642 96.578 96.597 96.525 96.178 96.424  96.257 96.589 96.645 

50,100 74.399  68.604 73.702  73.561 72.283 73.389 67.472 72.164 72.104  70.692 68.917 71.294 

100,200 90.937  89.082 90.777  90.643 90.274 90.654 88.839 90.232 90.199  89.746 89.178 89.894 

TIME 0.5 81.836  79.266 81.210  81.336 80.600 81.568 78.943 80.902 81.056  80.295 79.862 80.512 

1.0 85.454  83.710 84.680  85.141 84.687 84.411 82.677 82.407 83.579  82.619 83.809 84.776 

CEN 0.00 87.295  85.269 87.087  87.131 86.716 87.109 84.916 86.539 86.766  86.088 86.372 86.799 

0.15 85.841  83.757 85.378  85.467 84.942 85.472 83.306 84.951 85.058  84.534 84.553 85.018 

0.30 83.404  81.141 82.719  82.952 82.361 82.915 80.604 82.075 82.452  81.769 81.963 82.627 

0.45 78.040  75.787 76.596  77.403 76.555 76.463 74.413 73.053 74.994  73.437 74.454 76.131 

  83.645  81.488 82.945  83.238 82.643 82.989 80.810 81.654 82.317  81.457 81.835 82.644 

Upper panel: deviations given by NUM1_NUM2 using Model 1; Middle panel: deviations given by TIME using Model 2; Lower panel: deviations 

given by CEN using Model 3; Last line: marginal effects of TEST from Model 4. 



 

Table 5  The comparing of ependymoma versus other brain tumors based on  

overall tests and tests at some fixed points in time 

Method  At 1 years At 3 years At 5 years At 7 years 

Gaynor Linear 0.038 (4.320) 0.928 (0.008) 0.040 (4.206) 0.025 (5.028) 

Log 0.040 (4.239) 0.928 (0.008) 0.050 (3.827) 0.032 (4.603) 

Llog 0.035 (4.431)  0.928 (0.008) 0.043 (4.087) 0.028(4.812) 

Arcs 0.034 (4.508) 0.928 (0.008) 0.042 (4.118) 0.027 (4.912) 

Logit 0.038 (4.318) 0.928 (0.008) 0.045 (4.023) 0.029 (4.795) 

Aalen Linear 0.037 (4.364) 0.929 (0.008) 0.045 (4.025) 0.028 (4.802) 

Log 0.035 (4.449) 0.929 (0.008) 0.056 (3.649) 0.037 (4.341) 

Llog 0.033 (4.555) 0.929 (0.008) 0.048 (3.913) 0.032 (4.612) 

Arcs 0.032 (4.623) 0.929 (0.008) 0.047 (3.938) 0.030 (4.686) 

Logit 0.034 (4.502) 0.929 (0.008) 0.050 (3.846) 0.033 (4.570) 

Pseudo Llog 0.030 (-2.164) 0.913 (0.109) 0.040 (2.049) 0.024 (2.252) 

Logit 0.030 (-2.169) 0.913 (0.109) 0.038 (2.073) 0.022 (2.282) 

Gray  0.174 (1.851)* 

Pepe and Mori  0.793 (0.069)* 

Renyi  0.479 (1.175)* 

KS  0.092 (0.211)* 

The statistical results are expressed as "P values (Test statistic)"; Bold values are 

significance P values and statistical data; *: The statistical results for the overall CIFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 6  The comparing of gender mismatch versus no gender mismatch based on  

overall tests and tests at some fixed points in time 

Method  At 1000 days At 2000 days At 3000 days At 4000 days At 5000 days 

Gaynor Linear 0.393 (0.730) 0.248 (1.332) 0.069 (3.307) 0.039 (4.271) <0.001 (11.610)

Log 0.383 (0.761) 0.236 (1.405) 0.057 (3.612) 0.028 (4.812) <0.001 (17.679)

Llog 0.390 (0.740) 0.245 (1.354) 0.066 (3.383) 0.036 (4.388) <0.001 (11.627)

Arcs 0.389 (0.741) 0.244 (1.357) 0.065 (3.407) 0.035 (4.439) <0.001 (12.728)

Logit 0.386 (0.752) 0.240 (1.382) 0.061 (3.503) 0.032 (4.603) <0.001 (13.925)

Aalen Linear 0.393 (0.729) 0.249 (1.329) 0.069 (3.297) 0.039 (4.243) 0.001 (11.117) 

Log 0.383 (0.760) 0.270 (1.217) 0.058 (3.601) 0.029 (4.782) <0.001 (16.995)

Llog 0.390 (0.739) 0.245 (1.351) 0.066 (3.373) 0.037 (4.359) 0.001 (11.136) 

Arcs 0.386 (0.751) 0.240 (1.379) 0.062 (3.493) 0.032 (4.573) <0.001 (13.354)

Logit 0.390 (0.740) 0.245 (1.354) 0.197 (1.667) 0.036 (4.409) <0.001 (12.195)

Pseudo Llog 0.384 (0.870) 0.237 (1.183) 0.059 (1.888) 0.031 (2.161) <0.001 (3.712) 

Logit 0.386 (0.868) 0.238 (1.179) 0.061 (1.874) 0.032 (2.138) <0.001 (3.510) 

Gray  0.064 (3.436)*  

Pepe and Mori  0.216 (1.530)*  

Renyi  0.143 (1.820)*  

KS  0.014 (0.181)*  

The statistical results are expressed as "P values (Test statistic)"; Bold values are significance P 

values and statistical data; *: The statistical results for the overall CIFs. 

 

  

 

 

 



 

 

 

Fig.1  Cumulative incidence of progression/irradiation for ependymoma (solid line) and  

other brain tumor (dashed line) for the event irradiation after disease progression 

 

 

 



 

 

 

Fig.2  Cumulative incidence of death/relapse for no gender mismatch (solid line) and  

gender mismatch (dashed line) for the event death from transplantation 

 

 


