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Abstract

This paper utilizes the modified signed log-likelihood ratio method for the problem of

inference about the common coeflicient of variation in several independent normal popula-

tions. This method is applicable for both the problem of hypothesis testing and constructing

a confidence interval for this parameter. Simulation studies show that the coverage prob-

ability of this proposed approach is close to the confidence coefficient. Also, its expected

length is smaller than expected lengths of other competing approaches. In fact, the pro-

posed approach is very satisfactory regardless of the number of populations and the different

values of the common coefficient of variation even for very small sample size. Finally, we

illustrate the proposed method using two real data sets.

Keywords: Confidence interval; Coverage probability; Expected length; Common coefficient

of variation; Modified signed log-likelihood ratio.

1 Introduction

In many areas of applied statistics including quality control, chemical experiments, biostatistics,

financial analysis and medical research, the coefficient of variation (CV) is commonly used as

a measure of dispersion and repeatability of data. It is defined as the ratio of the standard

deviation to the mean, and applied to compare relative variability of two or more populations.

Here, a critical question is whether their CVs are the same or not.

For the first time,

Bennet

197

) considered problem of testing the equality of CVs by

assuming independent normal populations. Then, a modified version of Bennetts test by
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Shafer and Sullivan (1986), a likelihood ratio test by [IDoornbos and Dijkstra (1983), an asymp-

totically chi-square test and a distribution free squared ranks approach by Milled (1991a,H),

some Wald tests by |Gupta and Ma (1996), an invariant test by [Feltz and Miller (1996), a

family of test statistics based on Renyi’s divergence by [Pardo and Parda (2000), likelihood

ratio, Wald and score tests based on inverse CV’s by Nairy and Rao (2003) and a likeli-

hood ratio test based on one-step Newton estimators by [Verrill and Johnson (2007) are de-

rived for testing the hypothesis that the CV’s of normal populations are equal. Recently,

Fung and Tsang (1998); lJafari and Behboodian (2010); ILiu et al. (2011)); Jafari and Kazemi
2013); Krishnamoorthy and Lee (2014); [Kharati-Koopaei and Sadooghi-Alvandi (2014) pro-

posed some tests and performed simulation studies to compare sizes and powers of tests. Also,

Jafari (2015) proposed a test for comparing CV’s when the populations are not independent.

If the null hypothesis of equality of CVs is not rejected, then it may be of interest to
estimate the unknown common CV. In practice especially in meta-analysis, we may collect
independent samples from different populations with a common CV. For inference about

the common CV, there has not yet been a well-developed approach for this purpose: some

estimators are presented by [Feltz and Miller (1996), |IAhmed (2002), Forkman (2009), and

Behboodian and Jafari (2008). An approximate confidence interval for the common CV is

obtained by [Verrill and Johnson (2007) based on the likelihood ratio approach. Using Monte

Carlo simulation, Behboodian and Jafari (2008) showed that the coverage probability of this

confidence interval is close to the confidence coefficient when the sample sizes are large. Using

the concepts of generalized p-value T'sui and Weerahandi (1989) and generalized confidence in-

terval Weerahandi (1993), a generalized approach for inference about this parameter is proposed

by [Tian (2005), and also, two generalized approaches are presented by [Behboodian and Jafar

2008). Our simulations studies (Tables [l 2l and B]) indicate that there are some cases that the

coverage probabilities of these three generalized confidence intervals are away from confidence
coefficient. In fact, these approaches are very sensitive to the common CV parameter. For
example, their coverage probabilities are close to one when the common CV is large (i.e. it is
equal to 0.3 or 0.35).

In this paper, we are interested in the problem of inference about common CV from differ-
ent independent normal populations and give a confidence interval for it. This method also is

applicable for testing hypothesis about the parameter. For this purpose, we will use the modi-



fied signed log-likelihood ratio (MSLR) method introduced by [Barndorff-Nielsen (1986, [1991).
It is a higher order likelihood method and has higher order accuracy even when the sample
size is small [Linl (2013) and successfully is applied in some settings, for example: Ratio of
means of two independent log-normal distributions [Wu et al! (2002); Comparison of means of
log-normal distributions |Gill (2004); Inference on ratio of scale parameters of two independent
Weibull distributions [Wu et _all (2005); Approximating the F distribution Wong (2008); Test-
ing the difference of the non-centralities of two non-central t distributions (Chang et al. (2012);
Common mean of several log-normal distributions [Lin' (2013); Testing equality normal CVs
Krishnamoorthy and Lee (2014); Comparing two correlation coefficients [Kazemi and Jafari
(2015).

The remainder of this paper is organized as follows: In Section 2, we first review three
generalized approaches for constructing confidence interval for the common CV parameter,
and then describe the MSLR method for this problem. In Section [, we evaluate the methods
with respect to coverage probabilities and expected lengths using Monte Carlo simulation. The
methods are illustrated using two real examples in Section 4l Some concluding remarks are

given in Section [0

2 Inference about the common CV

Let Xj1,...,Xin, (i=1,2,..,k) be a random sample of size n; from a normal distribution with
mean f1; > 0 and variance 7242, where the parameter 7 > 0 is the common CV. The problem of
interest is to test and to construct confidence interval for 7. In this section, we first review the
proposed approaches based on generalized inference for this parameter, and then an approach

is given for inference about the parameter using MSLR method.

2.1 Generalized inferences

Tian (2005) proposed a generalized confidence interval for the common CV and a generalized
p-value for testing a hypothesis about this parameter. A generalized pivotal variable for the

common CV is considered as

G S (ni—1) /Ri 1)

S (ni—1)
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where R; = and Z; and s? are observed values of X; = %Z;":l X;; and
52-2 = ﬁ Z;“zl (Xij — XZ-)Z, respectively, U; and Z; are independent random variables with
Ui ~ ani_n and Z; ~ N(0,1), i =1, ..., k.

Also,|Behboodian and Jafari (2008) proposed a generalized pivotal variable for the common

CV as

n

Cr= < (2.2)
Zz 1 m; \/_Z

where Z ~ N (0,1). They obtained a generalized pivotal variable by combining this and

generalized pivotal variable proposed by [Tian (2005) as

1 1
Gs = §G1 + §G2, (2.3)

2.2 MSLR method

The log-likelihood function based on the full observations can be written as

((8) = —nlog (1 anlog 145) T2 ZZ <E - 1> ,

i=1 j=1

where 0 = (7, u1,...,ux) and n = Zle ni. Let 6 = (7, i1, fiz, - .., fur,) be the maximum
likelihood estimator (MLE) of the vector parameter 6. There is not a closed form for the
MLE’s of the unknown parameters of model. But it could be obtained by using a numerical
method like the Newton method.

For fixed value of parameter 7, the constrained maximum likelihood estimators (CMLE)

of parameters u;,7 = 1,...,k, are obtained by the following explicit form:
JX2 1 42XZ - X,
flir = 5 , 1=1,...,k,
2T

where X2 = n% S X7
Now, we use the MSLR method which is the modification of traditional signed log-likelihood
ratio (SLR) for inference about 7. The SLR is defined as

r(r) = sen (7 = ) (2(00) - 0(6.)) v (2.4)

where 7 is the MLE of 7, 0 is the MLE’s of unknown parameters, 97 = (7, fi1ry - - -, fgr) is the

vector of CMLE’s of unknown parameters for a fixed 7 and sgn(.) is the sign function. Based



on Wilks’ theorem, it is well known that r (7) is asymptotically standard normal distributed
with error of order O(n~/2) (see (Cox and Hinkley (1979)), and therefore, an approximate

100 (1 — «) % confidence interval for 7 can be obtained from

{r: Ir (D] < Zapt,

where Z,, 5 is the 100 (1 — /2) %th percentile of the standard normal distribution. [Verrill and Johnson
(2007) utilized the likelihood ratio approach and proposed an asymptotic confidence interval for

the common CV using Newton one-step estimator. But Behboodian and Jafari (2008) showed

that the coverage probability of the confidence interval proposed by [Verrill and Johnson (2007)

is smaller than the confidence coefficient when the sample sizes are small. So this approach is

not included in our comparison study.

Generally, [Pierce and Peters (1992) showed the SLR method is not very accurate and some
modifications are needed to increase the accuracy of the SLR method. There exist various ways
to improve the accuracy of this approximation by adjusting the SLR statistic. For the various
ways to improve the accuracy of SLR method, refer to the works of IBarndorff-Nielsen (1986,
1991); [Fraser et all (1999); [Skovgaard (2001); [DiCiccio et al) (2001).

In this paper, we used the method proposed by [Fraser et al! (1999) which has the form

* 1 r(7T
r*(r)=r(1)— mlog % , (2.5)
where ) ) ) o s
0(r) ‘ Ly (0) =Ly (0:) Ixv(07) ‘ ‘399'(9)
T) = _ x ,
and jee’(é) = % 0—b and j}\}\’(é'r) = gigi? . are the observed information matrix

evaluated at @ and observed nuisance information matrix evaluated at 97, respectively, and

l.v(0) is the likelihood gradient. Also, the quantity fg.v(6) and £x.v/(0;) are defined as

ol.v ()
00

and E}\;V(éT) = ae,V(O)

lo,v(0) = o X

)

=0,
where, X is the vector of nuisance parameters. The vector array V is defined as

v _<8Ra(§;0)>_1 <aR(8)g;0)>

)

6

where R(X;0) = (Ri1(X;0),...,Rip, (X;80)) is a vector of pivotal quantity.



Theorem 2.1. (Barndorff-Nielsen (1991); Fraser et all (1999)) Generally, r*(7) in (235 s

asymptotically standard normally distributed with error of order O(n‘g/ 2.

Based on Theorem 2], a 100 (1 — ) % confidence interval for 7 is given as

{T St ()] < Za/2}.

Also, the test statistic 7* (79) can be used for testing the hypotheses Hy : 7 =79 vs Hy : T # 79,

and the p-value is given as
p=2min{P (Z > r*(1)),P(Z <r* (7))},

where Z has a standard normal distribution.
For our problem in this paper, A = (u1,..., Mk)/ and the details of implementation of r*
are given as follows:

For «+ = 1,...,k,7 = 1,.,n;, define vector pivotal quantity R = (Ri1,...,

Tij —Hi

—r The derivative of elements of vector pivotal quantity

Rip,,)" with elements R;; =

R with respect to x;; and vector parameter 6 are obtained as

ORy | o i=7 OR; | —r& i=1 ORy; @y —
Oy 0 i # 7, )T 0 i, or 2
Therefore, we have
piln,  On, 0,
OR (z;0)\ On,  p2lp, On,
=7
ox : ’
0n1 Onz ce ,uklnk

where 0,,, and I,,, are the n; X n; zero and identity matrices, respectively. Therefore, elements

of vector array V = (V,..., V) are

~ )
T T

gy

(T1i1— Tin, — i1 T21 — fi2
V= — ey ~

Top, — 2 Tp1 — flg Tkny, — ik
P i SRR = ,
xr X
V, = ( o }"1,0,...,0>,
H1 M1
X xr
Vs = (0,...,0,&,...,@,0,...,0),
H2 2



Vi = <oooo@x’“"k> .
223 Kk
The derivative of the log-likelihood function respect to z;; are 949 = T =1, ...k,
J 895” wyT
j =1,...,n;. The likelihood gradient ¢y, (6) is obtained as
00 () 00 (6) RAC)
Ly (0) = o, 15, o, V2 o, V(k+1)

For our problem, this likelihood gradient is obtained as

Ly (0) = 7_2 ZZ 332] fii) (pi — $zy 5 lej n1 — ':Ulj

i=1 j= 1 lu‘llu‘lT j=1
/
1 &
T 5 Y kg (e — 7iy)
HERET =1
. ey (0) . .
Also, the quantity lg.v (6) = —%g— is obtained as
2 ek 1
gT;V (0) = A—gzz_2 (xm Nz) (xij _Nz 'y 5 2 lej T1j — ,Ull
T3 = M [ piT j=1
Zxk)j Tkj — ,uk )
NkaT j=1
1 & 1 2(p — 1)
by (0) = [ 23 D (o = ) (5 - 2],

e (-2
] o (= — ,0,...,0],
/m?jz::l T\ I

1 & 1 2(up — Tk
v ~— (g — ( _ (1 _ kﬂ_)> ,0,...,0,
(il T 1,
Nk
1 Q(Mk—iﬂkj))
X T R

We also need to compute the observed information matrix and observed nuisance informa-



tion matrix. The elements of the observed information matrix is obtained as

T e
M fyr - ¢

Jru, (0 32
Z

By using the elements jy, ., (¢) for i,/ = 1,...,k, one can constitute the observed nuisance

information matrix.

3 Simulation study

A simulation study is performed to evaluate the operation of the proposed approach. We per-
formed this with 10,000 replications to compare the coverage probabilities (CP) and expected
lengths (EL) of four approaches: the modified signed likelihood ratio (MSLR) method, gener-
alized pivotal approach in (2.1]) shown by GV1, generalized pivotal approach in (2.2]) shown by
GV2, and generalized pivotal approach in (2.3]) shown by GV3.

we generate random samples of size n; from k& = 3,5, 10 independent normal distributions.
We take the true value of model parameter as (1, 2, 13) = (20, 10,10) for k = 3, (u1,...,u5) =
(50,40, 30,20,10) for k =5, and (uq,- .., n10) = (50,40, 30,20, 10, 50, 40, 30, 20, 10) for k = 10.
The variances of normal populations are obtained such that we have the value of common CV,
7. This value varies in the set {0.1,0.2,0.3,0.35}. For different values of common CV, 7, the
coverage probabilities and expected lengths of the MSLR and GV approaches are estimated to
construct the confidence interval with the 0.95 confidence coefficient. The results are given in

Tables [l Bl and Bl We can conclude that

i. The coverage probability of the MSLR method is close to the confidence coefficient for
all cases. In fact, it is very satisfactory regardless of the number of samples and for all

different values of common CV, even for small sample sizes.

ii. The coverage probability of the GV2 is very smaller than the confidence coefficient in

most cases.



iii. The coverage probabilities of the GV1 and GV3 are very larger than the confidence
coefficient especially when 7 is large (i.e. 0.3 and 0.35). These cases are marked boldface

in the tables.

iv. In all cases, the expected length of the MSLR method is shorter than expected lengths
of the GV methods, even for the cases that the GV methods act well (i.e. when their

coverage probabilities are close to the confidence coefficient).

v. The expected length of the GV1 method is considerably larger than expected lengths of

other methods.

vi. The expected lengths of all approaches increase when the value of 7 increases. Also, the

expected lengths become smaller when the sample sizes increase.

Since, the MSLR method is the only approach that controls the correct confidence coef-
ficient and has the shorter interval length with respect to the other competing approaches in
all cases, we recommend researchers use the MSLR method for practical applications when the
random samples are normal.

To compare robustness of the MSLR and GV approaches, a similar simulation study is
performed by considering the Weibull distribution with shape parameter o and scale parameter

6 as the following probability density function:

a—1 T

flz) = (%) exp(~(5)%), > 0.

™| Q

The random samples are generated from k& Weibull distributions, and the parameters are
chosen such that a common CV, 7, holds. We take the true value of model parameter
as (41,02,03) = (20,10,10) for k& = 3, (B1,...,05) = (50,40,30,20,10) for & = 5, and
(B1,...,P10) = (50,40, 30,20, 10, 50,40, 30,20, 10) for £ = 10 where f; is the scale parame-
ter of ith Weibull distribution. The results are given in Tables [ [ and [6l We can conclude
that the coverage probability of the MSLR method is close to the confidence coefficient when 7
is large (i.e. 0.3 and 0.35) and is smaller than the confidence coefficient for other cases. Other

results are similar to those reported in normal case.



Table 1: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under normal distribution for k£ = 3.
7=0.1 7=0.2
ni,ng, N3 MSLR GVl GV2 GV3 |[MSLR GV1 GV2 GV3
4,44 CP| 0950 0.954 0.906 0.964 | 0.950 0.972 0.918 0.971
EL| 0.108 0.208 0.107 0.147 | 0.222 0.522 0.224 0.343
4,56 CP| 0943 0.956 0.918 0.956 | 0.953 0.961 0.913 0.958
EL| 0.091 0.146 0.090 0.111 | 0.186 0.343 0.186 0.245
6,5,4 CP| 0936 0.954 0.918 0.956 | 0.933 0.963 0.921 0.949
EL| 0.091 0.146 0.090 0.110 | 0.189 0.344 0.187 0.247
5510 |CP| 0.942 0.956 0.927 0.954 | 0.940 0.957 0.923 0.958
EL | 0.090 0.103 0.073 0.084 | 0.189 0.233 0.152 0.181
10,5,5 |CP| 0.938 0.958 0.927 0.954 | 0.954 0.953 0.922 0.960
EL | 0.074 0.103 0.073 0.084 | 0.153 0.233 0.152 0.180
4520 |CP| 0944 0.953 0.923 0.956 | 0.957 0.960 0.927 0.955
EL | 0.058 0.077 0.059 0.064 | 0.121 0.173 0.121 0.139
20,54 |[CP| 0.942 0.955 0.925 0.950 | 0.954 0.963 0.929 0.953
EL | 0.058 0.077 0.059 0.064 | 0.121 0.174 0.121 0.140
77,7 |CP| 0954 0.956 0.929 0.949 | 0.938 0.956 0.926 0.954
EL | 0.072 0.094 0.071 0.079 | 0.149 0.206 0.146 0.166
7,8,9 CP| 0954 0.958 0.931 0.951 | 0.944 0.954 0.933 0.954
EL | 0.066 0.082 0.065 0.071 | 0.136 0.179 0.134 0.149
T=0.3 7=0.35
444 CP| 0.949 0.999 0.915 0.990| 0.951 0.999 0.919 0.983
EL| 0354 1.160 0.358 0.680 | 0.432 1.774 0.436 0.593
4,56 CP| 0.953 0.983 0.920 0.978| 0.955 0.997 0.926 0.983
EL| 0.295 0.687 0.298 0.437 | 0.358 0.985 0.361 0.593
6,5,4 CP| 0.938 0.982 0.922 0.979| 0.950 0.997 0.919 0.987
EL| 0.302 0.685 0.297 0.453 | 0.364 0.976 0.361 0.598
55,10 |CP| 0.945 0.963 0.923 0.960 | 0.948 0.979 0.936 0.967
EL | 0.302 0.432 0.241 0.308 | 0.369 0.588 0.290 0.396
10,55 | CP| 0.955 0.969 0.925 0.965| 0.946 0.975 0.923 0.973
EL| 0.245 0.428 0.240 0.312 | 0.294 0.585 0.291 0.404
4,520 |CP| 0.936 0.974 0.927 0.961 | 0.952 0.983 0.930 0.973
EL| 0.191 0.323 0.190 0.236 | 0.227 0.441 0.229 0.308
20,54 [CP| 0.944 0.973 0.927 0.970| 0.951 0.984 0.930 0.978
EL| 0.190 0.323 0.190 0.237 | 0.227 0.445 0.229 0.308
7,77 |CP| 0954 0.952 0.926 0.963 | 0.949 0.956 0.928 0.945
EL | 0.237 0.368 0.232 0.278 | 0.285 0.482 0.280 0.349
7,8,9 CP| 0945 0.959 0.934 0.954 | 0.944 0.955 0.932 0.939
EL| 0.215 0.308 0.211 0.240 | 0.260 0.402 0.256 0.304
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Table 2: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under normal distribution for k£ = 5.

7=0.1 7=0.2

ni,...,Ns5 MSLR GVl GV2 GV3 |[MSLR GVl GV2 GV3
44444 |CP| 0.947 0.934 0.869 0.970| 0.948 0.968 0.870 0.984
EL | 0.079 0.172 0.076 0.114 | 0.161 0.453 0.157 0.279
44556 |CP| 0.956 0.938 0.883 0.962 | 0.958 0.947 0.883 0.969
EL | 0.069 0.125 0.067 0.089 | 0.141 0.312 0.139 0.204
6,5,5,4,4 |CP| 0951 0.935 0.885 0.960 | 0.950 0.950 0.881 0.967
EL | 0.069 0.126 0.068 0.089 | 0.141 0.309 0.138 0.205
5,5,5,5,10 | CP | 0.938 0.937 0.891 0.957 | 0.944 0.943 0.898 0.958
EL | 0.059 0.092 0.058 0.070 | 0.121 0.217 0.120 0.155
10,5,5,5,5 | CP | 0.941 0.938 0.894 0.953 | 0.946 0.942 0.892 0.957
EL | 0.060 0.092 0.059 0.070 | 0.122 0.217 0.120 0.155
4,45,520 | CP | 0.950 0.942 0.888 0.953 | 0.951 0.952 0.897 0.960
EL | 0.051 0.078 0.051 0.060 | 0.105 0.187 0.105 0.135
20,5,5,4,4 | CP | 0.949 0.946 0.897 0.960 | 0.949 0.953 0.896 0.966
EL | 0.051 0.078 0.051 0.060 | 0.105 0.187 0.105 0.134
7,770,777 |CP| 0.950 0.939 0.902 0.955 | 0.957 0.939 0.907 0.953
EL | 0.054 0.074 0.053 0.060 | 0.110 0.165 0.108 0.127
77,889 |CP| 0.954 0.939 0.912 0.952 | 0.959 0.941 0.914 0.951
EL | 0.050 0.066 0.049 0.055 | 0.103 0.145 0.101 0.115
7=0.3 7=0.35

44444 |CP| 0944 0.999 0.873 0.997| 0.945 1.000 0.877 0.998
EL| 0.254 1.160 0.246 0.635 | 0.305 1.868 0.296 0.976
44556 |CP| 0.957 0.992 0.887 0.988 | 0.951 1.000 0.890 0.995
EL | 0.221 0.678 0.218 0.401 | 0.265 1.051 0.262 0.579
6,5,5,44 |CP| 0952 0.993 0.884 0.991 | 0.950 1.000 0.890 0.995
EL| 0.221 0.681 0.218 0.403 | 0.265 1.032 0.261 0.582
5,5,5,5,10 | CP | 0.940 0.966 0.900 0.972| 0.941 0.986 0.895 0.985
EL | 0.190 0.425 0.187 0.280 | 0.228 0.618 0.225 0.379
10,5,5,5,5 | CP | 0.953 0.964 0.898 0.971| 0.941 0.988 0.896 0.982
EL| 0.192 0430 0.188% 0.280 | 0.231 0.614 0.225 0.379
445520 | CP| 0949 0.982 0.902 0.979| 0.950 0.994 0.895 0.988
EL| 0.164 0.38 0.164 0.250 | 0.197 0.576 0.196 0.346
20,5,54,4 | CP | 0.952 0.982 0.898 0.982] 0.949 0.994 0.899 0.988
EL| 0.164 0.385 0.164 0.247 | 0.197 0.576 0.197 0.340
7,7,7,77 |CP| 0.955 0.938 0.910 0.960 | 0.954 0.946 0.907 0.963
EL| 0.173 0.299 0.170 0.214 | 0.207 0.398 0.203 0.272
7,78,89 |CP| 0.963 0.942 0.914 0.951 | 0.961 0.942 0.917 0.950
EL | 0.161 0.257 0.159 0.190 | 0.194 0.337 0.191 0.238
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Table 3: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under normal distribution for £ = 10.
7=0.1 7=0.2
ni,...,N10 MSLR GV1 GV2 GV3 |[MSLR GVl GV2 GV3
4444444444 |CP| 0.941 0.866 0.753 0.970 | 0.944 0.976 0.752 0.995
EL | 0.053 0.132 0.051 0.083 | 0.107 0.390 0.104 0.224
4455644556 |CP| 0.946 0.883 0.781 0.965 | 0.946 0.910 0.785 0.976
EL | 0.047 0.093 0.046 0.063 | 0.095 0.248 0.093 0.154
6,5,5,4,4,6,5,54,4 |CP| 0.942 0.880 0.788 0.963 | 0.944 0.910 0.793 0.977
EL | 0.047 0.094 0.046 0.063 | 0.095 0.247 0.093 0.154
5,5,5,5,10,5,5,5,5,10 | CP | 0.942 0.889 0.818 0.954 | 0.944 0.890 0.826 0.966
EL | 0.040 0.067 0.040 0.049 | 0.083 0.165 0.082 0.112
10,5,5,5,5,10,5,5,5,5 | CP | 0.943 0.891 0.822 0.962 | 0.948 0.893 0.826 0.965
EL | 0.040 0.067 0.040 0.049 | 0.083 0.165 0.082 0.112
4,4,5,5,20,4,4,5,520 | CP | 0.945 0.898 0.818 0.960 | 0.944 0.925 0.830 0.972
EL | 0.035 0.057 0.036 0.043 | 0.072 0.146 0.073 0.099
20,5,5,4,4,20,5,5,44 | CP | 0.940 0.903 0.819 0.962 | 0.948 0.921 0.829 0.967
EL | 0.035 0.057 0.036 0.043 | 0.072 0.146 0.073 0.099
7,0,0,7,7,0,7, 7,77 |CP | 0.942 0.899 0.846 0.954 | 0.947 0.892 0.852 0.955
EL | 0.037 0.0563 0.036 0.042 | 0.075 0.120 0.074 0.089
7,7,8,89,7,7,889 |CP| 0944 0.902 0.854 0.953 | 0.946 0.910 0.863 0.956
EL | 0.034 0.047 0.034 0.038 | 0.071 0.105 0.070 0.081
T=20.3 7=0.35
4,4,44,4,4,4444 |CP| 0.945 1.000 0.759 1.000| 0.946 1.000 0.771 1.000
EL| 0.167 1.235 0.161 0.630 | 0.199 1.964 0.192 0.991
4455644556 |CP| 0.950 0.999 0.799 0.999| 0.948 1.000 0.800 0.999
EL | 0.148 0.637 0.145 0.350 | 0.177 1.046 0.172 0.544
6,5,5,4,4,6,5,54,4 |CP | 0.945 0.999 0.796 0.998 | 0.951 1.000 0.797 0.998
EL | 0.148 0.633 0.145 0.348 | 0.177 1.056 0.172 0.549
5,5,5,5,10,5,5,5,5,10 | CP | 0.943 0.953 0.826 0.983 | 0.950 0.991 0.838 0.995
EL| 0.129 0.356 0.127 0.218 | 0.154 0.558 0.152 0.317
10,5,5,5,5,10,5,5,5,5 | CP | 0.946 0.955 0.829 0.983 | 0.946 0.993 0.834 0.996
EL| 0.129 0.357 0.127 0.218 | 0.154 0.561 0.152 0.318
4,45,5,20,4,4,5,520 | CP | 0.947 0.991 0.827 0.992| 0.950 0.999 0.836 0.996
EL | 0.111 0.351 0.113 0.205 | 0.133 0.560 0.134 0.304
20,5,5,4,4,20,5,5,4,4 | CP | 0.949 0.992 0.836 0.995| 0.945 0.999 0.840 0.997
EL| 0.111 0.352 0.113 0.206 | 0.134 0.566 0.134 0.306
7,7,7,7,7,0,7,777 |CP| 0945 0.891 0.852 0.954 | 0.948 0.893 0.863 0.955
EL| 0.118 0.225 0.115 0.154 | 0.141 0.312 0.138 0.202
7,7,8,89,7,7,889 |CP| 0939 0.894 0.873 0.955 | 0.946 0.891 0.875 0.953
EL| 0.108 0.191 0.109 0.136 | 0.131 0.257 0.130 0.174
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Table 4: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under Weibull distribution for k£ = 3.
7=0.1 7=0.2
ni,...,N10 MSLR GVl GV2 GV3 |[MSLR GVl GV2 GV3
4.4.4 CP| 0.900 0.939 0.876 0.948 | 0.932 0.964 0.895 0.962
EL| 0.110 0.211 0.105 0.146 | 0.228 0.536 0.224 0.351
4.5,6 CP| 0.894 0.933 0.884 0.937 | 0.927 0.950 0.911 0.951
EL | 0.092 0.147 0.088 0.110 | 0.190 0.353 0.187 0.250
6,5,4 CP| 0.899 0.934 0.881 0.934 | 0.934 0.950 0.898 0.950
EL | 0.092 0.147 0.088 0.110 | 0.190 0.351 0.186 0.249
5,5,10 CP| 0.895 0.923 0.879 0.920 | 0.935 0.942 0.908 0.941
EL | 0.074 0.104 0.073 0.083 | 0.154 0.237 0.152 0.182
10,5,5 CP| 0.895 0.927 0.887 0.925 | 0.935 0.941 0.908 0.940
EL | 0.074 0.104 0.072 0.083 | 0.1564 0.236 0.152 0.182
4,5,20 CP| 0.890 0.922 0.882 0.920 | 0.926 0.946 0.906 0.938
EL | 0.058 0.078 0.058 0.064 | 0.120 0.176 0.121 0.139
20,5,4 CP| 0.888 0.922 0.887 0.921 | 0.929 0.948 0.912 0.943
EL | 0.058 0.078 0.058 0.064 | 0.121 0.176 0.121 0.139
70,7 CP| 0.894 0.921 0.885 0.916 | 0.932 0.942 0.911 0.937
EL | 0.072 0.095 0.070 0.078 | 0.149 0.210 0.147 0.168
7,8,9 CP| 0.887 0.920 0.889 0.919 | 0.933 0.942 0.915 0.936
EL | 0.066 0.083 0.064 0.070 | 0.136 0.181 0.134 0.149
7=0.3 7=0.35
444 CP| 0.962 0.999 0.913 0.993 | 0.965 0.999 0.927 0.994
EL | 0.362 1.139 0.362 0.681 | 0.435 1.672 0.442 0.946
4.5,6 CP| 0.956 0.986 0.925 0.978 | 0.968 0.998 0.934 0.988
EL | 0.300 0.674 0.298 0.445 | 0.360 0.907 0.363 0.577
6,5,4 CP| 0.961 0.984 0.926 0.976 | 0.969 0.999 0.935 0.990
EL| 0.301 0.677 0.301 0.448 | 0.362 0.915 0.364 0.581
5,5,10 CP| 0.956 0.970 0.935 0.963 | 0.964 0.984 0.946 0.977
EL | 0.243 0.428 0.243 0.309 | 0.291 0.559 0.293 0.389
10,5,5 CP| 0.960 0.972 0.935 0.966 | 0.964 0.984 0.944 0.972
EL | 0.243 0.428 0.243 0.309 | 0.292 0.559 0.294 0.390
4,520 CP| 0.958 0.977 0.941 0.969 | 0.969 0.989 0.949 0.979
EL| 0.190 0.320 0.192 0.236 | 0.227 0.419 0.230 0.296
20,5,4 CP| 0.959 0.977 0.932 0.966 | 0.971 0.987 0.949 0.978
EL| 0.189 0.321 0.191 0.236 | 0.228 0.419 0.230 0.296
7,7,7 CP| 0.963 0.959 0.939 0.953 | 0.966 0.972 0.949 0.965
EL | 0.234 0.366 0.233 0.277 | 0.281 0.471 0.282 0.344
7,8,9 CP | 0.963 0.960 0.942 0.956 | 0.970 0.970 0.952 0.962
EL| 0.214 0.310 0.214 0.243 | 0.257 0.390 0.256 0.296
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Table 5: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under Weibull distribution for k£ = 5.

7=0.1 7=0.2

ni,...,N10 MSLR GVl GV2 GV3 |[MSLR GVl GV2 GV3
444,44 |CP| 0.894 0.912 0.821 0.951 | 0.928 0.959 0.852 0.976
EL| 0.079 0.175 0.074 0.114 | 0.164 0.469 0.157 0.285
44556 |CP| 0.891 0.915 0.827 0.943 | 0.928 0.932 0.866 0.961
EL | 0.069 0.128 0.066 0.089 | 0.143 0.319 0.139 0.209
6,5,5,4,4 |CP| 0.897 0.918 0.833 0.944 | 0.934 0.934 0.861 0.959
EL | 0.069 0.127 0.066 0.089 | 0.142 0.318 0.138 0.208
5,5,5,5,10 | CP| 0.894 0.913 0.841 0.933 | 0.931 0.926 0.880 0.949
EL | 0.059 0.093 0.057 0.070 | 0.123 0.222 0.120 0.157
10,5,5,5,5 | CP | 0.885 0.916 0.834 0.932 | 0.929 0.928 0.878 0.948
EL | 0.059 0.093 0.057 0.070 | 0.122 0.221 0.120 0.156
445520 |CP| 0.884 0.917 0.846 0.930 | 0.934 0.942 0.883 0.954
EL | 0.051 0.079 0.051 0.060 | 0.105 0.190 0.105 0.136
20,5,5,4,4 |CP| 0.892 0.910 0.834 0.924 | 0.929 0.938 0.875 0.955
EL | 0.051 0.079 0.051 0.060 | 0.105 0.191 0.105 0.136
7,770,777 |CP| 0.882 0.913 0.848 0.921 | 0.931 0.929 0.894 0.944
EL | 0.0564 0.075 0.052 0.059 | 0.111 0.166 0.108 0.127
7,78,89 |CP| 0.885 0.915 0.855 0.922 | 0.931 0.922 0.895 0.941
EL | 0.050 0.067 0.049 0.054 | 0.104 0.148 0.102 0.116
7=0.3 7=0.35

44,444 |CP| 0960 1.000 0.885 0.997| 0.969 1.000 0.886 0.999
EL | 0.254 1.131 0.249 0.619 | 0.300 1.733 0.298 0.907
44556 |CP| 0.959 0.993 0.897 0.991| 0.970 1.000 0.908 0.997
EL | 0.222 0.663 0.219 0.399 | 0.264 0.968 0.265 0.553
6,5,5,4,4 |CP| 0.957 0.993 0.898 0.990 | 0.968 1.000 0.910 0.997
EL | 0.222 0.666 0.220 0.401 | 0.265 0.964 0.264 0.550
5,5,5,5,10 |CP | 0.958 0.966 0.911 0.975| 0.970 0.990 0.923 0.989
EL| 0.191 0426 0.189 0.280 | 0.228 0.577 0.227 0.364
10,5,5,5,5 | CP | 0.960 0.962 0.902 0.972| 0.970 0.987 0.923 0.984
EL| 0.191 0424 0.189 0.279 | 0.228 0.579 0.228 0.365
4,45520 |CP| 0957 0.986 0.908 0.985| 0.969 0.997 0.922 0.992
EL| 0.164 0.382 0.165 0.247 | 0.196 0.533 0.197 0.326
20,5,5,4,4 |CP| 0.962 0.985 0.910 0.983 | 0.968 0.998 0.921 0.992
EL | 0.164 0.379 0.165 0.246 | 0.195 0.535 0.198 0.327
77,777 |CP| 0.958 0.942 0.922 0.953 | 0.969 0.954 0.929 0.964
EL | 0.173 0.298 0.171 0.214 | 0.206 0.389 0.206 0.269
7,7,8,89 |CP| 0958 0.942 0.925 0.954 | 0.968 0.956 0.936 0.964
EL | 0.162 0.257 0.160 0.191 | 0.193 0.329 0.192 0.237
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Table 6: Empirical coverage probabilities and expected lengths of two-sided confidence inter-

vals for the parameter of common CV under Weibull distribution for & = 10.
7=0.1 7T=0.2
Ni,...,N1Q MSLR GV1 GV2 GV3 |MSLR GV1 GV2 GV3
4444444444 |CP| 0.890 0.859 0.668 0.964 | 0.923 0.978 0.737 0.997
EL | 0.053 0.136 0.050 0.083| 0.109 0.408 0.104 0.232
4,4556,4,4556 |CP| 0.886 0.867 0.689 0.952| 0.927 0.893 0.768 0.972
EL | 0.047 0.095 0.044 0.063 | 0.096 0.256 0.093 0.157
6,5,5,4,4,6,5,5,4,4 |CP| 0.882 0.862 0.691 0.952| 0.929 0.895 0.767 0.972
EL | 0.047 0.095 0.045 0.063 | 0.096 0.255 0.093 0.157
5,5,5,5,10,5,5,5,5,10 | CP | 0.882 0.869 0.731 0.937| 0.926 0.872 0.802 0.955
EL | 0.041 0.069 0.039 0.049| 0.084 0.169 0.082 0.114
10,5,5,5,5,10,5,5,5,5 | CP | 0.882 0.875 0.725 0.939| 0.932 0.876 0.800 0.954
EL | 0.041 0.068 0.039 0.049| 0.083 0.169 0.082 0.114
4,4,5,5,20,4,4,5,5,20 | CP | 0.877 0.875 0.733 0.937| 0.930 0.914 0.808 0.968
EL | 0.035 0.059 0.035 0.043| 0.072 0.150 0.073 0.101
20,5,5,4,4,20,5,5,4,4 | CP | 0.878 0.877 0.740 0.935| 0.925 0.914 0.804 0.968
EL | 0.035 0.058 0.035 0.043| 0.072 0.150 0.073 0.101
7,070,700, 777 | CP | 0.881 0.881 0.748 0.928 | 0.925 0.879 0.827 0.947
EL | 0.037 0.054 0.036 0.041| 0.076 0.122 0.074 0.090
7,7,8,8,9,7,7,889 |CP| 0.876 0.878 0.766 0.920 | 0.928 0.879 0.842 0.941
EL | 0.035 0.048 0.033 0.038| 0.071 0.107 0.070 0.082
7=0.3 7=0.35
4444444444 |CP| 0957 1.000 0.781 1.000| 0.968 1.000 0.808 1.000
EL| 0.167 1.228 0.163 0.627 | 0.197 1.864 0.195 0.941
4,4556,4,4556 |CP| 0.961 0.999 0.821 1.000| 0.970 1.000 0.838 1.000
EL | 0.149 0.614 0.146 0.340| 0.176 0.978 0.175 0.512
6,5,5,4,4,6,554,4 | CP| 0.959 0.998 0.819 0.998 | 0.967 1.000 0.841 1.000
EL | 0.149 0.620 0.147 0.343| 0.176 0.971 0.175 0.509
5,5,5,5,10,5,5,5,5,10 | CP | 0.960 0.946 0.849 0.984 | 0.968 0.995 0.872 0.996
EL | 0.129 0.350 0.128 0.216 | 0.154 0.509 0.153 0.297
10,5,5,5,5,10,5,5,5,5 | CP | 0.959 0.949 0.855 0.985| 0.970 0.995 0.875 0.997
EL| 0.129 0.349 0.128 0.216 | 0.154 0.509 0.153 0.297
4,4,5,5,20,4,4,5,5,20 | CP | 0.958 0.992 0.853 0.993 | 0.967 0.999 0.869 0.998
EL | 0.112 0.344 0.113 0.202 | 0.133 0.523 0.136 0.286
20,5,5,4,4,20,5,5,4,4 | CP | 0.957 0.993 0.853 0.994| 0.967 1.000 0.869 0.997
EL| 0.112 0.345 0.114 0.203 | 0.133 0.524 0.135 0.287
7,0,7,7,70,0,7,7;77 |CP| 0960 0.891 0.876 0.954 | 0.968 0.907 0.892 0.966
EL| 0.118 0.223 0.116 0.154| 0.140 0.296 0.139 0.196
7,7,8,89,7,7,889 |CP| 0946 0.894 0.890 0.955| 0.965 0.906 0.910 0.960
EL | 0.109 0.189 0.109 0.136| 0.131 0.248 0.131 0.171
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4 Real examples

Example 4.1. In this part, we used the data set given by Fung and Tsang (1998). This data
set is also analyzed byl|Jafari and Kazemi (2013) and |Krishnamoorthy and Led (2014) for the
problem of testing the equality of several normal independent CV’s, and considered by |Tian
(2005) and|Behboodian and Jafari (2008) for the problem of inference about the common CV.
The Hong Kong Medical Technology Association has conducted a Quality Assurance Programme
for medical laboratories since 1989 with the purpose of promoting the quality and standards of
medical laboratory technology. The data are collected from the third surveys of 1995 and 1996
for the measurement of Hb, RBC, MCV, Hct, WBC, and Platelet in two blood samples (normal
and abnormal). The summary statistics for this subset of data is given in Table[] The main
data set of this study has not been presented, and therefore, we cannot check the normality
assumption.

At level a = 0.05, |Jafari and Kazemi (2013) showed that the CV for RBC, MCV, Hct,
WBC, and Plt in 1995 is not significantly different from that of 1996 in the abnormal blood
samples. The confidence intervals for the common CV based on our proposed MSLR method
and the three generalized approaches for these data between 1995 and 1996 in each measurement
are given in Table[8. Since the sample sizes are large, the results of all methods are close to

each other.

Table 7: Summary statistics of measurements in the abnormal blood samples.
Year RBC MCV Hct WBC Plt

1995 | ny | 65 63 64 65 64
z1| 4.606 87.25 0.4024 17.68 524.7
s110.0954 3.496 0.0194 1.067 37.05
1996 | ng | 73 72 72 73 71
Zo | 4574 92.33 0.4216 18.93 466.5
52 10.0838 3.078 0.0168 1.211 41.58

Example 4.2. The data set in Appendiz D of|Fleming and Harrington (1991) refer to survival
times of patients from four hospitals. It is analyzed by|Nairy and Rad (2003) and Behboodian and. Jafari
(2008). These data and their descriptive statistics are given in Table [d. The normality as-

sumption for survival times of patients in each of the hospitals was checked using Kolmogorov-
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Table 8: The two-sided confidence intervals for the common CV of measurements in the ab-

normal blood samples.

Method|  RBC MCV Het WBC Plt

MSLR | (0.017,0.022) (0.033,0.042) (0.039,0.050) (0.056,0.071) (0.072,0.092)
GV1 | (0.017,0.022) (0.034,0.042) (0.039,0.050) (0.056,0.071) (0.072,0.092)
GV2 |(0.017,0.022) (0.033,0.041) (0.039,0.049) (0.056,0.071) (0.071,0.090)
GV3 [ (0.017,0.022) (0.034,0.041) (0.039,0.050) (0.056,0.071) (0.072,0.091)

Table 9: Data and descriptive statistics for survival times of patients from four hospitals.

Data z; s?| KS SW
Hospital 1| 176 105 266 227 66 168.0 6880.5|0.990 0.794
Hospital 2 | 24 5 155 54 59.5 4460.3 | 0.822 0.309
Hospital 3 | 58 64 15 45.7 714.310.748 0.215
Hospital 4 | 174 42 305 92 30 82 265 237 208 147 | 154.6 8894.7 | 0.939 0.695

Smirnov (KS) and Shapiro- Wilk (SW) tests. The p-values are given in Table[d. Therefore, the
normal model appears to be appropriate for each group.

Nairy and Rad (2003) tested homogeneity of CV'’s for the hospitals and they showed that all
tests give the same conclusion of accepting the null hypothesis. Therefore, we have a common
CV for these data. The two-sided confidence intervals for the common CV based on MSLR,
GV1, GV2 and GV3 are (0.4748, 0.5988), (-1.7855, 3.6561), (0.4568, 1.1759) and (-0.5457,
2.2563), respectively. It easily can be seen that the lengths of these methods are 0.1240, 5.4416,
0.7191, and 2.8020, respectively. Therefore, the length of the confidence interval proposed by
Tian (2005) is larger than other methods while the length of our proposed confidence interval
is smaller than other methods. This is consistent with the simulation results in Section [2 that

the length of our proposed method is smaller than other approaches.

5 Conclusion

In this paper, we utilize the method of modified signed log-likelihood ratio for the inference
about the parameter of common coefficient of variation in several independent normal pop-
ulations. Also, we compared it with other competing approaches known as generalized vari-

able approaches in terms of empirical coverage probabilities and expected lengths. Simulation
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studies showed that the coverage probability of the MSLR method is close to the confidence
coefficient and its expected length is shorter than expected lengths of the GV methods. There-
fore, our proposed approach acts very satisfactory regardless of the number of samples and for
all different values of common CV, even for small sample sizes, while the generalized variable
approaches act well when the value of common CV is large. It is notable that an executable
program written in R is provided to compute the confidence intervals for the common CV and

can be made available to any interested reader.
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