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Abstract

We introduce a new R package and its functions written by the authors. This package
computes an empirical density function for arbitrary dimensions with adjustable grid sizes.
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1. Introduction

The empirical probability density function (EPDF) is one of the simplest tools available to
estimate the density of any given data set, yet remains one of the most reliable instruments for
statisticians. In virtually any field of statistics the EPDF is used to verify a new representation
of a density via random sampling, or to get a first attempt at the true distribution of the data
at hand.

A number of different approximations for the empirical density function have existed for
years (Bentley 1980), along with efficient implementations. For example, Lee and Joe (2017)
provided a kernel density estimator for higher dimensional data with the ks package.

Despite the wide spread use of approximations, implementations were only available for uni-
variate data so far. Therefore, we have developed an R (R Development Core Team 2017)
package which offers a density function for data sets of arbitrary dimension. The package is
named MEPDF (Wiegand and Nadarajah 2017).

In Section 2, we elaborate on the algorithm for computing the EPDF. Thereafter, we pro-
vide an overview of the functionality of the package and provide a number of examples for
the different possible configurations. In Section 4, we compare our method with previously
existing ones, in terms of runtimes and accuracy, and discuss benefits and disadvantages of
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the methods. We close this note with a conclusion on what we have accomplished.

2. Method

Let us assume we have a data set of dimension n and sample size N . The first step is to
determine what the domain of the density function will look like. This means we assume an
n dimensional hyperrectangle defined by a minimum and maximum corner point:

R =
{
x ∈ R|xmin

i ≤ xi ≤ xmax
i ,∀i = 1, . . . , n

}
.

This domain is then subdivided into cells of dimensions g = (g1, . . . , gn) ∈ R+, so that we
have a number of gi/

(
xmax
i − xmin

i

)
cells making up side i of the domain. Each of these

cells can be once again defined by an upper and lower end point, pmin
j and pmax

j for all

j = 1, . . . , g1g2 · · · gn. For any x ∈ Rn, we define pmin(x) and pmax(x) to be the corners of
the smallest cell which contains x. We can then define the cell counts as follows:

c(x) = #
{
y|pmin

j (x)i ≤ yi ≤ pmax
j (x)i,∀i = 1, . . . , n

}
.

With this number we can scale for the sample size and cell dimension, and are left with the
density estimator:

f̂(x) =
c(x)

n

[
n∏

i=1

(
pmax(x)i − pmin(x)i

)] .

3. Implementation

As with the univariate case, the multivariate EPDF rests on the organization of the data
domain into sections and counting the contained data sample fraction. In higher dimensions
these sections become cells of the respective dimension as described in Section 2. Each function
therefore begins with setting up a grid, based on user specifications.

R> data <- mvrnorm(100000, mu = c(0, 0), Sigma = diag(2))
R> density <- epdf(data = data,
+ min.corner = c(-4, -4),
+ max.corner = c(4, 4),
+ main.gridsize = c(0.05, 0.05))
R> data2 <- exp(data)
R> density2 <- epdf(data = data2,
+ min.corner = c(0, 0),
+ max.corner = c(0.25, 0.25),
+ main.gridsize = c(0.025, 0.025))

In the code above, we describe the general usage of a single grid EPDF. The examples given
use bivariate, normally distributed and log-normally distributed data.
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Figure 1: Single grid EPDFs: normal distribution (left) and log-normal distribution (right).

The code produces the EPDF density with a cropped domain between the points (−4,−4)
and (4, 4) as well as (0, 0) and (0.25, 0.25). The cells are defined via the argument main.gridsize,
giving the cell dimension, which are set to be squares with side lengths 0.05 and 0.025. The
visualisation of the output in a three dimensional surface is shown in Figure 1.

For arbitrary data samples, not all regions of the plot require the same level of cell resolution.
We have therefore added an option to superimpose regions of greater or lesser accuracy on
top of one another. The EPDF function can therefore be called with an additional argument
rescubes. This is a list of lower and upper corners of the additional grid as well as the
respective grid sizes. Even though we have used cells of same side length in this example,
rectangular cells are possible by specifying different side lengths.

In the code below, we describe how to call a grid with multiple resolutions on top of one
another. The data set is once again the multivariate normally distributed one.

R> a <- list(mn = c(-1, -1),
+ mx = c(1, 1),
+ grid.size = c(0.05, 0.05))
R> b <- list(mn = c(-2, -2),
+ mx = c(2, 2),
+ grid.size = c(0.1, 0.1))
R> cubes <- list(a, b)
R> pdf <- epdf(data = data,
+ max.corner = c(4, 4),
+ min.corner = c(-4, -4),
+ main.gridsize = c(0.2, 0.2),
+ rescubes = cubes)

While the main grid has the coarse resolution of 1× 1, we add two more grids on top of the
existing one, see Figure 2. The first grid stretches from (−2,−2) to (2, 2) with resolution
0.2× 0.2 and the second from (−1,−1) to (1, 1) with resolution 0.1× 0.1.
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Figure 2: Normal distribution with two additional grids.

Notice that hyper rectangles, if added later to the argument, stand higher in the evaluation
hierarchy. Thus if two additional grids overlap, the one to further down in the rescubes
argument will be evaluated.

4. Comparison to other approximations
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Lee and Joe (2017) introduced efficient sorting algorithms for bivariate and trivariate data
samples, to compute the cumulative distribution function at each sample point. We imple-
mented the bivariate version of the modified sorting algorithm, and have tested the runtime
and accuracy. We adapted the grid approach in Section 2 to compute the cumulative distri-
bution function, to retrieve comparable results (Coles 2001; Madsen, Krenk, and Lind 2006;
van der Vaart 1998).

We generated random samples of a bivariate standard normal distribution for a number of
different grid sizes (with 20 repetitions for each sample size, and grid size). In addition to
the quick sort algorithm’s performance and the evaluation of the grid at the sample values,
we added the mean absolute error of the grid from (−2.5,−2.5) to (2.5, 2.5) in increments of
0.05 in both directions.

Table 1 provides a collection of the outcomes. While we did anticipate the grid algorithm
to be inherently slower than the more refined and optimized quicksort algorithm, we call to
mind one of the main benefits of the grid. The set up of the grid and computation of each
value takes up more time, than just sorting the data frame, but the evaluation for a single
point is almost instant.

Sample Runtime Mean abs. error Mean grid error

G
ri
d
m
et
h
o
d

C
el

l
si

ze
0
.2 100 0.21392936 0.04566793 0.04251113

1000 0.24834236 0.02810882 0.01867514
10000 1.6141590 0.02877145 0.0195883
100000 206.25750 0.02762748 0.01884067

C
el

l
si

ze
0.

1 100 0.25150332 0.04788994 0.02828868
1000 0.27418801 0.01752053 0.00931264
10000 1.67261842 0.01419393 0.0058551
100000 213.125000 0.01092680 0.0039695

C
el

l
si

ze
0
.0

5 100 0.24326998 0.04423368 0.02820412
1000 0.27710048 0.01122147 0.00767438
10000 1.63767783 0.00647778 0.00233407
100000 209.730000 0.00646367 0.00092244

C
el

l
S
iz

e
0.

01 100 0.25234084 0.04305427 0.0239167
1000 0.31065388 0.01056779 0.00695079
10000 1.70771075 0.00317742 0.00199478
100000 236.791069 0.00159879 0.00067679

Q
S
m
et
h
o
d 100 0.01965387 0.04008379 -

1000 0.06860905 0.01158748 -
10000 1.15542641 0.00606940 -
100000 43.3694060 0.00488396 -

Table 1: Runtime and error measure comparison for different methods and sample sizes.

As expected, the quick sort algorithm performs faster for most sample sizes (especially smaller
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ones, n ≤ 10000), taking up roughly between a quarter and half the computation time of the
grid. With increasing sample size, the factor between both implementations seems to be
getting smaller.

Another observation we can make is that the mean grid error is considerably lower than the
mean error at the sample points, and even below the error rate of the quicksort algorithm.
With growing sample size, we observe a convergence of the mean grid error and mean error of
the sorting algorithm. With the smallest cell size, namely squares of dimension 0.01×0.01, we
are even able to achieve a smaller error rate at the sample points as well (about 30% smaller).

More importantly, the grid gives opportunity to evaluate the cumulative distribution function
for arbitrary values, whereas sorting algorithms by nature can only make a statement on
values at the individual sample points. The grid can therefore to some degree be used to
interpolate between values, or to extrapolate beyond the samples, depending on the choice of
grid sizes.

As the grid has to be set up only once, and the evaluation at arbitrary points is sufficiently
fast, we believe this algorithm still has its place as benchmark or initial estimator when
analyzing the distribution of data samples.

5. Conclusions

With the MEPDF (Wiegand and Nadarajah 2017) package, we have provided an implementa-
tion for empirical density functions of arbitrary dimension, which can be found on the CRAN
repository. This gives a standardized tool with all necessary functions to work with higher
dimensional data sets.

In Section 4, we have compared the grid algorithm to recent optimized sorting algorithms
in terms of runtimes and accuracy. The results and wide range of applications for the grid
algorithm have led us to believe that this very simple algorithm still remains relevant.
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