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Abstract

ROC analysis involving two large datasets is an important method for analyzing statistics of 

interest for decision making of a classifier in many disciplines. And data dependency due to 

multiple use of the same subjects exists ubiquitously in order to generate more samples because of 

limited resources. Hence, a two-layer data structure is constructed and the nonparametric two-

sample two-layer bootstrap is employed to estimate standard errors of statistics of interest derived 

from two sets of data, such as a weighted sum of two probabilities. In this article, to reduce the 

bootstrap variance and ensure the accuracy of computation, Monte Carlo studies of bootstrap 

variability were carried out to determine the appropriate number of bootstrap replications in ROC 

analysis with data dependency. It is suggested that with a tolerance 0.02 of the coefficient of 

variation, 2,000 bootstrap replications be appropriate under such circumstances.
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1. Introduction

The receiver operating characteristic (ROC) analysis involving two large datasets, i.e., 

genuine-score dataset and impostor-score dataset, is an important method to analyze 

statistics of interest for decision making of a classifier in many disciplines. A subject (e.g., 

face, speaker, etc.) may have different objects (e.g., images, speech segments, etc. 

correspondingly). To show the similarity of two objects decided by a classifier, comparing 

two different objects of the same subject creates a genuine score, whereas matching two 

objects of two different subjects generates an impostor score (Hanley and McNeil 1983; 

Fawcett 2006; Wu et al. 2017b; Wu, Martin, and Kacker 2011). The distributions of genuine 

scores and impostor scores characterize classifiers’ matching abilities, and most importantly 

do not have well defined parametric forms (Wu et al. 2017b; Wu, Martin, and Kacker 2011; 

Wu and Wilson 2007).
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Different statistics are employed to measure the performance levels of classifiers depending 

on applications (Wu et al. 2017b; Wu, Martin, and Kacker 2011). One of the most 

complicated measures in ROC analysis is a weighted sum of the probabilities of type I error 

(miss) α(t) and type II error (false alarm) β(t) at a given threshold t, which is called the 

detection cost function (DCF) (see Sec. 3) (Wu et al. 2017b). The former is the cumulative 

probability of genuine scores from the lowest score to a threshold t, while the latter is the 

one of impostor scores from the highest score to a threshold t, as schematically depicted in 

Figure 1a. As the threshold moves from the highest score down to the lowest score, an ROC 

curve is constructed as shown in Figure 1b.

A measure without an estimated standard error (SE) is incomplete, because the well-

established statistical methods cannot be implemented while evaluating and comparing the 

performance levels for different matching systems to determine the statistical significance of 

their performance differences. It is difficult to compute the SE and confidence interval (CI) 

of the measure mentioned above analytically due to the covariance derived from the two 

negatively correlated probabilities of type I error and type II error (Wu et al. 2017b). The 

analytical approach cannot take account of how genuine scores and impostor scores are 

distributed, nor can it take data dependency into consideration (see below). It usually 

underestimates the SE of the measure (Wu et al. 2017a, 2017b). Thus, the SE and CI of such 

a measure is estimated using the bootstrap method (Wu et al. 2017b; Wu, Martin, and 

Kacker 2011; Wu et al. 2017a; Efron 1979; Efron and Tibshirani 1993; Hall 1986; Efron 

1987). However, the bootstrap method assumes that the random samples drawn from a 

population are independent and identically distributed (i.i.d.).

Indeed, data dependency caused by multiple use of the same subjects in order to generate 

more samples because of limited resources exists ubiquitously, and many cases are related to 

ROC analysis on large datasets (Wu et al. 2017b; Efron and Tibshirani 1993; Liu and Singh 

1992). Due to data dependency, the i.i.d. assumption is no longer valid, and the bootstrap 

samples cannot be randomly selected with replacement (WR) directly from the original data 

sample. Indeed, under such circumstances, the bootstrap method with i.i.d. assumption 

underestimates the SEs of statistics of interest, and the data dependency increases not only 

the estimated SEs but also the variations of SEs (Wu et al. 2017b).

As demonstrated in our research (Wu et al. 2017b), to preserve such data dependency while 

the bootstrap resampling takes place, and to make scores have equal probabilities of being 

selected in the random resampling, the data generated using the same subject may be 

grouped into a genuine set or an impostor set accordingly. All such genuine sets should have 

the same number of data points, and likewise for all impostor sets. Thus, a two-layer data 

structure is constructed: the first layer consists of the sets, and the second layer consists of 

scores within the sets. And later, because of such data structure, the same numbers of 

genuine (impostor) scores can be obtained at different iterations while the bootstrap 

algorithm is executed (see Sec. 4). All these reduce the variance of the computation.

Furthermore, as investigated in our prior work (Wu et al. 2017b), from the perspective of the 

multinomial probabilities of selecting bootstrap samples from the original scores and the 

distributions of the bootstrap replications of the statistic of interest, it was recommended that 
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the nonparametric two-sample two-layer bootstrap algorithm rather than the one-layer 

bootstrap and the conventional bootstrap with the i.i.d. assumption be adopted to estimate 

SEs and CIs of statistics of interest in ROC analysis on large datasets involving data 

dependency.

As described in our prior research (Wu et al. 2017b), the nonparametric two-sample two-

layer bootstrap algorithm is referred to as without the assumption of any parametric model 

for score distributions, resampling randomly WR the genuine sets and the impostor sets first 

and subsequently scores within the sets. Scores within the same set are assumed to be 

conditionally independent, because they are generated by two sets of objects and objects in 

at least one of the two sets are different.

Then, the question arises: Under such circumstances as stated above, in order to reduce the 

bootstrap variance and ensure the accuracy of computation, how many bootstrap replications 

are sufficient, i.e., how many times should the raw data be resampled? This critical issue in 

ROC analysis with data dependency is the subject matter of this article.

This number is intrinsically related to bootstrap variability. As investigated in the literature 

(Efron and Tibshirani 1993; Hall 1986; Efron 1987), the substantial bootstrap variance is 

caused by the sampling variability and the bootstrap resampling variability. The former is 

because a finite number of samples usually form a subset of the entire population, and the 

latter is because a limited number of bootstrap replications of a statistic of interest created by 

resampling the raw datasets only constitute a subset of all possible bootstrap replications 

generated using multinomial probabilities of bootstrap selections.

Further, the bootstrap variance produces the variance of the SE and the variance of the two 

bounds of the CI of the bootstrap distribution formed by the bootstrap replications of the 

statistic. Hence, these variances are functions of the sample size as well as of the number of 

bootstrap replications. Inversely, the sample size and the number of bootstrap replications 

can be determined from these variances. The samples employed in this article are tens of 

thousands of scores, and thus the sample size is large enough for ROC analysis in our 

applications (Wu and Wilson 2006). Therefore, only the number of bootstrap replications 

needs to be determined.

In the early analytical studies, the bootstrap variability was rigorously investigated, in which 

the normality assumption was made, the statistic of interest was a sample mean, the data 

were assumed to be i.i.d., and thus the coefficients of variation (CV) of SE and of two 

bounds of the CI were analytically derived (Efron and Tibshirani 1993; Hall 1986; Efron 

1987). In ROC analysis on large datasets, as stated above, (1) no parametric model fits the 

distribution of score data samples; (2) the statistics of interest in ROC analysis are usually 

probabilities or even weighted sums of probabilities derived from two sets of data; and (3) 

data dependency is involved.

Under such circumstances, therefore, (1) it is imperative that bootstrap variability be re-

studied in order to determine the appropriate number of bootstrap replications; and (2) it is 

worth noting that it is hard to conduct the bootstrap variability studies via deriving analytical 

formulas of CVs and thus the Monte Carlo method is employed in this article.
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In our prior research, the bootstrap variability was studied in ROC analysis on large datasets 

under the conditions that the data were assumed to be i.i.d., and the appropriate number of 

bootstrap replications was determined to be 2,000 (Wu, Martin, and Kacker 2014). With 

i.i.d. data, there is no need to regroup the datasets into a two-layer data structure and the 

nonparametric two-sample bootstrap algorithm can be applied directly on the two sets of 

scores.

In our current research, the bootstrap variability in ROC analysis on large datasets is studied 

in a completely different and much more complicated scenario, where (1) data dependency 

is involved, (2) a two-layer data structure is constructed, and (3) the non-parametric two-

sample two-layer bootstrap algorithm is employed to estimate the SEs and 95% CIs of 

statistics of interest.

The Monte Carlo method is employed to generate the CVs of the SE and of the two bounds 

of the CI of the bootstrap distribution of the statistic for bootstrap variability studies. These 

Monte Carlo studies required executions of a quarter billion times of resampling and sorting 

12,672 genuine scores, and a quarter billion times of resampling and sorting 31,720 

impostor scores (see Sec. 2). It took months of CPU time. With a tolerance 0.02 of the CV, it 

was found that 2,000 bootstrap replications were also appropriate for ROC analysis on large 

datasets with data dependency in order to reduce the bootstrap variance and ensure the 

accuracy of the computation.

In our Monte Carlo studies, 12 matching systems1 with different performance accuracies are 

employed, which are real datasets with dependencies (Wu et al. 2017b; The NIST Speaker 

Recognition Evaluation 2012). And the statistic of interest involved is a weighted sum of 

two probabilities, which is one of the most complicated statistics encountered in ROC 

analysis. Thus, the conclusion drawn from our studies is stable, reliable, and effective to 

other cases of ROC analysis.

How to transform a dataset with data dependency into a two-layer structure based on 

probability theory is described in Sec. 2. A statistic of interest in ROC analysis is presented 

in Sec. 3. The nonparametric two-sample two-layer bootstrap algorithm is provided in Sec. 

4. The Monte Carlo algorithm for the bootstrap variability study in ROC analysis with data 

dependency is presented in Sec. 5. The number of bootstrap replications needed in ROC 

analysis involving data dependency is derived in Sec. 6. Finally, conclusions and discussion 

can be found in Sec. 7.

2. The two-layer data structure for datasets involving data dependency

As described in Sec. 1, due to data dependency, a two-layer data structure is constructed. 

The first layer consists of genuine sets and impostor sets, and the second layer consists of 

genuine scores and impostor scores within sets. This structure preserves the data dependency 

1Specific hardware and software products identified in this paper were used in order to adequately support the development of 
technology to conduct the performance evaluations described in this document. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and 
equipment identified are necessarily the best available for the purpose.
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while the bootstrap resampling takes place (Wu et al. 2017b; Efron and Tibshirani 1993; Liu 

and Singh 1992).

In the following, the first subscript index indicates genuine or impostor, and the second and 

third subscript indices numerate sets and scores, respectively. The set SG of all genuine sets 

and the set SI of all impostor sets are expressed by

Si = Sij j = 1, …, mi , i ∈ G,I , (1)

where SGj are genuine sets and SI j are impostor sets, and mG and mI are the numbers of the 

genuine sets and impostor sets, respectively. Each set is expressed in terms of its scores by

Sij = αijk k = 1, …, μij , j = 1, …, mi and i ∈ G,I , (2)

where αG j k are genuine scores, αI j k are impostor scores, and μi j stands for the number of 

scores in the corresponding set. The sets Sij are all in the sense of multiset, in which 

members are allowed to appear more than once. Indeed, a score can occur multiple times 

within a set.

The total number of genuine scores NG and the total number of impostor scores NI are, 

respectively,

Ni = ∑
j = 1

mi
μij,  where i ∈ G,I . (3)

It was recommended that the nonparametric two-sample two-layer bootstrap algorithm, 

rather than the one-layer bootstrap or the conventional bootstrap with the i.i.d. assumption, 

be adopted to compute the SEs of statistics of interest in ROC analysis when data 

dependency is involved (Wu et al. 2017b). Thus, only the probability associated with the 

two-layer random resampling needs to be discussed here. The two-sample two-layer 

resampling takes place randomly WR not only on the first layer of the data, i.e., on the 

genuine and impostor sets, but also subsequently on the second layer of the data, i.e., the 

genuine and impostor scores in the sets, which are assumed to be conditionally independent 

as noted in Sec. 1.

Then, the probability for a score αijk in a set Sij being selected is

P2 −  layer  αijk = P Sij × P αijk Sij = 1
mi

× 1
μij

,
 where k = 1, …, μij, j = 1, …, mi and i ∈ G,I .

(4)

These probabilities are the same for all scores within a set, regardless of whether it is a 

genuine set or an impostor set. Note, however, that the probabilities for scores being selected 

are different from set to set due to different numbers of scores in different sets indicated by 

μi j.
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In order to reduce the variance of the computation, unequal selection probabilities for two-

layer resampling must be eliminated; moreover, the numbers of scores obtained from 

iteration to iteration must be the same (see Sec. 4) while using the bootstrap to compute SEs 

and CIs of statistics of interest in ROC analysis with data dependency. Hence, the numbers 

of scores in genuine sets, i.e., μG j, j = 1, … , mG, are all set to a common μG so that each 

genuine score can have equal probability 1/NG to be selected as per Eq. (3); and all μI j, j = 

1, … , mI, are all set to a common μI so that the probability for each impostor score being 

selected is 1/NI.

Equal-number-of-score sets can be easily chosen from not-equal-number-of-score sets by 

randomly selecting without replacement scores from those sets, in which the numbers of 

scores are larger than a specified number. The specified numbers for genuine sets and for 

impostor sets are determined, respectively, by the trial-and-error optimization so that the 

total numbers of genuine scores and of impostor scores are as large as possible. Hence, the 

new datasets have 132 genuine sets, each of which contains 96 genuine scores; and the total 

number of genuine scores is 12,672. The new datasets contain 130 impostor sets, each of 

which has 244 impostor scores; and the total number of impostor scores is 31,720. The new 

data sizes still have tens of thousands of similarity scores (Wu and Wilson 2006).

3. A statistic of interest in ROC analysis

As stated in Sec. 1, one of the most complicated statistics in ROC analysis is a weighted sum 

of two probabilities. Hence, in our Monte Carlo studies of bootstrap variability with data 

dependency, the DCF at a threshold t (see Sec. 1) is chosen to be the statistic of interest. Just 

for the convenience of computing cumulative probabilities for type I error and type II error, 

the scores for a classifier are all converted to integer values if they are not, and expressed 

inclusively using the set s = {smin, smin+1, … , smax}. While converting, as many decimal 

places of scores as possible are kept so that such a conversion does not result in loss of 

precision.

Let f i (s), s ∈ s and i ∈ {G, I}, denote the continuous probability density functions of scores 

and of genuine scores and impostor scores. The two-corresponding discrete probability 

distribution functions, denoted by Pi (s), s ∈ s and i ∈ {G, I}, are expressed as

 P i = Pi(s) ∀s ∈ s and  ∑
s=Smin

Smax
Pi(s) = 1 , i ∈ G,I . (5)

Then, the probabilities of type I error α(t) and type II error β(t) at a threshold t ∈ s are 

expressed,

α(t) = ∫
−∞

t

fG(s)ds = ∑
s=Smin

t
PG(s) = 1 − ∑

s = t + 1

Smax
PG(s), (6)

and
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β(t) = ∫
t

+∞

fI(s)ds = ∑
s=t

Smax
PI(s), (7)

where the boundary condition PG (smax + 1) = 0 is assumed and the normalization in Eq. (5) 

is employed (Wu, Martin, and Kacker 2011; Wu and Wilson 2007). For discrete probability 

distribution, while computing α(t) and β(t) at a threshold t, the probabilities of genuine 

scores and impostor scores at this threshold t must be taken into account (Ostle and Malone 

1988). Hence, in practice these two error rates can be obtained by moving one integer score 

at a time from the highest score smax down to the threshold t to cumulate the probabilities of 

genuine scores and impostor scores, respectively.

The statistic of interest, i.e., the DCF, is a weighted sum of the probabilities of type I error 

α(t) and type II error β(t) at a given threshold t (The NIST Speaker Recognition Evaluation 

2012) and can be expressed thereafter in terms of the cumulative discrete probability 

distribution functions of genuine scores and impostor scores using Eqs. (6) and (7),

C(t) = CMiss × PGenuine × 1 − ∑
s = t + 1

Smax
PG(s) + CFalseAlarm  × 1 − PGenuine 

× ∑
s = t

Smax
PI(s) .

(8)

The thresholds were provided by the tested classifiers in order to make an explicit detection 

decision for each trial, and the parameters CMiss, CFalseAlarm, and PGenuine were set to be 10, 

1, and 0.01 (The NIST Speaker Recognition Evaluation 2012).

How to design the DCF, how to choose the threshold, how to set these parameters, and how 

to generate genuine scores and impostor scores are all out of the scope of this article (The 

NIST Speaker Recognition Evaluation 2012; Doddington et al. 2000). However, these issues 

have no impact on how to estimate the SE of the DCF using the bootstrap algorithms on 

datasets with dependencies described in this article.

4. The nonparametric two-sample two-layer bootstrap algorithm due to 

data dependency

In Sec. 1 it was suggested that the nonparametric two-sample two-layer bootstrap algorithm 

be employed to estimate SEs and CIs of statistics of interest in ROC analysis when the two 

score distributions have no parametric model to fit and data involve dependency (Wu et al. 

2017b). In the following, the superscript indices are used to numerate the resampling 

iterations. Here is a function Random_WR_Resampling_Set that will be frequently 

employed later on,
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where WR stands for “with replacement”, Γ represents a set of sets or a set of scores, N is 

the cardinality of the set Γ, Θ represents a new set of sets or scores accordingly with the 

same cardinality, γj ∈ Γ, and θi ∈ Θ. Notice that this function can be applied to either a set 

of sets or a set of scores. It runs N iterations as shown from Step 2 to Step5. In the i-th 

iteration, a member of the set Γ is randomly selected WR to become a member of a new set 

Θ, as indicated by Steps 3 and 4. Hence, N members (sets or scores) are randomly selected 

WR from the set Γ to form a new set Θ.

The nonparametric two-sample two-layer bootstrap algorithm for data dependency is carried 

out by resampling randomly WR the genuine sets and the impostor sets first, and 

subsequently on scores within the sets where the scores are assumed to be conditionally 

independent as pointed out in Sec. 1. Thus, Algorithm I is shown as follows.

where B is the number of bootstrap replications. The set SG of all genuine sets and the set SI 

of all impostor sets are expressed in Eq. (1), and mG and mI are the cardinalities of the sets 

SG and SI, respectively.

This algorithm runs B times, as shown from Steps 1 to 11. In the i-th iteration, as indicated 

by Steps 2 and 6, the function Random_WR_Resampling_Set is applied twice to the first 

layer of datasets, i.e., to sets rather than scores. That is, mG genuine sets are randomly 

selected WR from the set SG to constitute a new set S′G i = {S′G j i | j=1,… , mG}, and mI 

impostor sets are randomly selected WR from the set SI to form a new set S′I i = {S′I j i | j = 

1, … , mI}.
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Subsequently, the same function Random_WR_Resampling_Set is applied to the second 

layer of datasets, i.e., the scores in sets (see Eq. (2)). As indicated by Steps 3 to 5, mG 

iterations take place. In the k-th iteration, μG genuine scores are randomly selected WR from 

the genuine set S′G K i, which is the k-th new genuine set from the first-layer resampling, to 

form the k-th new genuine set S″ G k i of the second-layer resampling. The analogous 

interpretation can be applied to impostor scores in the impostor set S′ I K i as shown from 

Steps 7 to 9.

As indicated by Step 10, in the i-th iteration, all genuine scores in the new set S″ G i = {S
″G j i | j = 1, … , mG} and all impostor scores in the new set S″ I i = {S″ I ji | j = 1, … , mI} 

are employed to generate the i-th bootstrap replication of the statistic of interest Ci using Eq. 

(8).

Finally, after B iterations, as indicated by Step 12, from the set Ci | i = 1…, B , the standard 

error SEB of the statistic of interest is estimated by the sample standard deviation of the B 

replications, and the (1 ‒ α) 100% CI QB(α/2), QB(1 − α/2)  at the significance level α is 

estimated by the α/2 100% and (1‒ α/2) 100% quantiles of the bootstrap distribution (Efron 

and Tibshirani 1993). Definition 2 of quantile in Ref. Hyndman and Fan (1996) is adopted. 

Thus, the sample quantile is obtained by inverting the empirical distribution function with 

averaging at discontinuities. If 95% CI is of interest, then α is set to be 0.05.

With the new data structure shown in Sec. 2, the same number of genuine scores, i.e., NG = 

mG × μG, and the same number of impostor scores, i.e., NI = mI × μI, are obtained in Step 10 

at different iterations of the nonparametric two-sample two-layer bootstrap algorithm to 

compute the bootstrap replication of the statistic of interest. This can reduce the variance of 

computation.

5. The Monte Carlo algorithm of bootstrap variability study with data 

dependency

As pointed out in Sec. 1, it is crucial to study the variances of the SE and of the two bounds 

of the CI of the bootstrap distribution of the statistic of interest in ROC analysis on large 

datasets where data dependency is involved. To take account of the impact of the mean 

value, the CV rather than variance is employed (Efron and Tibshirani 1993). Here is 

Algorithm II for bootstrap variability study for data dependency, in which the Monte Carlo 

method is employed to generate all those CVs.
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where L is the number of Monte Carlo iterations and B is the number of bootstrap 

replications. As indicated by Steps 1 to 7, Algorithm II runs L iterations for a specified B. 

The part from Steps 2 to 6 is equivalent to the nonparametric two-sample two-layer 

bootstrap Algorithm I, which generates the i-th SEB
i ,QB

i (α/2) and QB
i (1 − α/2) of statistic 

interest in the i-th iteration for a given B.

As shown in Step 8, for a specified B, after L iterations of executing the nonparametric two-

sample two-layer bootstrap algorithm, the following three sets are generated,

SEB, L = SEB
i i = 1, ⋯, L ,

QB, L(α/2) = QB
i (α/2) i = 1, ⋯, L ,

QB, L(1 − α/2) = QB
i (1 − α/2) i = 1, ⋯, L .

(9)

Thereafter, from these three sets, the three estimated CV s of SE, lower-bound and upper-

bound of CI can be obtained, respectively,

CVB, L(κ) = VARB, L(κ)
EB, L(κ)

,  where κ = SEB, L, QB, L(α/2), QB, L(1 − α/2) . (10)

It is clear that the three estimated CV s are functions of the number of bootstrap replications 

B, the number of Monte Carlo iterations L, and the significance level α. In this study, the 

95% CI is of interest and thus α is set to be 0.05, as stated in Sec. 4. Hence, the number of 

bootstrap replications B can be determined by the tolerable CVs as long as the sufficient 

number of iterations L can be determined in advance so that the accuracy of the Monte Carlo 

computation is guaranteed.
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6. Results of bootstrap variability study in ROC analysis involving data 

dependency

To study bootstrap variability in ROC analysis where the datasets involve data dependency, 

12 datasets generated by speaker recognition matching systems with different performance 

accuracies labeled with A through L were employed. Their DCFs are0.022199, 0.028996, 

0.031588, 0.040098, 0.040880, 0.073500, 0.096988, 0.098744,0.161254, 0.223263, 

0.236771, and 0.455384, respectively, at thresholds provided by the tested systems as 

pointed out in Sec. 3. The smaller the DCFs are, the more accurate the matching systems 

are. Thus, these systems represent a wide range of performance quality. As discussed in Sec. 

5, the appropriate number of Monte Carlo iterations L needs to be determined prior to 

determining the number of bootstrap replications B, which is our primary objective. In the 

following, the three estimated CVs for the SE, the lower bound and upper bound of 95% CI 

are denoted by CV SE, CV LB, and CV UB respectively.

6.1. The number of Monte Carlo iterations L

For all 12 matching systems, the number of bootstrap replications B first ran from 200 up to 

1,000 at intervals of 200. For each specified B, the number of Monte Carlo iterations L ran 

from 100 up to 1,000 at intervals of 100; and thus 10 estimates of the CVSEs, CVLBs, and 

CVUBs were generated, from which the minimum, maximum, and range (i.e., max. ‒ min.) 

were obtained for each of CVSE, CVLB, and CVUB.

All results of System A through System L when B ran from 200 up to 1,000 at intervals of 

200 for CVSE, CVLB, and CVUB are depicted in Figure 2a–c, respectively. In Figure 2, 

each bar connects the minimum and the maximum of the 10 estimated CVs of a system at a 

specified B. To illustrate clearly, the 12 color bars at each B are drawn separately to 

represent the 12 systems alphabetically from left to right. To demonstrate the results of CVs
clearly, the numerical results of the most accurate System A and the least accurate System L 

are presented in Tables 1 and 3.

In Figure 2b–c unlike Figure 2a, at any specified number of bootstrap replication B, the 

minimum and the maximum of CVLB and CVUB of a system are quite different from those 

of another system. This is because fewer samples occur in the tails of the distribution (Efron 

and Tibshirani 1993). Thus, the variations of CVLB and CVUB are quite large from system 

to system.

Nonetheless, as indicated by Figure 2, as well as by Tables 1 and 3, for a system, the 

tendency of changes of CVs is that minimal CVs and maximal CVs decrease, as the number 

of bootstrap replications B increases. Although the ranges fluctuate for some systems as B 

increases, the 12 systems’ averages of CVSE ranges for each B running from 200 up to 

1,000 at intervals of 200 are 0.006286, 0.004316, 0.003183, 0.003133, and 0.002739; the 12 

systems’ averages of CVLB ranges are 0.001014, 0.000605, 0.000646, 0.000707, and 

0.000441; and the 12 systems’ averages of CVUB ranges are 0.000991, 0.000526, 0.000544, 

0.000461, and 0.000427. Hence, these 12 systems’ averages of the CV ranges generally get 

smaller. In other words, the ranges become narrower as B increases.
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As a result, to obtain the estimates of CVs while the number of bootstrap replications B 
varied from 1,200 up to 2,000 at intervals of 200, the number of Monte Carlo iterations L 
did not need to run from 100 up to 1,000 at intervals of 100 but was fixed at 500. This can 

save tremendous computing time without sacrificing computational accuracy. Under these 

circumstances, all estimates of such CV SE, CV LB, and CV UB for the 12 matching systems 

are shown in Figures 3 and 4 (see Sec. 6.2). In the meantime, to show results clearly, the 

numerical results of Systems A and L are presented in Tables 2 and 4.

6.2. The number of nonparametric two-sample two-layer bootstrap replications B

Tables 1 through 4 show clearly that the estimated CV SEs are larger than the estimated 

CV LBs and CV UBs at any specified number of bootstrap replications B for a matching 

system. Indeed, this is a trend. The rationale is as follows.

According to Eq. (10), the CV is determined by both SE and mean. The SE and the mean 

associated with each of the three CVs are derived correspondingly by the distribution of SEs, 

or the distributions of lower bounds or upper bounds of the 95% CIs. All these distributions 

are created by the Monte Carlo iterations specified by Eq. (9). In the following, without loss 

of generality, the cases of B = 2,000 and L 500 regarding the most accurate System A and 

the least accurate System L are taken as examples.

The estimated  SEs  of the distributions of the SEs, and the lower bounds and upper bounds 

of the 95% CIs are 0.0000315, 0.0001076, and 0.0001329, respectively, for System A; and 

0.0001495, 0.0005400, and 0.0005761, respectively, for System L. This shows that the 

distribution of the SEs has less dispersion than the distributions of the lower bounds and 

upper bounds of the 95% CIs. Again, this is because fewer samples occur in the tails of the 

distribution (Efron and Tibshirani 1993).

However, the estimated means of the corresponding distributions are 0.0019580,0.0186303, 

0.0262923 for System A; and 0.0095160, 0.4356036, and 0.4728976 for System L. Among 

them, those associated with the two bounds of the 95% CIs are related to the matching 

accuracies of the systems, i.e., the DCF 0.022199 for System A and 0.455384 for System L 

as shown above. As a result, the corresponding estimated CVs are 0.016068, 0.005773, and 

0.005055 for System A as shown in the last column of Table 2; and 0.015707, 0.001240, and 

0.001218 for System L as presented in the last column of Table 4.

This shows that the estimated CV SE is quite larger than the estimated CV LB and CV UB
with B = 2,000 and L = 500 for Systems A and L. Indeed, all our results show that the 

estimated CV SEs are larger than the corresponding estimated CV LBs and CV UBs for any 

specified B and L and all matching systems.

This suggests that if the estimates of CV SE satisfy a specified tolerance, then the 

corresponding estimates of CV LB and CV UB can meet the same tolerance as well. Hence, in 

order to determine the number of nonparametric two-sample two-layer bootstrap replications 

in ROC analysis on large datasets where data dependency is involved, only the estimates of 

CV SE need to be investigated.

Wu et al. Page 12

Commun Stat Simul Comput. Author manuscript; available in PMC 2020 March 12.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



All estimated CV SEs of the 12 matching systems as a function of the number of bootstrap 

replications B running from 200 up to 2,000 at intervals of 200 are jointly depicted in Figure 

3. In the cases where the number of bootstrap replications B is set to be from 200 up to 

1,000 at intervals of 200, only the maximal CV SEs are employed. The same treatment is 

applied to CV LB and CV UB. The corresponding 24 curves are jointly drawn in Figure 4.

The tolerance for all CVs is set to be 0.02, which is acceptable for our applications (Efron 

and Tibshirani 1993; Wu, Martin, and Kacker 2014). As shown in Figure 4, all estimated 

CV LB and CV UB are less than this tolerance. With this 0.02 tolerance, Figure 3 shows that 

1,600 nonparametric two-sample two-layer bootstrap replications are sufficient. If the 

tolerance is set to be 0.0175, then Figure 3 shows that 2,000 nonparametric two-sample two-

layer bootstrap replications are sufficient. Indeed, there is no significant difference between 

0.0175 and 0.02 as far as the tolerance is concerned for our applications.

To be consistent with the number of bootstrap replications suggested in our prior bootstrap 

variability study where the data were assumed to be i.i.d. (Wu, Martin, and Kacker 2014), 

and indeed to be a bit more conservative, it is suggested that 2,000 nonparametric two-

sample two-layer bootstrap replications be used in ROC analysis on large datasets where 

data dependency is involved in order to reduce the bootstrap variance and assure the 

statistical accuracy of the computation.

7. Conclusions and discussion

The nonparametric two-sample two-layer bootstrap method is very useful in estimating SEs 

and CIs of statistics of interest in ROC analysis on large datasets in which data dependency 

is involved. The number of bootstrap replications is a critical parameter for reducing the 

bootstrap variance and ensuring the accuracy of the computation. And this number can be 

determined from the bootstrap variability study.

In ROC analysis on large datasets, usually no parametric model fits score distributions and 

the statistics of interest are typically probabilities derived from two sets of data. In our prior 

bootstrap variability studies, the data were assumed to be i.i.d., and thus the nonparametric 

two-sample bootstrap resampling took place only on scores without a need to group them 

into sets. With a tolerance 0.02 for CVs, the appropriate number of the nonparametric two-

sample bootstrap replications was determined to be 2,000 (Wu, Martin, and Kacker 2014).

However, data dependency caused by multiple use of the same subjects in order to generate 

more data due to limited resources exists ubiquitously in many disciplines involving ROC 

analysis. The data dependency requires that a two-layer data structure be constructed and the 

nonparametric two-sample two-layer bootstrap algorithm be used to estimate SEs and CIs of 

statistics of interest. In the light of these fundamental changes, the bootstrap variability was 

re-studied in order to determine the appropriate number of the bootstrap replications.

To conduct bootstrap variability studies, under the circumstances described above, it is 

difficult to derive analytical formulas of CVs. Instead, the Monte Carlo method is employed 

to generate the CVs of the SE and of the two bounds of the CI of the bootstrap distribution 
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formed by the bootstrap replications of the statistic of interest. In the Monte Carlo studies 

with data dependency, 12 matching systems with different performance accuracies were 

taken as examples, and a weighted sum of two probabilities derived from two sets of data, 

which is more complicated than others often employed in ROC analysis, was used as the 

statistic of interest.

Moreover, based on the numbers of Monte Carlo iterations and the numbers of bootstrap 

replications as stated in Sec. 6, and the total numbers of genuine scores and impostor scores 

as noted in Sec. 2 for each of the 12 matching systems, the Monte Carlo studies took months 

of CPU time. Thus, the conclusion of 2,000 bootstrap replications in ROC analysis on large 

datasets with data dependency is stable, reliable, and effective to other cases of ROC 

analysis.

To take account of the impact of the mean value, the CVs rather than the variances are 

employed (Efron and Tibshirani 1993). Further, as shown in Sec. 6.2, the means of the 

distributions of the lower bounds and upper bounds of the 95% CIs of a measure, and thus 

CVLB and CVUB are related to the matching accuracies of the systems. In the prior 

bootstrap variability study, the matching accuracies, such as the true accept rate at a fixed 

false accept rate or at a given threshold, etc., were very high close to 1 (Wu, Martin, and 

Kacker 2014). However, in this bootstrap variability study, they are between0.022199 and 

0.455384 (see Sec. 6.2). This may cause that the CV LBs and CV UBs in the prior study were 

quite smaller than those in this study.

Nonetheless, all estimated CV LBs and CV UBs are smaller than the estimated CV SEs under 

the same assumptions. This implies that only the estimates of CV SEs need to be investigated 

while comparing with the tolerance of CVs. With a tolerance 0.02 of CVs, which is the same 

as the one adopted in our prior bootstrap variability study, and to be more conservative, it is 

suggested that the appropriate number of the nonparametric two-sample two-layer bootstrap 

replications be 2,000 in ROC analysis on large datasets where data dependency is involved, 

in order to reduce the bootstrap variance and ensure the accuracy of the computation.

As stated in Sec. 1, the bootstrap variance is also related to the sample sizes. The sample 

sizes employed in this article are appropriate for ROC analysis in our applications. This is 

because if the numbers of scores increased from those used in this article, the measurement 

accuracy would improve little in our applications (Wu and Wilson 2006). Nonetheless, 

should bootstrap variability need to be reinvestigated for some reason, the Monte Carlo 

methods for studying bootstrap variability developed in this article would remain the same.
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Figure 1. 
(a): A schematic diagram of two continuous distributions of genuine scores and impostor 

scores, showing three related variables: type I error α(t), type II error β(t), and threshold t. 

(b): A schematic drawing of an ROC curve.
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Figure 2. 
Bars between minimum and maximum of 10 estimates of CVSEs (a), CVLBs (b), and 

CVUBs(c), as the number of Monte Carlo iterations L ran from 100 up to 1,000 at intervals 

of 100 for each specified B, and the number of bootstrap replications B ran from 200 up to 

1,000 at intervals of 200 for System A through System L. To illustrate clearly, the 12 color 

bars at each B are drawn separately to represent the 12 systems alphabetically from left to 

right. The vertical axis is on a log scale.
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Figure 3. 
The estimates of CVSEs for all 12 systems as a function of the number of bootstrap 

replications, where the statistic of interest is a DCF. The tolerance is set to be 0.02.
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Figure 4. 
The estimates of CVLBs and CVUBs for all 12 systems as a function of the number of 

bootstrap replications, where the statistic of interest is a DCF.
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Table 1.

System A’s minimum, maximum, and range of 10 estimates of CVSEs, CVLBs, and CVUBs, as the number 

of Monte Carlo iterations L ran from 100 up to 1000 at intervals of 100 for each specified B. B ran from 200 

up to 1000 at intervals of 200.

Num. of replications B 200 400 600 800 1,000

CVSE

 Min. 0.047070 0.030467 0.028298 0.022614 0.021531

 Max. 0.053639 0.036492 0.030321 0.028009 0.023215

 Range 0.006569 0.006026 0.002023 0.005395 0.001683

CVLB

 Min. 0.016383 0.011433 0.009101 0.007927 0.007607

 Max. 0.019033 0.012432 0.010839 0.009316 0.008256

 Range 0.002650 0.000999 0.001738 0.001389 0.000649

CVUB

 Min. 0.014699 0.010422 0.008353 0.007367 0.006589

 Max. 0.016435 0.011199 0.009617 0.008098 0.007444

 Range 0.001736 0.000777 0.001263 0.000731 0.000855
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Table 2.

System A’s estimates of CVSEs, CVLBs, and CVUBs, while B ran from 1,200 up to 2,000 at intervals of 200 

as the number of Monte Carlo iterations L was fixed at 500.

Num. of replications B 1,200 1,400 1,600 1,800 2,000

CVSE 0.019914 0.019226 0.016977 0.016226 0.016068

CVLB 0.007298 0.006788 0.006538 0.005732 0.005773

CVUB 0.006240 0.005862 0.005462 0.004999 0.005055
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Table 3.

System L’s minimum, maximum, and range of 10 estimates of CVSEs, CVLBs, and CVUBs, as the number of 

Monte Carlo iterations L ran from 100 up to 1,000 at intervals of 100 for each specified B. B ran from 200 up 

to 1,000 at intervals of 200.

Num. of replications B 200 400 600 800 1,000

CVSE

 Min. 0.047549 0.031298 0.028535 0.024287 0.019595

 Max. 0.052935 0.037416 0.031404 0.026173 0.023385

 Range 0.005385 0.006118 0.002869 0.001886 0.003790

CVLB

 Min. 0.003772 0.002631 0.002182 0.001928 0.001682

 Max. 0.004479 0.002989 0.002468 0.002167 0.001941

 Range 0.000707 0.000357 0.000286 0.000239 0.000259

CVUB

 Min. 0.003420 0.002308 0.002043 0.001741 0.001586

 Max. 0.004017 0.002720 0.002276 0.001936 0.001784

 Range 0.000598 0.000411 0.000234 0.000195 0.000197
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Table 4.

System L’s estimates of CVSEs, CVLBs, and CVUBs, while B ran from 1,200 up to 2,000 at intervals of 200 

as the number of Monte Carlo iterations L was fixed at 500.

Num. of replications B 1,200 1,400 1,600 1,800 2,000

CVSE 0.019895 0.019107 0.017731 0.015606 0.015707

CVLB 0.001581 0.001547 0.001484 0.001289 0.001240

CVUB 0.001514 0.001429 0.001376 0.001190 0.001218
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