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ABSTRACT

The bivariate Poisson distribution is commonly used to model bivariate count data. In

this paper we study a goodness-of-fit test for this distribution. We also provide a review

of the existing tests for the bivariate Poisson distribution, and its multivariate extension.

The proposed test is consistent against any fixed alternative. It is also able to detect local

alternatives converging to the null at the rate n− 1
2 . The bootstrap can be employed to

consistently estimate the null distribution of the test statistic. Through a simulation study

we investigated the goodness of the bootstrap approximation and the power for finite sample

sizes.

1 Introduction

The univariate Poisson distribution (UPD) has helped to model many real life situations.

For a survey of statistical issues, problems and applications associated with the UPD the

reader is referred to the text of Haight (1967) and Johnson and Kotz (1969). For the other

hand, the bivariate Poisson distribution (BPD) is appropriate for modelling paired count

data exhibiting positive correlation.

Several definitions for the BPD have been given (see, e.g. Kocherlakota and Kocher-

lakota, 1992). In this paper we will work with the following one, because it has received

the most attention in the statistical literature (see, e.g. Holgate, 1964; Johnson, Kotz and
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Balakrishnan, 1997). Let

X1 = Y1 + Y3 and X2 = Y2 + Y3,

where Y1, Y2 and Y3 are independent Poisson random variables with means θ′1 = θ1 − θ3 > 0,

θ′2 = θ2 − θ3 > 0 and θ3 > 0, respectively. The joint distribution of the vector (X1, X2) is

called BPD with parameter θ = (θ1, θ2, θ3), (X1, X2) ∼ BP (θ) for short.

In the statistical literature on goodness-of-fit (gof) tests for the BPD, which is rather

sparse in comparison with the univariate case, we found the following: the tests given by

Crockett (1979), Loukas and Kemp (1986), Rayner and Best (1995) -these three tests are

not consistent against each fixed alternative- and, more recently, the tests in Novoa-Muñoz

and Jiménez-Gamero (2014), and Novoa-Muñoz and Jiménez-Gamero (2016) (hereafter ab-

breviated to NJ (2014) and NJ (2016), respectively).

The tests in NJ (2014) and NJ (2016) are consistent against each fixed alternative. The

results in Janssen (2000) assert that the global power function of any nonparametric test is

flat on balls of alternatives except for alternatives coming from a finite-dimensional subspace.

Therefore, it is interesting to propose new gof tests able to detect different sets of alternatives.

The present work proposes a new consistent gof test for the BPD. To derive it we first

show that the probability generating function (pgf) of the BPD is the only pgf that satisfies

a certain system of partial differential equations. Therefore, under the null hypothesis, the

empirical probability generating function (epgf), which is a consistent estimator of the pgf

(see, e.g. NJ, 2014), should approximately satisfy such system. The proposed test statistic

can be seen as a bivariate extension of the one in Baringhaus and Henze (1992) designed for

testing gof to the univariate Poisson distribution.

The asymptotic behavior of the proposed test under alternatives is shared with the ones

in NJ (2014) or NJ (2016). An advantage of the test proposed in this paper over those in

NJ (2014) and NJ (2016) is its speed for the delivery of results.

In order to consistently approximate the null distribution of the test statistic, we propose

to use a parametric bootstrap estimator. The finite-sample size performance of the test

is numerically evaluated through a simulation study. The power of the test is compared
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with the tests mentioned above. There is no test yielding the highest power against each

considered alternative, as expected from the results in Janssen (2000). In most cases, the

power of the proposed test is quite close to the highest one; in other cases, the proposed test

is the most powerful. In addition, from a computational point of view, the test proposed in

this paper is more efficient than its competitors.

Next we show the notation used in this work: all vectors are row vectors and v⊤ is the

transpose of the row vector v; for any vector v, vk denotes its kth coordinate, and ‖v‖ its

Euclidean norm. We put N0 = {0, 1, 2, 3, . . .} and write IA for the indicator function of

the set A; Pθ denotes the probability law of the BPD with parameter θ; P denotes the

probability law of the data; Eθ denotes expectation regarding the probability function Pθ;

E denotes expectation with respect to the true probability function of the data; P∗ denote

the probability law, given the data; all limits in this work are taken as n → ∞;
L−→ denotes

convergence in distribution;
a.s.−→ denotes almost sure (a.s.) convergence. For any function

h : S ⊂ R
m → R, for some fixed m ∈ N, we will denote

Dk1···kmh(u) =
∂k

∂uk1
1 · · ·∂ukm

m

h(u),

for each choice of nonnegative integers k1, . . . , km such that k = k1 + · · ·+ km.

2 Review of the existing tests for the BPD, and their

multivariate extension

2.1 Tests for the BPD

Let X1 = (X11, X12),X2 = (X21, X22), . . . ,Xn = (Xn1, Xn2) be independent identically

distributed (iid) from a random vector X = (X1, X2) taking values in N
2
0. Based on the

sample X1,X2, . . . ,Xn, the objective is to test the hypothesis

H0 : (X1, X2) ∼ BP (θ1, θ2, θ3), for some (θ1, θ2, θ3) ∈ Θ,

3



against the alternative

H1 : (X1, X2) ≁ BP (θ1, θ2, θ3), ∀ (θ1, θ2, θ3) ∈ Θ,

where Θ = {(θ1, θ2, θ3) ∈ R
3 : θ1 > θ3, θ2 > θ3, θ3 > 0}. From NJ (2014) the distribution

of X = (X1, X2) is determined by its pgf g(u) = E
(
uX1
1 uX2

2

)
, u = (u1, u2) ∈ [0, 1]2, and the

joint pgf of a random vector X ∼ BP (θ) is

g(u; θ) = Eθ(u
X1
1 uX2

2 ) = exp
{
θ1(u1 − 1) + θ2(u2 − 1) + θ3(u1 − 1)(u2 − 1)

}
. (1)

The empirical counterpart of pgf is epgf of the data given by gn(u) =
1
n

∑n
i=1 u

Xi1
1 uXi2

2 .

Next we will briefly expose three non-consistent tests that we found in the statistical

literature, where X̄1, X̄2, S
2
X1

and S2
X2

are the sample means and variances, respectively,

S2
X1X2

is the sample covariance, r is the sample correlation coefficient and χ2
k,α, for 0 < α < 1

and k ∈ N, denotes the upper α-percentile of the χ2 distribution with k degrees of freedom.

2.1.1 Crockett test T

The statistic T (say) proposed by Crockett (1979) is based on a quadratic form in ZX1 =

S2
X1

− X̄1 and ZX2 = S2
X2

− X̄2. He shows that, under H0, T = ZV −1Z⊤ L−→ Y ∼ χ2
2, where

V denotes the matrix of variances and covariances of Z = (ZX1, ZX2). Thus, the statistic

and its critical region are given by

T =
n

2

X̄2
2

(
S2
X1

− X̄1

)2 − 2S2
X1X2

(
S2
X1

− X̄1

) (
S2
X2

− X̄2

)
+ X̄2

1

(
S2
X2

− X̄2

)2

X̄2
1X̄

2
2 − S4

X1X2

, T ≥ χ2
2,α.

2.1.2 Test IB of Loukas and Kemp

Loukas and Kemp (1986) developed a test based on what they called the bivariate dispersion

index, IB = 1
1−ρ2

∑n
i=1 (W

2
i1 − 2ρWi1Wi2 +W 2

i2) , whereWik =
Xik−θk√

θk
, k = 1, 2, i = 1, 2, . . . , n

and ρ = θ3√
θ1θ2

. If θ1, θ2 and θ3 are known, these authors show that IB is distributed

approximately as a variable χ2
2n. If θ1, θ2 and θ3 are unknown, the statistic and its critical
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region are given by

IB =
n(X̄2S

2
X1

− 2S2
X1X2

+ X̄1S
2
X2
)

X̄1X̄2 − S2
X1X2

, IB ≥ χ2
2n−3,α.

2.1.3 Test NIB of Rayner and Best

Rayner and Best (1995) expressed the statistics of Loukas and Kemp (1986) as IB =

n
1−ρ̂ 2

(
S2
X1

X̄1
− 2

S2
X1X2

X̄1X̄2
+

S2
X2

X̄2

)
, where ρ̂ =

SX1X2√
X̄1X̄2

is an estimator of ρ. If ρ̂ 2 > 1
2

(
S2
X1

X̄1
+

S2
X2

X̄2

)
,

then IB < 0, and its distribution is not well approximated by a χ2. They proposed the

statistic

NIB =
n

1− r2


S2

X1

X̄1

− 2 r2

√
S2
X1
S2
X2

X̄1X̄2

+
S2
X2

X̄2


 .

Under H0, NIB is approximately distributed as χ2
2n−3 if n is large. Therefore, H0 is rejected

if NIB ≥ χ2
2n−3,α.

Note that the statistical tests T, IB and NIB are not consistent, because they are based

on the moments, specifically based on the fact that the first two population moments are

equal. In contrast, the tests presented below are consistent.

2.1.4 Test Rn,w of Novoa-Muñoz and Jiménez-Gamero (2014)

From NJ (2014) the distribution of X is uniquely determined by its pgf, g(u), u ∈ [0, 1]2, a

reasonable test for testing H0 should reject the null hypothesis for large values of

Rn,w =

∫ 1

0

∫ 1

0

G2
n(u; θ̂n)w(u)du,

where Gn(u;ϑ) =
√
n{gn(u) − g(u;ϑ)}, w(u) = ua1

1 ua2
2 is a measurable weight function

∀u ∈ [0, 1]2, a1, a2 ∈ (−1,∞), and θ̂n = θ̂n(X1, . . . ,Xn) = (θ̂1n, θ̂2n, θ̂3n) is a consistent

estimator of θ.

2.1.5 Test Sn,w of Novoa-Muñoz and Jiménez-Gamero (2014)

Since the pgf g(x) of the univariate Poisson distribution, with parameter λ, is the only pgf

satisfying the differential equation g′(x) = λg(x), Baringhaus and Henze (1992) proposed a

5



test statistic which is based on an empirical counterpart of this equation. With the aim of

extending this result to the bivariate case, NJ (2014) proposed to reject H0 for large values

of

Sn,w = n

∫ 1

0

∫ 1

0

{
B2

1n(u; θ̂n) +B2
2n(u; θ̂n)

}
w(u) du,

where w(u) = ua1
1 ua2

2 , a1, a2 ∈ (−1,∞), θ̂n = (θ̂1n, θ̂2n, θ̂3n) is a consistent estimator of θ, and

B1n(u; θ̂n) =
∂

∂u1
gn(u1, u2)−

{
θ̂1n + θ̂3n(u2 − 1)

}
gn(u1, u2),

B2n(u; θ̂n) =
∂

∂u2
gn(u1, u2)−

{
θ̂2n + θ̂3n(u1 − 1)

}
gn(u1, u2),

should be close to 0 when H0 is true. These functions are the empirical counterpart of the

system of partial differential equations of Proposition 2 in NJ (2014).

2.1.6 Test Wn of Novoa-Muñoz and Jiménez-Gamero (2016)

When H0 is true, NJ (2016) presented another interpretation of the fact that Sn,w =

n
∫ 1

0

∫ 1

0
{B2

1n(u; θ̂n) + B2
2n(u; θ̂n)}w(u) du ≈ 0. Reasoning as Nakamura and Pérez-Abreu

(1993) for the univariate case and noting that Bkn(u; θ̂n) =
∑

r1≥0

∑
r2≥0 bk(r1, r2; θ̂n)u

r1
1 u

r2
2 ,

k = 1, 2. NJ (2016) proposed to reject H0 for large values of

Wn =
∑

r1≥0

∑

r2≥0

{b21(r1, r2; θ̂n) + b22(r1, r2; θ̂n)} =

M∑

r1,r2=0

{b21(r1, r2; θ̂n) + b22(r1, r2; θ̂n)},

where M = max{X(n)1, X(n)2}, X(n)k = max1≤i≤nXik, k = 1, 2,

b1(r1, r2; θ̂n) = (r1 + 1)pn(r1 + 1, r2)− (θ̂1n − θ̂3n)pn(r1, r2)− θ̂3npn(r1, r2 − 1),

b2(r1, r2; θ̂n) = (r2 + 1)pn(r1, r2 + 1)− (θ̂2n − θ̂3n)pn(r1, r2)− θ̂3npn(r1 − 1, r2),

and pn(r1, r2) =
1
n

∑n
i=1 I{Xi1=r1,Xi2=r2} is the relative frequency of the pair (r1, r2),

2.2 The general m−variate case

For the multivariate case, for each integer m > 2, let

X1 = Y1 + Ym+1, X2 = Y2 + Ym+1, . . . , Xm = Ym + Ym+1,
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where Y1, Y2, . . . , Ym+1 are independent Poisson random variables with means θ′1 = θ1 −
θm+1 > 0, . . . , θ′m = θm − θm+1 > 0 and θm+1 > 0, respectively. The joint distribution

of the vector (X1, X2, . . . , Xm) is called a m-variate Poisson distribution with parameter

θ = (θ1, θ2, . . . , θm, θm+1) (see Johnson, Kotz and Balakrishnan, 1997). The joint pgf of

(X1, X2, . . . , Xm) is

g(u; θ) = exp

{
m∑

i=1

θi (ui − 1) + θm+1

(
m∏

i=1

ui −
m∑

i=1

ui +m− 1

)}
, ∀u ∈ R

m. (2)

The empirical counterpart of pgf is epgf of the data given by

gn(u) =
1

n

n∑

i=1

uXi1
1 · · ·uXim

m , u = (u1, . . . , um). (3)

Now, the objective is to test the hypothesis

H0m : (X1, X2, . . . , Xm) has a d-variate Poisson distribution.

The tests proposed by Crockett (1979), Loukas and Kemp (1986), and Rayner and Best

(1995) do not have a multivariate extension. However, NJ (2014) and NJ (2016) proposed a

natural extension of their tests, which will be presented below.

2.2.1 Test Rm,n,w of Novoa-Muñoz and Jiménez-Gamero (2014)

NJ (2014) affirmed that the extension of the test Rn,w is direct, it is enough to consider

pgf g(u; θ) as in (2), epgf gn(u; θ̂n) as in (3) and w(u) is a measurable nonnegative weight

function with finite integral over [0, 1]m.

2.2.2 Test Sm,n,w of Novoa-Muñoz and Jiménez-Gamero (2014)

To test H0m, NJ (2014) considered the test statistic

Sm,n,w = n

∫

[0,1]m

{
B2

1n(u; θ̂n) + · · ·+B2
mn(u; θ̂n)

}
w(u) du,

where w(u) is a measurable nonnegative weight function with finite integral over [0, 1]m, and

Bin(u; θ̂n) =
∂

∂ui
gn(u)−

{
θ̂i,n + θ̂m+1,n

(
∏

j 6=i

uj − 1

)}
gn(u), 1 ≤ i ≤ m, gn(u) as in (3).
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2.2.3 Test Wm,n of Novoa-Muñoz and Jiménez-Gamero (2016)

With the aim of extending Wn to the multivariate case, NJ (2016) proposed the following

statistic for testing H0m,

Wm,n =
∑

r1,r2,...,rm≥0

{
m∑

j=1

b2j (r1, r2, . . . , rm; θ̂n)

}
=

M∑

r1,r2,...,rm=0

{
m∑

j=1

b2j (r1, r2, . . . , rm; θ̂n)

}
,

where M = max{X(n)1, X(n)2, . . . , X(n)m}, X(n)k = max1≤i≤n Xik, 1 ≤ k ≤ m, and

bj(r1, . . . , rm; θ̂n) = (rj + 1)pn(r1, . . . , rj−1, rj + 1, rj+1, . . . , rm)− (θ̂jn − θ̂m+1,n)pn(r1, . . . , rm)

− θ̂m+1,n pn(r1 − 1, . . . , rj−1 − 1, rj, rj+1 − 1, . . . , rm − 1), 1 ≤ j ≤ m,

and pn(r1, . . . , rm) =
1
n

∑n
i=1 I{Xi1=r1,...,Xim=rm} is the relative frequency of (r1, . . . , rm).

3 A new characterization of the BPD

In order to obtain a new test to test the hypothesis H0 against the alternative H1 and based

on the fact that the distribution of X = (X1, X2) is determined by its pgf, we give a different

characterization for the BPD.

Proposition 1 Let g(u1, u2; θ) be as defined in (1). Then g(u1, u2; θ) is the only pgf satis-

fying the following system of partial differential equations

D1(u; θ) =
∂g(u1, 1)

∂u1
− θ1 g(u1, 1) = 0,

D2(u; θ) =
∂g(1, u2)

∂u2

− θ2 g(1, u2) = 0,

D3(u; θ) =
∂2g(u1, u2)

∂u1 ∂u2
− f(u1, u2; θ) g(u1, u2) = 0,





(4)

where f(u1, u2; θ) = θ3 + {θ2 + θ3(u1 − 1)}{θ1 + θ3(u2 − 1)}.

The system of equations (4) has the following nice interpretation: first and the second

equation characterize the marginal distributions, i. e., they are equivalent to saying that the
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marginal distributions are univariate Poisson; the last equation characterizes the dependence

structure.

By Proposition 1 in NJ (2014), g(u) and its derivatives can be consistently estimated by

the epgf and the derivatives of the epgf, respectively. Thus, if H0 is true, then the functions

D1n

(
u; θ̂n

)
=

∂gn(u1, 1)

∂u1
− θ̂1n gn(u1, 1),

D2n

(
u; θ̂n

)
=

∂gn(1, u2)

∂u2
− θ̂2n gn(1, u2),

D3n

(
u; θ̂n

)
=

∂2gn(u1, u2)

∂u1 ∂u2

− f(u1, u2; θ̂n) gn(u1, u2),

should be close to 0, ∀(u1, u2) ∈ [0, 1]2, where θ̂n = (θ̂1n, θ̂2n, θ̂3n) is a consistent estimator of

θ and gn(u1, u2) is the epgf associated with the data, i. e.,

gn(u1, u2) =
1

n

n∑

i=1

uXi1
1 uXi2

2 .

Thus, to test H0 we consider the following test statistic

Tn,w = n

∫ 1

0

∫ 1

0

{
D2

1n

(
u; θ̂n

)
+D2

2n

(
u; θ̂n

)
+D2

3n

(
u; θ̂n

)}
w(u) du,

where w(u) is a non-negative function on [0, 1]2.

In order to give a sound justification of Tn,w as a test statistic for testing H0 we next

derive its almost sure limit.

Theorem 1 Let X1,X2, . . . ,Xn be iid from X = (X, Y ) ∈ N
2
0 with pgf g(u) such that

∂g(u1,1)
∂u1

, ∂g(1,u2)
∂u2

and ∂2g(u1,u2)
∂u1 ∂u2

, exist and are continuous functions on a region containing

[0, 1]2. If θ̂n
a.s.−→ θ, for some θ ∈ R

3, then

Tn,w

n

a.s.−→
∫ 1

0

∫ 1

0

{
D2

1(u; θ) +D2
2(u; θ) +D2

3(u; θ)
}
w(u) du = η(g; θ) ≥ 0.

Note that if w > 0 almost everywhere (a.e.) on [0, 1]2, then η(g; θ) = 0 if and only if

H0 is true. Therefore, a reasonable test for testing H0 should reject the null hypothesis for

large values of Tn,w. Now, to determine what are large values of Tn,w, we must calculate its

null distribution, or at least an approximation to it. Clearly, the null distribution of Tn,w is

unknown. A classical way of approximating the null distribution of a test statistic is through

its asymptotic null distribution. The next section studies this issue.

9



4 A bootstrap estimator of the null distribution

In order to derive the asymptotic null distribution of the test statistic Tn,w we will assume

that the estimator θ̂n is asymptotically linear, as expressed in Assumption 1 in NJ (2014)

and we will consider the separable Hilbert space

H = {ϕ : [0, 1]2 → R, with ‖ϕ‖ 2
H
=

∫ 1

0

∫ 1

0

ϕ2(u)w(u) du < ∞}.

In this framework, Tn,w can be expressed as Tn,w = ‖Z1n‖ 2
H
+ ‖Z2n‖ 2

H
+ ‖Z3n‖ 2

H
, with

Zkn(u) =
1√
n

n∑

i=1

Rk

(
X i; θ̂n; u

)
, k = 1, 2, 3,

where, for 1 ≤ i ≤ n,

R1

(
X i; θ̂n; u

)
= Xi1 I{Xi1≥1} u

Xi1−1
1 − θ̂1n u

Xi1
1 ,

R2

(
X i; θ̂n; u

)
= Xi2 I{Xi2≥1} u

Xi2−1
2 − θ̂2n u

Xi2
2 ,

R3

(
X i; θ̂n; u

)
= Xi1Xi2 I{Xi1Xi2≥1} u

Xi1−1
1 uXi2−1

2 − f
(
u; θ̂n

)
uXi1
1 uXi2

2 ,

The next result gives the asymptotic null distribution of Tn,w.

Theorem 2 Let X1,X2, . . . ,Xn be iid from X = (X1, X2) ∼ BP (θ). Suppose that As-

sumption 1 in NJ (2014) holds and that θ̂n
a.s.−→ θ. Then

Tn,w = ‖W1n‖ 2
H
+ ‖W2n‖ 2

H
+ ‖W3n‖ 2

H
+ rn,

where Pθ(|rn| > ε) → 0, ∀ε > 0,

Wkn(u) =
1√
n

n∑

i=1

W 0
k (X i; θ; u), k = 1, 2, 3,

W 0
1 (X i; θ; u) = Xi1 I{Xi1≥1} u

Xi1−1
1 − θ1 u

Xi1
1 − g(u1, 1; θ) ℓ (X i; θ) (1, 0, 0)

⊤,

W 0
2 (X i; θ; u) = Xi2 I{Xi2≥1} u

Xi2−1
2 − θ2 u

Xi2
2 − g(1, u2; θ) ℓ (X i; θ) (0, 1, 0)

⊤,

W 0
3 (X i; θ; u) = Xi1Xi2I{Xi1Xi2≥1}u

Xi1−1
1 uXi2−1

2 − f(u; θ)uXi1
1 uXi2

2 − g(u; θ)ℓ (X i; θ)B
⊤(u; θ),
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1 ≤ i ≤ n, B(u; θ) =(b1(u; θ), b2(u; θ), b3(u; θ)) , where b1(u; θ) = θ2 + θ3(u1 − 1), b2(u; θ) =

θ1 + θ3(u2 − 1) and b3(u; θ) = 1 + θ1(u1 − 1) + θ2(u2 − 1) + 2θ3(u1 − 1)(u2 − 1). Moreover,

Tn,w
L−→

∑

j≥1

λj χ
2
1j ,

where χ2
11, χ

2
12, . . . are independent χ2 variates with one degree of freedom and the set {λj}

are the non-null eigenvalues of the operator C(θ) defined on the function space {τ : N2
0 →

R, such that Eθ{τ 2(X)} < ∞, ∀θ ∈ Θ}, as follows

C(θ) τ(x) = Eθ{h(x,Y ; θ) τ(Y )}, (5)

with

h(x,y; θ) =

∫ 1

0

∫ 1

0

3∑

k=1

W 0
k (x; θ; u)W

0
k (y; θ; u)w(u) du. (6)

The asymptotic null distribution of Tn,w does not provide a useful approximation to its

null distribution since it depends on the unknown true value of θ. This could be overcome by

replacing θ by θ̂n. But the greatest difficulty is to determine the set {λj}, since, in general,

calculating the eigenvalues of an operator is not an easy task and in our case we must also

obtain expression (6), which is not easy to derive. So, we next consider another way of

approximating the null distribution of the test statistic, the bootstrap.

The following result proves that the bootstrap method consistently approximates the null

distribution of Tn,w, for which we require the Assumption 2 in NJ (2014) and the previous

explanations for that assumption.

Theorem 3 Let X1, . . . ,Xn be iid random vectors from X = (X1, X2) ∈ N
2
0. Suppose that

Assumption 2 in NJ (2014) holds, θ̂n
a.s.−→ θ, for some θ ∈ Θ. Then

sup
x∈R

∣∣P∗
(
T ∗
n,w ≤ x

)
− Pθ(Tn,w ≤ x)

∣∣ a.s.−→ 0.

It is important to note that analogous comments follow those given after Theorem 2 in

NJ (2014) and the test function for our case is presented below.
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Let t∗n,w,α = inf{x : P∗
(
T ∗
n,w ≥ x

)
≤ α}. From Theorem 3, the test function

Ψ∗ =





1, if Tn,w ≥ t∗n,w,α ,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗
(
T ∗
n,w ≥ Tobs

)
≤ α, is asymptotically

correct, in the sense that the type I error is asymptotically equal to the nominal value α,

where Tobs is the observed value of the test statistic Tn,w.

5 Behaviour against alternatives

As an immediate consequence of Theorems 1, 2 and 3, the next result gives the asymptotic

power of the test Ψ∗ against fixed alternatives.

Corollary 1 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0 with pgf g(u). Suppose that assump-

tions in Theorems 1 and 3 hold. If η(g; θ) > 0, then P
(
Ψ∗ = 1

)
→ 1.

As commented after Theorem 1, a simple way to ensure that η(g; θ) > 0, ∀(X1, X2) ≁

BP (θ), ∀ (θ) ∈ Θ, and thus the consistency against any fixed alternative, is by choosing the

weight function w positive a.e. on [0, 1]2.

For the local power, the next result ensures that the test Ψ∗ is able to detect alternatives

as defined in (11) in NJ (2014), which converge to the BPD at the rate n−1/2. With this

aim, let {φj} be the set of orthonormal eigenfunctions corresponding to the eigenvalues {λj}
of the operator C(θ) given in (5).

Theorem 4 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0, with pmf Pn(x, y) as defined in (11)

in NJ (2014). Suppose that Assumptions 1 and 3 in NJ (2014) hold. Then

Tn,w
L−→

∞∑

k=1

λk (Zk + ck)
2 ,

where ck =
∑
x, y

b(x, y)φk(x, y) and Z1, Z2, . . . are independent standard normal variates.
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6 Some computational issues

6.1 On the calculation of the test statistic

Using the weight function (11) in NJ (2014) we obtained the following expression of our

statistic.

Tn,w =
1

n

n∑

i=1

n∑

j=1

(
T 1
ij + T 2

ij + T 3
ij

)
,

T k
ij =

1

ak + 1

{
Xik IBik

Xjk IBjk

Xik +Xjk + ak − 1
−

θ̂kn
(
XikIBik

+XjkIBjk

)

Xik +Xjk + ak
+

θ̂ 2
kn

Xik +Xjk + ak + 1

}
, k = 1, 2,

T 3
ij =

Xi1 IBi1
Xi2 IBi2

Xj1 IBj1
Xj2 IBj2

(Xi1 +Xj1 + a1 − 1)(Xi2 +Xj2 + a2 − 1)
−

2
{(
θ̂1n−θ̂3n

)(
θ̂2n−θ̂3n

)
+θ̂3n

}
Xj1IBj1

Xj2IBj2

(Xi1 +Xj1 + a1)(Xi2 +Xj2 + a2)

− 2 θ̂3n
(
θ̂2n − θ̂3n

)
Xj1 IBj1

Xj2 IBj2

(Xi1 +Xj1 + a1)(Xi2 +Xj2 + a2 + 1)
− 2 θ̂3n

(
θ̂1n − θ̂3n

)
Xj1 IBj1

Xj2 IBj2

(Xi1 +Xj1 + a1 + 1)(Xi2 +Xj2 + a2)

+

{(
θ̂1n − θ̂3n

)(
θ̂2n − θ̂3n

)
+ θ̂3n

}2 − 2 θ̂ 2
3nXj1 IBj1

Xj2 IBj2

(Xi1 +Xj1 + a1 + 1)(Xi2 +Xj2 + a2 + 1)

+
2θ̂3n

{(
θ̂1n− θ̂3n

)(
θ̂2n−θ̂3n

)
+θ̂3n

}(
θ̂2n−θ̂3n

)

(Xi1+Xj1+ a1+1)(Xi2+Xj2+a2+2)
+

2θ̂3n

{(
θ̂1n−θ̂3n

)(
θ̂2n−θ̂3n

)
+θ̂3n

}(
θ̂1n−θ̂3n

)

(Xi1+Xj1+a1+2)(Xi2+Xj2+a2+1)

+
θ̂ 2
3n

(
θ̂2n − θ̂3n

)2

(Xi1+Xj1+ a1 + 1)(Xi2+Xj2+ a2 + 3)
+

θ̂ 2
3n

(
θ̂1n − θ̂3n

)2

(Xi1+Xj1+ a1 + 3)(Xi2+Xj2+ a2 + 1)

+
2 θ̂ 2

3n

{
2
(
θ̂1n − θ̂3n

)(
θ̂2n − θ̂3n

)
+ θ̂3n

}

(Xi1+Xj1+ a1 + 2)(Xi2+Xj2+ a2 + 2)
+

θ̂ 4
3n

(Xi1+Xj1+ a1 + 3)(Xi2+Xj2+ a2 + 3)

+
2 θ̂ 3

3n

(
θ̂2n − θ̂3n

)

(Xi1+Xj1+ a1+ 2)(Xi2+Xj2+ a2+ 3)
+

2 θ̂ 3
3n

(
θ̂1n − θ̂3n

)

(Xi1+Xj1+ a1+ 3)(Xi2+Xj2+ a2+ 2)
,

where Brs = {Xrs ≥ 1}, 1 ≤ r ≤ n, s = 1, 2.

6.2 On the calculation of the null bootstrap distribution estimator

In practice, the exact bootstrap estimator of the null distribution of Tn,w cannot be calcu-

lated, we will approximate it by simulation following the parametric bootstrap procedure

(PB algorithm) given in section 4.1 in NJ (2016).
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7 Numerical results

The properties studied so far describe the behavior of the proposed test for very large sam-

ples. We carried a simulation experiment in order to study the goodness of the bootstrap

approximation as well as to compare the power of the proposed test with other tests for fi-

nite sample sizes. We briefly describe it in this section and display a summary of the results

obtained. All computations were performed by using programs written in the R language.

7.1 Simulated data

In addition to the test proposed in this paper, Tn,a, we also considered the tests given in

Crockett (1979) (denoted by T , see subsection 2.1.1), Loukas and Kemp (1986) (denoted by

IB, see subsection 2.1.2), Rayner and Best (1995) (denoted by NIB, see subsection 2.1.3),

NJ (2014) (denoted by Rn,a and Sn,a, see subsections 2.1.4 and 2.1.5, respectively) and NJ

(2016) (denoted by Wn, see subsection 2.1.6).

We studied the goodness of the proposed bootstrap approximations to the null distribu-

tion of the test statistic for finite sample sizes. With this aim, we generated 1,000 samples

of size n = 30(20)70 from BP (θ1, θ2, θ3), with θ1 = θ2 = 1 and θ3 such that the correlation

coefficient, ρ = θ3/
√
θ1 θ2, equals 0.25, 0.5 and 0.75. To estimate θ we employed the maxi-

mum likelihood method. Then we approximate the p-values bootstrap of the proposed tests

with weight function (11) in NJ (2014) for a = (a1, a2) ∈ {(0, 0), (1, 0)} and 500 bootstrap

samples, as well as the (asymptotic) p-values associated with the test statistics T , IB and

NIB.

We repeated the above experiment for θ1 = 1.5, θ2 = 1 and θ3 such that the correlation

coefficient (approximately) equals 0.25, 0.5 and 0.75. In this case, since θ1 6= θ2, we considered

(a1, a2) ∈ {(0, 0), (1, 0), (0, 1)} for Rn,a, Sn,a and Tn,a in order to examine the effect of giving

different weight to each component when they have different means.

Tables I and II display the fraction of estimated p-values less than or equal to 0.05 and

0.10, which are the estimated type I error probabilities for α = 0.05 and 0.10 (denoted as
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f05 and f10 in the tables), respectively.

To measure the performance of the considered approximations, we calculated the p-value

of the Kolmogorov-Smirnov test statistic of uniformity (KS) for each set of 1,000 values

obtained for each test statistic. These values were rounded to 2 decimal places.

Looking at these tables we conclude that the asymptotic approximation to the p-values

works better for T than for IB and NIB. Nevertheless, none of them give satisfactory results

even for n = 70. By contrast, the bootstrap provides an accurate approximation of the null

distribution of Tn,a in all tried cases. As for the choice of a1 and a2, we observe that there

is no gain in performance when a1 6= a2.

To study the power we repeated the above experiment for samples with size n = 50 and

we use the same alternative distributions used in NJ (2014), some of which have also been

taken as alternatives by other researchers (see, e.g. Loukas and Kemp, 1986; Rayner and

Best, 1995, and NJ, 2016).

The parameters of these alternatives were chosen for the same reason given by NJ (2014).

We took a1 = a2 = 0 because, as observed from the results in the previous experiment, there

is no gain in performance when a1 6= a2 when approximating the probability of type I error.

In addition, taking a1 = a2 = 0 is less time consuming.

Table III displays the alternatives considered and the estimated power for nominal signif-

icance level α = 0.05. The results presented in this table allow us to conclude that the new

test proposed in this paper is able to detect all the alternatives treated and with a power as

good or better than the other tests based on the bootstrap method, while the non-consistent

tests are not able to detect most of these alternatives, especially tests IB and NIB.
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Table I: Simulation results for the probability of type I error, θ1 = θ2 = 1.

n = 30 n = 50 n = 70

θ3 = ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

0.25 Rn,(0,0) 0.037 0.087 0.863178 0.047 0.100 0.257432 0.044 0.086 0.111356

Sn,(0,0) 0.046 0.089 0.934732 0.046 0.089 0.818621 0.045 0.092 0.508494

Tn,(0,0) 0.043 0.087 0.329116 0.041 0.089 0.508494 0.047 0.098 0.718379

Rn,(1,0) 0.035 0.099 0.329116 0.047 0.103 0.818621 0.038 0.084 0.329116

Sn,(1,0) 0.034 0.090 0.902243 0.046 0.097 0.960002 0.041 0.089 0.508494

Tn,(1,0) 0.042 0.094 0.329116 0.038 0.095 0.129364 0.046 0.094 0.369615

Wn 0.022 0.056 1.00e-05 0.033 0.078 0.111356 0.038 0.090 0.612128

T 0.011 0.031 < 2.2e-16 0.046 0.092 0.060937 0.013 0.038 < 2.2e-16

IB 0.027 0.061 < 2.2e-16 0.098 0.144 0.001642 0.022 0.054 < 2.2e-16

NIB 0.010 0.034 < 2.2e-16 0.068 0.111 0.003452 0.013 0.033 < 2.2e-16

0.50 Rn,(0,0) 0.048 0.112 0.129364 0.044 0.106 0.197933 0.045 0.098 0.559560

Sn,(0,0) 0.041 0.094 0.049545 0.049 0.099 0.257432 0.049 0.099 0.413150

Tn,(0,0) 0.041 0.098 0.257432 0.046 0.085 0.149677 0.055 0.111 0.413150

Rn,(1,0) 0.051 0.101 0.129364 0.044 0.097 0.863178 0.047 0.109 0.172476

Sn,(1,0) 0.042 0.099 0.069329 0.050 0.095 0.291736 0.046 0.099 0.197933

Tn,(1,0) 0.044 0.095 0.413150 0.043 0.084 0.129364 0.051 0.112 0.459543

Wn 0.022 0.061 0.013476 0.032 0.077 0.111356 0.037 0.081 0.111356

T 0.026 0.049 1.40e-06 0.024 0.039 < 2.2e-16 0.021 0.053 0.000179

IB 0.088 0.125 < 2.2e-16 0.073 0.119 < 2.2e-16 0.051 0.081 < 2.2e-16

NIB 0.036 0.074 5.00e-07 0.018 0.049 < 2.2e-16 0.007 0.035 < 2.2e-16

0.75 Rn,(0,0) 0.043 0.089 0.718379 0.060 0.112 0.902243 0.050 0.114 0.508494

Sn,(0,0) 0.050 0.092 0.818621 0.062 0.109 0.718379 0.052 0.104 0.612128

Tn,(0,0) 0.045 0.084 0.665399 0.053 0.111 0.459543 0.045 0.104 0.226206

Rn,(1,0) 0.049 0.090 0.995881 0.060 0.106 0.902243 0.051 0.116 0.612128

Sn,(1,0) 0.049 0.088 0.818621 0.062 0.101 0.818621 0.051 0.106 0.459543

Tn,(1,0) 0.044 0.084 0.863178 0.056 0.101 0.863178 0.052 0.104 0.459543

Wn 0.029 0.076 0.024117 0.036 0.085 0.111356 0.038 0.088 0.129364

T 0.025 0.049 < 2.2e-16 0.034 0.065 1.00e-07 0.024 0.058 5.30e-06

IB 0.116 0.140 < 2.2e-16 0.141 0.162 < 2.2e-16 0.129 0.153 < 2.2e-16

NIB 0.045 0.074 6.10e-06 0.033 0.081 < 2.2e-16 0.029 0.063 < 2.2e-16
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Table II: Simulation results for the probability of type I error, θ1 = 1.5, θ2 = 1.

n = 30 n = 50 n = 70

θ3; ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

0.31; 0.25 Rn,(0,0) 0.054 0.104 0.226206 0.062 0.112 0.559560 0.052 0.111 0.069329

Sn,(0,0) 0.054 0.103 0.718379 0.050 0.104 0.291736 0.050 0.095 0.863178

Tn,(0,0) 0.056 0.091 0.718379 0.060 0.098 0.989545 0.057 0.107 0.902243

Rn,(1,0) 0.050 0.094 0.149677 0.058 0.108 0.960002 0.051 0.107 0.013476

Sn,(1,0) 0.047 0.095 0.226206 0.057 0.111 0.413150 0.053 0.097 0.508494

Tn,(1,0) 0.043 0.091 0.369615 0.053 0.109 0.559560 0.058 0.115 0.559560

Rn,(0,1) 0.050 0.106 0.459543 0.060 0.112 0.902243 0.056 0.109 0.016427

Sn,(0,1) 0.051 0.105 0.459543 0.057 0.105 0.413150 0.056 0.099 0.508494

Tn,(0,1) 0.052 0.096 0.863178 0.060 0.098 0.863178 0.056 0.106 0.718379

Wn 0.022 0.066 0.041633 0.036 0.076 0.111356 0.037 0.082 0.111356

T 0.018 0.046 1.00e-07 0.021 0.060 0.000318 0.022 0.064 0.009785

IB 0.031 0.060 < 2.2e-16 0.013 0.028 < 2.2e-16 0.007 0.014 < 2.2e-16

NIB 0.016 0.041 < 2.2e-16 0.010 0.018 < 2.2e-16 0.004 0.009 < 2.2e-16

0.62; 0.51 Rn,(0,0) 0.047 0.095 0.459543 0.045 0.095 0.863178 0.052 0.114 0.718379

Sn,(0,0) 0.048 0.104 0.818621 0.049 0.091 0.818621 0.048 0.093 0.459543

Tn,(0,0) 0.042 0.093 0.934732 0.043 0.098 0.934732 0.045 0.099 0.612128

Rn,(1,0) 0.045 0.095 0.863178 0.044 0.096 0.978036 0.056 0.101 0.559560

Sn,(1,0) 0.051 0.088 0.459543 0.045 0.086 0.718379 0.048 0.100 0.459543

Tn,(1,0) 0.037 0.096 0.769894 0.041 0.088 0.291736 0.047 0.109 0.226206

Rn,(0,1) 0.049 0.097 0.413150 0.045 0.101 0.718379 0.054 0.104 0.902243

Sn,(0,1) 0.052 0.098 0.508494 0.042 0.098 0.612128 0.051 0.091 0.413150

Tn,(0,1) 0.043 0.089 0.902243 0.049 0.095 0.508494 0.046 0.088 0.329116

Wn 0.026 0.055 0.003013 0.037 0.071 0.111356 0.039 0.079 0.111356

T 0.056 0.088 0.000526 0.050 0.104 0.011917 0.049 0.096 0.001109

IB 0.147 0.201 < 2.2e-16 0.169 0.223 < 2.2e-16 0.147 0.196 < 2.2e-16

NIB 0.094 0.152 0.000622 0.082 0.145 0.006666 0.076 0.120 0.078967

0.92; 0.75 Rn,(0,0) 0.057 0.102 0.612128 0.054 0.097 0.413150 0.046 0.090 0.863178

Sn,(0,0) 0.052 0.108 0.413150 0.050 0.091 0.769894 0.044 0.094 0.559560

Tn,(0,0) 0.043 0.098 0.934732 0.056 0.102 0.226206 0.041 0.085 0.413150

Rn,(1,0) 0.053 0.104 0.559560 0.055 0.103 0.508494 0.043 0.088 0.863178

Sn,(1,0) 0.049 0.103 0.769894 0.050 0.093 0.612128 0.045 0.091 0.612128

Tn,(1,0) 0.040 0.107 0.665399 0.052 0.110 0.172476 0.037 0.084 0.459543

Rn,(0,1) 0.055 0.110 0.459543 0.050 0.094 0.257432 0.044 0.082 0.818621

Sn,(0,1) 0.051 0.108 0.665399 0.048 0.087 0.369615 0.045 0.091 0.508494

Tn,(0,1) 0.046 0.089 0.769894 0.055 0.109 0.508494 0.043 0.088 0.665399

Wn 0.037 0.081 0.000714 0.042 0.079 0.111356 0.037 0.083 0.149677

T 0.029 0.059 1.70e-06 0.057 0.094 0.008821 0.078 0.109 0.065401

IB 0.091 0.116 < 2.2e-16 0.209 0.239 < 2.2e-16 0.196 0.220 < 2.2e-16

NIB 0.021 0.051 < 2.2e-16 0.089 0.152 0.001554 0.094 0.149 0.003483
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Table III: Simulation results for the power (n = 50).

Alternative var(X1)
E(X1)

var(X2)
E(X2)

ρ Rn,(0,0) Sn,(0,0) Wn Tn,(0,0) T IB NIB

BB(1; 0.41, 0.02, 0.01) 0.590 0.980 0.026 0.860 0.871 0.829 0.857 0.103 0.000 0.000

BB(1; 0.41, 0.03, 0.02) 0.590 0.970 0.092 0.859 0.879 0.779 0.893 0.122 0.000 0.000

BB(2; 0.42, 0.02, 0.01) 0.580 0.980 0.023 0.726 0.677 0.682 0.746 0.251 0.005 0.005

BB(2; 0.51, 0.01, 0.01) 0.490 0.990 0.099 0.900 0.862 0.847 0.887 0.656 0.001 0.001

BB(2; 0.61, 0.01, 0.01) 0.390 0.990 0.080 0.974 0.946 0.948 0.987 0.938 0.000 0.000

BNB(4; 0.93, 0.01, 0.01) 1.930 1.010 0.143 0.793 0.793 0.809 0.851 0.853 0.860 0.853

BNB(4; 0.97, 0.01, 0.01) 1.970 1.010 0.141 0.815 0.815 0.802 0.912 0.872 0.880 0.864

BNB(2; 0.97, 0.97, 0.01) 1.970 1.970 0.493 0.938 0.908 0.891 0.941 0.895 0.629 0.987

BNB(4; 0.98, 0.01, 0.01) 1.980 1.010 0.141 0.832 0.830 0.846 0.925 0.876 0.889 0.873

BNB(4, 0.99, 0.01, 0.01) 1.990 1.010 0.140 0.823 0.812 0.817 0.880 0.878 0.881 0.878

BPP (0.40; (0.2, 0.2, 0.1); (1.0, 0.9, 0.1)) 1.226 1.190 0.413 0.956 0.930 0.950 0.989 0.803 0.000 0.000

BPP (0.40; (0.2, 0.3, 0.1); (0.9, 0.9, 0.1)) 1.190 1.131 0.361 0.932 0.895 0.913 0.927 0.747 0.000 0.000

BPP (0.40; (0.8, 0.8, 0.1); (0.9, 1.0, 0.4)) 1.003 1.010 0.322 0.867 0.821 0.834 0.864 0.617 0.000 0.000

BPP (0.45; (0.8, 0.8, 0.1); (0.9, 0.9, 0.2)) 1.003 1.003 0.186 0.873 0.811 0.821 0.898 0.614 0.000 0.000

BPP (0.7; (0.8, 0.8, 0.1); (0.9, 1.1, 0.3)) 1.003 1.021 0.208 0.864 0.809 0.893 0.941 0.600 0.000 0.000

BNTA(0.15; 0.01, 0.01, 0.97) 1.990 1.990 0.995 0.800 0.802 0.835 0.898 0.615 0.003 0.682

BNTA(0.42; 0.01, 0.01, 0.98) 1.990 1.990 0.995 0.908 0.896 0.907 0.949 0.665 0.003 0.849

BNTA(0.50; 0.01, 0.01, 0.98) 1.990 1.990 0.995 0.925 0.919 0.831 0.921 0.684 0.000 0.888

BNTA(0.70; 0.01, 0.01, 0.98) 1.990 1.990 0.995 0.937 0.919 0.777 0.923 0.730 0.001 0.899

BNTA(0.75; 0.01, 0.01, 0.98) 1.990 1.990 0.995 0.932 0.922 0.796 0.978 0.717 0.001 0.910

BLS(0.01, 0.01, 0.07) 0.156 0.156 0.197 0.876 0.930 0.902 1.000 0.800 0.000 0.000

BLS(0.01, 0.01, 0.25) 0.224 0.224 0.829 0.809 0.895 0.916 0.982 0.749 0.015 0.086

BLS(0.26, 0.01, 0.04) 0.263 0.877 0.054 0.690 0.779 0.863 1.000 0.868 0.001 0.001

BLS(3d/7, 2d/7, 2d/7)∗ 1.000 1.000 0.447 0.762 0.876 0.872 0.930 0.198 0.159 0.144

BLS(3d/4, d/8, d/8)∗ 1.000 1.000 0.267 0.942 1.000 0.981 0.909 0.249 0.205 0.191

∗ d = 1− exp(−1) ≈ 0.63212.
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As we stated, the test we propose is faster than its competitors, the Table IV presents

the results obtained.

Table IV: Average CPU time (in seconds).

n = 30 n = 50 n = 70

Rn,(0,0) 40,804.73 43,974.45 49,328.93

Sn,(0,0) 3,040.57 7,375.56 14,502.74

Wn 1,452.07 1,807.28 2,142.86

Tn,(0,0) 252.31 518.03 723.42

7.2 Real data sets

To end this section, Tn,a is applied to a real data set. This data set was analyzed in Bermúdez

(2009), who used two variables, the number of claims for third-party liability (X1) and the

number of claims for the rest of guarantees (X2). The original sample comprised a ten

percent sample of the automobile portfolio of a major insurance company operating in Spain

in 1995. The author assumed that (X1, X2) has a BPD, but according to the report shown

in Table V, the data set is not well modeled by a BPD. The blanks are due to the fact that

Wn does not depend on the value of (a1, a2).

7.3 Case θ3 = 0

This case has been excluded from H0 because it is a boundary point. This situation occurs

when the variables X1 and X2 are independent and is analyzed in NJ (2016) where different

ways of approaching it are given, besides references are cited for a detailed treatment, even

it is a subject for a future research.
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Table V: Results for the real data set (n = 80, 994).

Claims

(a1, a2) Rn,(a1,a2) Sn,(a1,a2) Tn,(a1,a2) Wn

(0, 0) 0.001 0.001 0.000 0.020

(1, 0) 0.005 0.005 0.008

(0, 1) 0.003 0.006 0.010

θ̂n (0.06702119, 0.08841783, 0.01394778)

8 Extension of Tn,w

In principle, the approach can be generalized to the case m ≥ 3 and we refer to a manuscript

that is uploaded to arXive math.

To illustrate this situation we will present the case for m = 3, in which we need to satisfy

7 =
∑3

i=1

(
3
i

)
equations to obtain a characterization of the respective Poisson distribution.

It can be seen that the number of equations grows following a sum of combinatorial numbers

due to differential equations of different order that must be verified, which range from order

1 to order m. These equations arise due to the philosophy of the method to characterize the

respective Poisson distribution.

8.1 Trivariate case

For this particular case, from section 2.2, for m = 3, let

X1 = Y1 + Y4, X2 = Y2 + Y4, X3 = Y3 + Y4,

where Y1, Y2, Y3, Y4 are independent Poisson random variables with means θ′1 = θ1 − θ4 >

0, θ′2 = θ2 − θ4 > 0, θ′3 = θ3 − θ4 > 0 and θ4 > 0, respectively. The joint distribution of

the vector (X1, X2, X3) is called a trivariate Poisson distribution (TPD) with parameter θ =

20



(θ1, θ2, θ3, θ4) (see, e.g. Johnson, Kotz and Balakrishnan, 1997; Loukas and Papageorgiou,

1991). The joint pgf of (X1, X2, X3) is

g(u; θ) = exp
{
θ1(u1 − 1) + θ2(u2 − 1) + θ3(u3 − 1) + θ4(u1u2u3 − u1 − u2 − u3 + 2)

}
. (7)

The empirical counterpart of pgf is epgf of the data given by

gn(u) =
1

n

n∑

i=1

uXi1
1 uXi2

2 uXi3
3 , u = (u1, u2, u3).

Now, the objective is to test the hypothesis

H03 : (X1, X2, X3) has a trivariate Poisson distribution.

To achieve this new objective, we give a characterization for the TPD.

Proposition 2 Let g(u1, u2, u3; θ) be as defined in (7). Then g(u1, u2, u3; θ) is the only pgf

satisfying the following system of partial differential equations

D1(u; θ) = ∂g(u1,1,1)
∂u1

− θ1 g(u1, 1, 1) = 0,

D2(u; θ) = ∂g(1,u2,1)
∂u2

− θ2 g(1, u2, 1) = 0,

D3(u; θ) = ∂g(1,1,u3)
∂u3

− θ3 g(1, 1, u3) = 0,

D4(u; θ) = ∂2g(u)
∂u1 ∂u2

− g(u)[{θ1 + θ4(u2u3 − 1)}{θ2 + θ4(u1u3 − 1)}+ θ4u3] = 0,

D5(u; θ) = ∂2g(u)
∂u1 ∂u3

− g(u)[{θ1 + θ4(u2u3 − 1)}{θ3 + θ4(u1u2 − 1)}+ θ4u2] = 0,

D6(u; θ) = ∂2g(u)
∂u2 ∂u3

− g(u)[{θ2 + θ4(u1u3 − 1)}{θ3 + θ4(u1u2 − 1)}+ θ4u1] = 0,

D7(u; θ) = ∂3g(u)
∂u1 ∂u2 ∂u3

− g(u)h(u1, u2, u3; θ) = 0,

where h(u; θ) =
∏3

i=1

{
θi + θ4

(∏
j 6=i uj − 1

)}
+θ4

(
1 +

∑3
k=1 uk

{
θk + θ4

(∏
j 6=k uj − 1

)})
.

By Proposition 1 in NJ (2014), g(u) and its derivatives can be consistently estimated by the
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epgf and the derivatives of the epgf, respectively. Thus, if H03 is true, then the functions

D1n(u; θ̂n) = ∂gn(u1,1,1)
∂u1

− θ̂1n gn(u1, 1, 1) = 0,

D2n(u; θ̂n) = ∂gn(1,u2,1)
∂u2

− θ̂2n gn(1, u2, 1) = 0,

D3n(u; θ̂n) = ∂gn(1,1,u3)
∂u3

− θ̂3n gn(1, 1, u3) = 0,

D4n(u; θ̂n) = ∂2gn(u)
∂u1 ∂u2

− gn(u)[{θ̂1n + θ̂4n(u2u3 − 1)}{θ̂2n + θ̂4n(u1u3 − 1)}+ θ̂4nu3] = 0,

D5n(u; θ̂n) = ∂2gn(u)
∂u1 ∂u3

− gn(u)[{θ̂1n + θ̂4n(u2u3 − 1)}{θ̂3n + θ̂4n(u1u2 − 1)}+ θ̂4nu2] = 0,

D6n(u; θ̂n) = ∂2gn(u)
∂u2 ∂u3

− gn(u)[{θ̂2n + θ̂4n(u1u3 − 1)}{θ̂3n + θ̂4n(u1u2 − 1)}+ θ̂4nu1] = 0,

D7n(u; θ̂n) = ∂3gn(u)
∂u1 ∂u2 ∂u3

− gn(u)h(u1, u2, u3; θ̂n) = 0,

should be close to 0, ∀(u1, u2, u3) ∈ [0, 1]3, where θ̂n = (θ̂1n, θ̂2n, θ̂3n) is a consistent estimator

of θ and gn(u1, u2, u3) is the epgf associated with the data, i. e.,

gn(u1, u2, u3) =
1

n

n∑

i=1

uXi1
1 uXi2

2 uXi3
3 .

Thus, to test H03 we consider the following test statistic

T3,n,w = n

∫ 1

0

∫ 1

0

∫ 1

0

{
D2

1n

(
u; θ̂n

)
+D2

2n

(
u; θ̂n

)
+ · · ·+D2

7n

(
u; θ̂n

)}
w(u) du,

where w(u) is a measurable non-negative function with finite integral over [0, 1]3. Similar

results to those stated in Sections 3, 4, and 5 for the bivariate case can be established for

T3,n,w.

Remark 1 So far we have not managed to obtain numerical results for the case m = 3 due

to the large number of calculations involved in T3,n,w. We can assure that this new test is

not recommended for m ≥ 3 and it is preferable to use the Wn statistic.

8.2 Simulated data for the trivariate case

To simulate type I error we follow a procedure similar to that described for the bivariate

case, but we do not have competitors. We consider three situations: a) θ1 = θ2 = θ3,

b) θ1 = θ2 6= θ3, θ2 = θ3 6= θ1 and c) θ1 6= θ2 and θ1 6= θ3 and θ2 6= θ3. In each of
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Table VI: Simulation results for the probability of type I error, θ1 = θ2 = θ3 = 1.

n = 30 n = 50 n = 70

θ4 = ρ0
(∗) Test f05 f10 KS f05 f10 KS f05 f10 KS

0.25 R3,n,(0,0,0) 0.035 0.083 0.329116 0.044 0.089 0.129364 0.047 0.092 0.934732

S3,n,(0,0,0) 0.040 0.087 0.508494 0.043 0.091 0.818621 0.048 0.093 0.863178

T3,n,(0,0,0) 0.041 0.088 0.111356 0.043 0.090 0.508494 0.048 0.096 0.718379

R3,n,(1,0,0) 0.039 0.089 0.329116 0.042 0.091 0.329116 0.045 0.094 0.818621

S3,n,(1,0,0) 0.038 0.090 0.902243 0.043 0.090 0.508494 0.043 0.090 0.960002

T3,n,(1,0,0) 0.040 0.088 0.257432 0.041 0.090 0.329116 0.046 0.094 0.369615

W3,n 0.032 0.075 0.129364 0.038 0.082 0.129364 0.042 0.090 0.612128

0.75 R3,n,(0,0,0) 0.038 0.82 0.049545 0.041 0.091 0.197933 0.042 0.093 0.559560

S3,n,(0,0,0) 0.040 0.090 0.069329 0.042 0.092 0.257432 0.047 0.094 0.413150

T3,n,(0,0,0) 0.040 0.088 0.149677 0.042 0.085 0.257432 0.051 0.101 0.413150

R3,n,(1,0,0) 0.041 0.081 0.129364 0.044 0.087 0.172476 0.046 0.102 0.863178

S3,n,(1,0,0) 0.040 0.088 0.129364 0.045 0.090 0.197933 0.046 0.095 0.291736

T3,n,(1,0,0) 0.041 0.090 0.111356 0.043 0.094 0.413150 0.051 0.112 0.459543

W3,n 0.032 0.081 0.013476 0.042 0.087 0.111356 0.043 0.091 0.129364

(∗)ρ12 = ρ13 = ρ23 = ρ0

these cases θ1, θ2, θ3 > θ4. In addition, θ4 was chosen in such a way that the correlation

coefficients, ρ = (ρ12, ρ13, ρ23), were equal or very close to 0.25, 0.5, 0.75 and 1.00, where

ρij =
Cov(Xi,Xj)√

V ar(Xi)V ar(Xj)
.

Tables VI and VII display the fraction of estimated p-values less than or equal to 0.05

and 0.10, which are the estimated type I error probabilities for α = 0.05 and 0.10 (denoted

as f05 and f10 in the tables), respectively.

As we had anticipated in Remark 1, the proposed new test T3,n is not faster than some

of its competitors, as can be seen in the Table XII.
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Table VII: Simulation results for the probability of type I error, θ1 = θ2 = θ3 = 2.

n = 30 n = 50 n = 70

θ4 = 2ρ0
(∗) Test f05 f10 KS f05 f10 KS f05 f10 KS

0.5 R3,n,(0,0,0) 0.039 0.085 0.111356 0.042 0.091 0.257432 0.043 0.092 0.863178

S3,n,(0,0,0) 0.040 0.082 0.508494 0.042 0.088 0.818621 0.046 0.093 0.934732

T3,n,(0,0,0) 0.041 0.085 0.329116 0.042 0.091 0.508494 0.045 0.094 0.718379

R3,n,(1,0,0) 0.038 0.087 0.329116 0.041 0.093 0.329116 0.048 0.094 0.818621

S3,n,(1,0,0) 0.039 0.089 0.902243 0.043 0.092 0.508494 0.043 0.092 0.960002

T3,n,(1,0,0) 0.040 0.090 0.129364 0.042 0.090 0.329116 0.045 0.095 0.369615

W3,n 0.032 0.086 0.111356 0.043 0.087 0.369615 0.048 0.092 0.612128

1.00 R3,n,(0,0,0) 0.038 0.091 0.129364 0.044 0.092 0.197933 0.046 0.094 0.559560

S3,n,(0,0,0) 0.042 0.089 0.049545 0.043 0.093 0.257432 0.046 0.095 0.413150

T3,n,(0,0,0) 0.040 0.090 0.149677 0.043 0.091 0.257432 0.053 0.101 0.413150

R3,n,(1,0,0) 0.051 0.101 0.129364 0.044 0.097 0.172476 0.047 0.109 0.863178

S3,n,(1,0,0) 0.040 0.090 0.069329 0.056 0.109 0.197933 0.052 0.102 0.291736

T3,n,(1,0,0) 0.040 0.089 0.129364 0.044 0.094 0.413150 0.051 0.103 0.459543

W3,n 0.038 0.081 0.111356 0.042 0.087 0.111356 0.047 0.092 0.413150

(∗)ρ12 = ρ13 = ρ23 = ρ0

Table VIII: Simulation results for the probability of type I error, θ1 = θ2 = 0.2.

n = 30 n = 50 n = 70

θ3, θ4; ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

0.8, 0.1; (0.5, 0.25, 0.25) R3,n,(0,0,0) 0.046 0.094 0.069329 0.058 0.107 0.559560 0.052 0.101 0.226206

S3,n,(0,0,0) 0.045 0.087 0.291736 0.050 0.104 0.718379 0.051 0.093 0.863178

T3,n,(0,0,0) 0.046 0.090 0.718379 0.056 0.098 0.902243 0.053 0.105 0.989545

R3,n,(1,0,0) 0.048 0.091 0.149677 0.054 0.108 0.013476 0.052 0.107 0.960002

S3,n,(1,0,0) 0.043 0.092 0.226206 0.055 0.111 0.413150 0.053 0.097 0.508494

T3,n,(1,0,0) 0.040 0.091 0.369615 0.053 0.109 0.559560 0.052 0.105 0.559560

W3,n 0.038 0.086 0.041633 0.043 0.087 0.111356 0.047 0.092 0.197933
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Table IX: Simulation results for the probability of type I error, θ2 = θ3 = 0.8.
n = 30 n = 50 n = 70

θ1, θ4; ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

1.8, 0.6; (0.5, 0.5, 0.75) R3,n,(0,0,0) 0.040 0.089 0.069329 0.045 0.090 0.226206 0.045 0.091 0.559560

S3,n,(0,0,0) 0.042 0.086 0.291736 0.045 0.094 0.718379 0.047 0.093 0.902243

T3,n,(0,0,0) 0.044 0.089 0.197933 0.046 0.092 0.863178 0.047 0.101 0.989545

R3,n,(1,0,0) 0.046 0.089 0.013476 0.045 0.094 0.508494 0.046 0.102 0.960002

S3,n,(1,0,0) 0.044 0.088 0.226206 0.045 0.091 0.413150 0.045 0.098 0.559560

T3,n,(1,0,0) 0.041 0.089 0.369615 0.045 0.093 0.508494 0.046 0.101 0.559560

W3,n 0.039 0.087 0.149677 0.043 0.087 0.197933 0.046 0.095 0.291736

Table X: Simulation results for the probability of type I error, θ1 = 8.7, θ2 = 8.8, θ3 = 8.9.

n = 30 n = 50 n = 70

θ4; ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

2.2; (0.251, 0.250, 0.249) R3,n,(0,0,0) 0.036 0.083 0.149677 0.043 0.089 0.226206 0.041 0.089 0.863178

S3,n,(0,0,0) 0.038 0.085 0.291736 0.040 0.089 0.508494 0.043 0.092 0.718379

T3,n,(0,0,0) 0.040 0.086 0.226206 0.042 0.089 0.559560 0.045 0.105 0.902243

R3,n,(1,0,0) 0.036 0.085 0.197933 0.041 0.089 0.413150 0.045 0.104 0.863178

S3,n,(1,0,0) 0.037 0.086 0.369615 0.040 0.090 0.508494 0.044 0.094 0.559560

T3,n,(1,0,0) 0.034 0.084 0.197933 0.042 0.090 0.508494 0.045 0.105 0.559560

W3,n 0.035 0.083 0.069329 0.040 0.087 0.197933 0.046 0.093 0.291736

Table XI: Simulation results for the probability of type I error, θ1 = 9.7, θ2 = 9.6, θ3 = 9.5.

n = 30 n = 50 n = 70

θ4; ρ Test f05 f10 KS f05 f10 KS f05 f10 KS

2.4; (0.249, 0.250, 0.251) R3,n,(0,0,0) 0.035 0.081 0.413150 0.041 0.086 0.508494 0.041 0.088 0.863178

S3,n,(0,0,0) 0.036 0.086 0.291736 0.039 0.087 0.369615 0.044 0.091 0.718379

T3,n,(0,0,0) 0.039 0.086 0.226206 0.040 0.088 0.559560 0.044 0.095 0.508494

R3,n,(1,0,0) 0.037 0.085 0.197933 0.040 0.088 0.149677 0.046 0.094 0.559560

S3,n,(1,0,0) 0.036 0.085 0.226206 0.041 0.089 0.291736 0.045 0.093 0.369615

T3,n,(1,0,0) 0.035 0.084 0.069329 0.040 0.090 0.559560 0.046 0.095 0.508494

W3,n 0.034 0.082 0.197933 0.040 0.088 0.197933 0.045 0.094 0.863178
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Table XII: Average CPU time (in seconds).

n = 30 n = 50 n = 70

R3,n,(0,0,0) 47,338.59 72,539.85 107,952.20

S3,n,(0,0,0) 3,234.27 9,357.65 18,252.43

T3,n,(0,0,0) 4,486.30 12,617.74 24,763.87

W3,n 1,833.80 2,174.36 2,323.33

Table XIII: Results for the real data set (n = 162, 019).

Claims

(a1, a2, a3) R3,n,(a1,a2,a3) S3,n,(a1,a2,a3) T3,n,(a1,a2,a3) W3,n

(0, 0, 0) 0.001 0.001 0.001 0.0001

(1, 0, 0) 0.002 0.002 0.001

θ̂n (0.249051, 0.03508231, 0.201069, 0.03508218 )

8.3 Real data set for trivariate case

The data set was analyzed in Catalina Bolancé & Raluca Vernic (2017), the data come from

the Spanish insurance market and consist of a random sample of 162,019 policyholders who

had had one or more auto and home policies during the decade 2006-2015. Catalina Bolancé

& Raluca Vernic (2017) used three dependent variables: the number of claims in auto insur-

ance at fault involving only property damage (X1); the number of claims in auto insurance

at fault with bodily injury (X2); and, the number of claims in home insurance at fault (X3).

Table XIII shows the p-values obtained by applying the test we propose. It is concluded

that the data do not come from a trivariate Poisson distribution, this is in agreement with

the researchers who used this data set to model a trivariate Sarmanov distribution.
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Appendix

Proofs

The proofs of Theorems 1 to 4 are quite similar to those of Theorems 3, 1, 2 and 4 in NJ

(2014), respectively. Here we give a sketch of the proof of Proposition 1. The proof of

Proposition 2 follows the steps of the proof of Proposition 1 by occupying the recurrence

relationships for the probabilities and their respective partial derivatives given in Loukas and

Papageorgiou (1991). A detailed derivation of the results can be obtained from the authors

upon request.

Proof of Proposition 1 Let (X1, X2) be a random vector and let g(u1, u2) =
∑

i,j≥0 Pij u
i
1u

j
2

be its pgf, where Pij = P (X1 = i, X2 = j). Let f(u1, u2; θ) = c0 + c1u1+ c2u2+ c3u1u2, with

c0 = θ3 + (θ1 − θ3)(θ2 − θ3), c1 = θ3(θ1 − θ3), c2 = θ3(θ2 − θ3) and c3 = θ23. Then

∂2g(u1, u2)

∂u1 ∂u2
=
∑

i,j≥1

Pij ij u
i−1
1 uj−1

2 =
∑

i,j≥0

Pi+1,j+1 (i+ 1)(j + 1) ui
1u

j
2,

f(u1, u2; θ)g(u1, u2) = c0P00 +
∑

i≥1

(c0Pi0 + c1Pi−1,0) u
i
1 +

∑

j≥1

(c0P0j + c2P0,j−1)u
j
2

+
∑

i,j≥1

(c0Pij + c1Pi−1,j + c2Pi,j−1 + c3Pi−1,j−1)u
i
1u

j
2.
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From the first equation in (4), D1(u; θ) = 0, then by matching coefficients, we obtain

P11 = c0P00,

(i+ 1)Pi+1,1 = c0Pi0 + c1Pi−1,0, i ∈ N,

(j + 1)P1,j+1 = c0P0j + c2P0,j−1, j ∈ N,

(i+ 1)(j + 1)Pi+1,j+1 = c0Pij + c1Pi−1,j + c2Pi,j−1 + c3Pi−1,j−1, i, j ∈ N.





(8)

With enough algebraic work we can demonstrate that equations (8) satisfy (1) or (2)

and (5) in Kawamura (1985). Moreover, the last two equations in (4) satisfy (3) and (4) in

Kawamura (1985). Therefore, the result is obtained by applying Theorem 3 in Kawamura

(1985).
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