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Abstract 

 

Bai (2010) and Bai et al. (2012) proposed robust mixture regression method based on the M regression 

estimation. However, the M-estimators are robust against the outliers in response variables, but they 

are not robust against the outliers in explanatory variables (leverage points). In this paper, we propose 

a robust mixture regression procedure to handle the outliers and the leverage points, simultaneously. 

Our proposed mixture regression method is based on the GM regression estimation. We give an 

Expectation Maximization (EM) type algorithm to compute estimates for the parameters of interest. 

We provide a simulation study and a real data example to assess the robustness performance of the 

proposed method against the outliers and the leverage points.  

 

Keywords: EM algorithm, mixture regression models, robust regression, M-estimation method, GM-

estimation method. 

 

 

1. Introduction 

 

Mixture regression models are widely applied in areas such as engineering, genetics, biology, 

econometrics and marketing, which are used to examine the relationship between variables coming 

from some unknown latent groups. These models were first introduced by Quandt (1972) and Quandt 

and Ramsey (1978) as switching regression models. 

 

The mixture regression model can be defined as follows. Let   be a p-dimensional vector of 

explanatory variables,   be the response variable and   be a latent variable with  (    | )     for 

       , denote the mixing probabilities with ∑    
 
           . Suppose that given    , 

the response variable   depends on the explanatory variable   in a linear way as 

 

                           (1) 

 

where    is the error term,    (             )
 
 is the unknown vector of regression parameters,   

is the number of components in mixture regression model and   includes both predictors and constant 

 . If it is assumed that the distributions of   ’s are the member of location-scale family with zero 

means and    scale parameters, then the conditional density function of   given   is 

 

 (     )  ∑  

 

   

  (   
      )   

(2) 

 

where   (   
      ) is the density function of the     component and 

  (                       )
 
 is the unknown parameter vector. This model is called as a g-

component mixture regression model.  

 

The distributions of   ’s are usually assumed to be normal and under this assumption the mixture 

regression model given in (2) becomes a finite mixture of normal distributions. However, under 
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normality assumption the resulting estimator can be affected by the outliers and heavy tailed error 

distributions. Thus, robust mixture regression procedures have been proposed to overcome these 

problems. For instance, Neykov et al. (2007) proposed robust fitting of mixtures based on the trimmed 

likelihood estimator. Markatou (2000) and Shen et al. (2004) used the weight factor for robustly 

estimating the parameters in a mixture regression model. Bashir and Carter (2012) used the S-

estimation method to find the robust estimators for the parameters of the mixture linear regression 

model. Bai (2010) and Bai et al. (2012) proposed a robust estimation procedure for the mixture 

regression procedure based on the M regression estimation method. Further, there are several papers 

on the robust mixture regression model based on heavy-tailed distributions. For example, Wei (2012) 

and Yao et al. (2014) studied mixture regression model based on the t distribution, Zhang (2013) 

proposed the robust mixture regression model using the Pearson Type VII distribution and Song et al. 

(2014) explored robust mixture regression models using the mixture of Laplace distribution. Recently, 

Doğru (2015) and Doğru and Arslan (2015) have proposed robust mixture regression procedure based 

on the skew t distribution (Azzalini and Capitaino (2003)) to model skewness and heavy-taildness of 

the errors. This mixture regression model is an extension of the mixture of skew t distribution 

proposed by Lin et al. (2007a). Doğru and Arslan (2015) have also proposed a robust mixture 

regression procedure using the mixture of different distributions to cope with the heterogeneity in data.   

 

Bai (2010) and Bai et al. (2012) combined the M-estimation and the EM algorithm to propose their 

robust mixture regression procedure. They first take the normal mixture regression model and carry 

out the EM algorithm using the M objective function instead of the least square criterion. By doing 

this they made their estimators robust against the outliers in response. However, since the M-

estimators are robust against the outliers in the   direction but not robust against the outliers in the   

direction, their estimators will be sensitive to the outliers in the   direction (leverage points). The 

purpose of this paper is to propose a mixture regression procedure based on the GM-estimation 

method (Mallows (1975), Hampel (1978), Krasker (1980), Krasker and Welsch (1982), Hampel et al. 

(1986), Maronna et al. (2006), Jurečková and Picek (2006)) which will be robust against the outliers in 

the   and   directions simultaneously.  

 

The paper is organized as follows. In Section 2, we give the definition of the mixture regression model 

based on the GM-estimation method and also give an EM type algorithm to obtain the parameter 

estimators. In Section 3 and 4, we give a simulation study and a real data example to compare the 

performance of the proposed estimation procedure over the estimation procedure proposed by Bai 

(2010) and Bai et al. (2012). The paper is finilazed with a conclusion section.   

 

 

2. Mixture regression model based on the GM-estimation method 

 

Let *(     ) (     )   (     )+ be a sample of observations. If we assume that the error terms 

have the normal distribution with   mean and    variance in the mixture regression model, the ML 

estimator of   for a g-component mixture regression model given in (2) will be 

 

 ̂        
 

∑   (∑   (     
      

 )

 

   

) 

 

   

   (3) 

 

Since there is not an explicit maximizer of (3), the EM algorithm (Dempster et al. (1977)) is usually 

used to obtain the ML estimates of  .  

 

To carry out the EM algorithm let     be the latent variables defined as  

 

    {
                                          
           

 (4) 
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where,         and        . Since     cannot be observed they will be regarded as the missing 

observations and (    ) will form the complete data. Then, the complete data log-likelihood function 

given   can be written as 

 

  ( |    )  ∑∑   

 

   

 

   

(   (  )  
 

 
   (  )  

 

 
   (  

 ))  ∑∑   

 

   

 

   

(     
   )

 

   
    (5) 

 

where   (       )
    (       ) and    (         ). Since the second term of (5) is least 

square criterion, the resulting estimators will not be robust against in any type of outliers. To gain 

robustness squared term in this part can be replaced by a robust objective function such as Huber or 

Tukey biweight functions. This replacement will result estimators that are robust against the heavy 

tails and outliers in the   direction. To further gain robustness against the outliers in the    as well as   

directions we have to use a robust criterion that is used in GM-estimation method. In this paper, we 

will do this and chance the square term in second part of (5) with a GM criterion.  

 

Let  ( ) be a robust criterion function. Then, we will rewrite the complete data log likelihood function 

for (    ) given   as follows 

 

  ( |    )  ∑∑   

 

   

 

   

(   (  )  
 

 
   (  )  

 

 
   (  

 )) 

 ∑∑   

 

   

  

 

   

 (   
     

   

  
)   (6) 

  

This function instead of function given in (5) will be used to develop the EM algorithm to get 

estimates for the parameters. Note that the function  (  
 

 
)           depends on   and 

standardized residuals. In literature, there are two forms of  ( ) used to obtain the GM- estimators. If 

 (   )   ( ) ( ), the estimator is called Mallows type (Mallows (1975)) and if  (   )  

  ( ) (
 

 ( )
), the estimator is called Schweppe type (Handschin et al. (1975), Hampel et al. (1986)). 

Here,  ( ) is a decreasing weight function of Mahalanobis distance of   and it is designed to reduce 

the effect of leverage points on the resulting estimators. If we take  ( )   , we get the M- 

estimators. There are many different weight functions used in literature. In this study, we will use the 

following weight function proposed by Simpson et al. (1992)  

 

 (  )     (  (
 

  (  )
)

  ⁄

)  (7) 

 

where   (  )  (    ( ))
 
 ( )  (    ( )) is the robust Mahalanobis distance based on 

minumum covariance determinant (MCD) (Rousseeuw and Van Driessen (1999)) estimators of sample 

mean and variance covariance matrix of    and   is the (   ) quantile of the chi-squared 

distribution with (   ) degrees of freedom.  

 

Now, we give the steps of the EM type algorithm for the GM based mixture regression model. First we 

have to take the conditional expectation of the complete data log-likelihood function to get rid of the 

latency of     
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If   is differentiable, taking the derivative of (8) with respect to    and setting to zero gives the 

following equation 

 

∑ (   |  )   (   
     

   

  
)

 

   

     (9) 

 

where      and  (   )   ( ) ( ) for Mallows type estimator and  (   )   ( ) (
 

 ( )
) for 

Schweppe type estimator. Note that   is an appropriate function defined on real number. Solving this 

equation will give the estimator for   . However, since this estimator will be a function of  (   |  ) it 

cannot be used. To make it functional we have to compute this conditional expectation given    and 

the current estimate  ̂, which will be 
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∑  ̂  (     
  ̂   ̂ 
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   (10) 

 

Then after some straightforward algebra, we obtain 
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where  

 

 ̂  
   ̂   

 (
     

  ̂ 

 ̂ 
) 

 

and   (
     

  ̂ 

 ̂ 
) shows the weight function for Mallows and Schweppe type GM-estimation 

methods. Weights for Mallows estimator are  (
     

  ̂ 

 ̂ 
) (

     
  ̂ 

 ̂ 
)⁄   and for Schweppe type estimator 

are  (
     

  ̂ 

 ̂  (  )
) (

     
  ̂ 

 ̂ 
)⁄ . Here    will be estimated using the M-scale estimation method (Huber and 

Ronchetti (2009), Maronna et al. (2006), Jurečková and Picek (2006)) which is adapted for the mixture 

regression model.   

 

Solving (11) with respect to    will give 

 

 ̂  (∑ ̂  
  (  )    
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Now, the steps of EM type algorithm can be given as follows: 

 

EM algorithm: 

 

1. Take initial parameter estimates  ( ) and fix a stopping rule  . 

2. E-step: Given the current parameter values  ̂( ), compute the following conditional expectation for 

          
 

 ̂  
( )

  (   |    ̂
( ))  

 ̂ 
( ) (     

  ̂ 
( )

  ̂ 
 ( )

)

∑  ̂ 
( )

 (     
  ̂ 

( )
  ̂ 

 ( )
)

 
   

   (13) 

 

3. M-step:  
i) Update the mixing probabilities using  
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(   )  

∑  ̂  
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   (14) 

 

ii) Using equation (12) compute  ̂ 
(   )
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iii) Calculate  ̂ 
 (   )

 using 
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4. Repeat E and M steps until the convergence criteria ‖ (   )   ( )‖    is satisfied. 

 

 

3. Simulation study 

 

In this section, we give a simulation study to compare the performance of the proposed estimators 

(MixregGM-Mallows and MixregGM-Schweppe) with the mixture regression estimators based on M-

estimation (Mixreg-Huber and Mixreg-Tukey) proposed by Bai (2010) and Bai et al. (2012) in terms 

of bias and mean square error (MSE). The bias and MSE are computed using the following formulas 
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where   is the true parameter value,  ̂  is the estimation of   from the ith simulated data and  ̅  
 

 
∑  ̂ 

 
   . The number of replications ( ) is    . We take sample sizes as     and     for all 

simulation settings.  

 

For the simulation, we use Huber’s   function   ( )     (      (   )) with         and we 

choose  (   )   ( ) ( ) for Mallows type estimator and  (   )   ( ) (
 

 ( )
) for Schweppe 

type estimator. The weights  ( ) are computed using (7). For the Tukey’s bisquare function   ( )  
 (  (  ⁄ ) )  (| |   ) which will be used to compute the mixture regression M estimator 

proposed by Bai (2010) and Bai et al. (2012), the tuning constant will be taken as      . All 

simulation studies are conducted using MATLAB R2013a.  

 

We consider two simulation scenarios. 

 

Scenario 1. We generate the data {(     )        } from a two-component mixture regression 

model (Bai (2010)) 

 

  {
            
            

 

 

where  (   )         and    (   ). Furthermore, the model coefficients are    
(       )

  (   )  and    (       )
  (    ) . For the error distribution, we take the following 

cases: 

 

Case I:        (   ), standard normal distribution. 

Case II:         , t distribution with the degrees of freedom 4. 

Case III:            (   )       (    ), contaminated normal distribution. 

Case IV:        (   ), standard normal distribution with outliers, (we add 5 and 10 outliers in the   

direction for       and    , respectively). 

 

Tables 1 and 2 display the simulation results for the Scenario 1. In the tables we give bias and MSE 

values. We observe the followings from the simulation results. Although, for the Cases I, II and III all 

the estimators have similar behavior, MixregGM-Schweppe has smaller MSE values in most 

simulation conditions. For the Case IV, which is the case contains outliers (5 outliers for       and 

10 outliers for      ) in the   direction, we observe that Mixreg-Huber and Mixreg-Tukey 

estimators are drastically affected by the outliers. On the other hand, MixregGM-Mallows and 

MixregGM-Schweppe estimators have the lowest bias and MSE values in almost all simulation 

conditions.  
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Table 1. MSE (bias) values of estimates for      . 

 
 Mixreg-Huber Mixreg-Tukey MixregGM-

Mallows 

MixregGM-

Schweppe 

 Case I:        (   ) 
      0.0119(0.0008) 0.0113 (0.0012) 0.0118 (0.0019) 0.0118 (0.0013) 

      0.0126 (0.0024) 0.0122 (0.0030) 0.0127 (0.0017) 0.0127 (0.0019) 

      0.0113 (-0.0101) 0.0108 (-0.0094) 0.0114 (-0.0097) 0.0115 (-0.0099) 

       0.0120 (0.0058) 0.0117 (0.0074) 0.0120 (0.0065) 0.0120 (0.0057) 

       0.0016 (0.0020) 0.0016 (0.0019) 0.0016 (0.0017) 0.0016 (0.0017) 

 Case II:          

      0.0182 (0.0027) 0.0211 (0.0006) 0.0185 (0.0039) 0.0184 (0.0042) 

      0.0181 (0.0065) 0.0251 (0.0073) 0.0192 (0.0049) 0.0191 (0.0047) 

      0.0159 (0.0089) 0.0185 (0.0175) 0.0167 (0.0021) 0.0165 (0.0018) 

       0.0145 (-0.0022) 0.0188 (-0.0090) 0.0169 (0.0084) 0.0165 (0.0084) 

       0.0016 (-0.0021) 0.0016 (-0.0021) 0.0016 (-0.0025) 0.0016 (-0.0025) 

 Case III:            (   )       (    ) 
      0.0135 (0.0026) 0.0152 (-0.0001) 0.0150 (0.0033) 0.0149 (0.0035) 

      0.0161 (0.0050) 0.0176 (0.0055) 0.0170 (0.0045) 0.0170 (0.0044) 

      0.0124 (0.0101) 0.0139 (0.0140) 0.0134 (-0.0009) 0.0130 (-0.0008) 

       0.0132 (-0.0105) 0.0145 (-0.0127) 0.0146 (0.0036) 0.0143 (0.0033) 

       0.0015 (-0.0005) 0.0015 (-0.0005) 0.0018 (-0.0008) 0.0018 (-0.0008) 

 Case IV:        (   ) (5 outliers) 

      0.2043 (-0.1735) 0.1860 (-0.1685) 0.0643 (-0.0681) 0.0628 (-0.0686) 

      0.0194 (0.0025) 0.0179 (0.0025) 0.0158 (0.0015) 0.0157 (0.0018) 

      13.5129 (-3.6757) 13.3367 (-3.6517) 3.1684 (-1.7710) 2.8973 (-1.6914) 

       0.0172 (-0.0285) 0.0162 (-0.0291) 0.0171 (0.0403) 0.0172 (0.0423) 

       0.0123 (0.0964) 0.0117 (0.0938) 0.0020 (-0.0071) 0.0021 (-0.0116) 
Note: Value in parentheses indicates the bias 

 

 

Table 2. MSE (bias) values of estimates for      . 

 
 Mixreg-Huber Mixreg-Tukey MixregGM-

Mallows 

MixregGM-

Schweppe 

 Case I:        (   ) 
      0.0058 (0.0031) 0.0054 (0.0035) 0.0057 (0.0031) 0.0057 (0.0031) 

      0.0063 (-0.0009) 0.0059 (-0.0015) 0.0063 (-0.0010) 0.0063 (-0.0009) 

      0.0053 (-0.0023) 0.0050 (-0.0031) 0.0054 (-0.0019) 0.0055 (-0.0021) 

       0.0059 (-0.0013) 0.0056 (-0.0007) 0.0059 (-0.0012) 0.0059 (-0.0013) 

       0.0008 (0.0012) 0.0008 (0.0012) 0.0008 (0.0012) 0.0008 (0.0012) 

 Case II:          

      0.0090 (0.0029) 0.0120 (0.0063) 0.0094 (0.0042) 0.0094 (0.0042) 

      0.0086 (-0.0053) 0.0107 (-0.0051) 0.0089 (-0.0056) 0.0089 (-0.0055) 

      0.0066 (0.0138) 0.0094 (0.0222) 0.0070 (0.0063) 0.0068 (0.0062) 

       0.0073 (-0.0036) 0.0084 (-0.0109) 0.0076 (0.0042) 0.0075 (0.0044) 

       0.0010 (-0.0002) 0.0010 (-0.0002) 0.0010 (-0.0002) 0.0010 (-0.0002) 

 Case III:            (   )       (    ) 
      0.0072 (0.0002) 0.0085 (0.0005) 0.0075 (0.0008) 0.0074 (0.0008) 

      0.0077 (-0.0077) 0.0099 (-0.0077) 0.0079 (-0.0087) 0.0078 (-0.0087) 

      0.0066 (0.0109) 0.0072 (0.0133) 0.0066 (-0.0027) 0.0065 (-0.0020) 

       0.0064 (-0.0095) 0.0081 (-0.0157) 0.0072 (0.0015) 0.0070 (0.0015) 

       0.0008 (-0.0006) 0.0008 (-0.0005) 0.0009 (-0.0003) 0.0009 (-0.0003) 

 Case IV:        (   ) (10 outliers) 

      0.1067 (-0.1820) 0.1024 (-0.1802) 0.0330 (-0.0777) 0.0331 (-0.0791) 

      0.0089 (0.0051) 0.0083 (0.0052) 0.0082 (0.0018) 0.0083 (0.0017) 

      13.0840 (-3.6171) 12.9210 (-3.5944) 3.1303 (-1.7644) 2.8640 (-1.6868) 

       0.0080 (-0.0276) 0.0077 (-0.0286) 0.0081 (0.0368) 0.0084 (0.0388) 

       0.0090 (0.0878) 0.0087 (0.0863) 0.0011 (-0.0099) 0.0012 (-0.0143) 
Note: Value in parentheses indicates the bias 
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Scenario 2. We generate the data {(          )        } from the following two component 

mixture regression models (Bai et al. (2012)) 

 

  {
               
               

 

 

where  (   )         ,      (   ) and     (   ). Here, the model coefficients are 

   (           )
  (     )  and    (           )

  (       ) . We explore the following 

error distributions: 

 

Case I:        (   ), standard normal distribution. 

Case II:         , t distribution with the degrees of freedom 3. 

Case III:            (   )       (    ), contaminated normal distribution. 

Case IV:        (   ), standard normal distribution with outliers, (we add 5 outliers for       

and 10 outliers for       in the   direction). 

 

In Tables 3 and 4, we give the simulation results. The tables show the bias and MSE values of the 

estimates. The simulation results show that all estimators have similar performance when the error 

terms have normal, heavy-tailed and contaminated normal distributions. However, when we add 

outliers (5 outliers for       and 10 outliers for      ) to the data in the   direction and error 

terms have the normal distribution, Mixreg-Huber and Mixreg-Tukey estimators are failed to find the 

right groups as they are drastically influenced by the outliers. On the contrary, since the MixregGM-

Mallows and MixregGM-Schweppe estimators are resistant to the outliers in the   direction, they have 

the lowest bias and MSE values for almost all the estimators compare to the others.  

 

In summary, after evaluating the results of all simulation studies, we observe that mixture regression 

model based on the robust estimation method should be used when the data includes outliers. In 

particular, if the data have the outliers in the   direction, since the mixture regression model based on 

the GM-estimation method gives reliable results, the mixture regression GM-estimators should be 

used instead of the mixture regression model based on the M-estimation proposed by Bai (2010) and 

Bai et al. (2012).  
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Table 3. MSE (bias) values of estimates for      . 

 
 Mixreg-Huber Mixreg-Tukey MixregGM-

Mallows 

MixregGM-

Schweppe 

 Case I:        (   ) 

      0.0556 (-0.0136)  0.0523 (-0.0122)  0.0533 (-0.0127)  0.0532 (-0.0131) 

      0.0098 (0.0033)  0.0092 (0.0028)  0.0096 (0.0034)  0.0095 (0.0037) 

      0.0512 (0.0218)  0.0553 (0.0181)  0.0448 (0.0265)  0.0452 (0.0271) 

       0.0095 (-0.0060)  0.0092 (-0.0069)  0.0087 (-0.0055)  0.0087 (-0.0051) 

      0.0534 (-0.0023)  0.0558 (-0.0066)  0.0473 (0.0007)  0.0478 (0.0010) 

       0.0098 (0.0031)  0.0097 (0.0011)  0.0095 (0.0067)  0.0095 (0.0067) 

        0.0039 (0.0024)  0.0041 (0.0046)  0.0028 (0.0011)  0.0028 (0.0010) 

 Case II:          

      0.0940 (-0.0111)  0.1061 (-0.0222)  0.1307 (-0.0207)  0.1316 (-0.0179) 

      0.0208 (-0.0007)  0.0213 (0.0028)  0.0223 (-0.0017)  0.0167 (-0.0027) 

      0.3679 (-0.2411)  0.3694 (-0.2376)  0.2932 (-0.2318)  0.2491 (-0.1867) 

       0.0238 (-0.0450)  0.0254 (-0.0596)  0.0329 (0.0055)  0.0174 (-0.0089) 

      0.3597 (-0.2580)  0.3648 (-0.2526)  0.3032 (-0.2741)  0.2476 (-0.2372) 

       0.0247 (-0.0466)  0.0280 (-0.0608)  0.0463 (0.0119)  0.0213 (-0.0048) 

        0.0333 (0.1002)  0.0290 (0.0971)  0.0130 (0.0487)  0.0104 (0.0429) 

 Case III:            (   )       (    ) 

      0.0681 (0.0088) 0.0857 (0.0107) 0.0942 (0.0080) 0.0857 (0.0026) 

      0.0107 (-0.0008) 0.0113 (-0.0002) 0.0289 (0.0058) 0.0292 (0.0060) 

      0.0918 (0.0054) 0.1102 (0.0099) 0.1854 (-0.1174) 0.1467 (-0.1218) 

       0.0122 (-0.0064) 0.0125 (-0.0141) 0.0235 (0.0168) 0.0229 (0.0154) 

      0.1088 (-0.0269) 0.1483 (-0.0460) 0.1963 (-0.1823) 0.1842 (-0.1746) 

       0.0116 (-0.0088) 0.0118 (-0.0117) 0.0152 (0.0158) 0.0149 (0.0140) 

        0.0061 (0.0089) 0.0058 (0.0126) 0.0063 (0.0106) 0.0062 (0.0114) 

 Case IV:        (   ) (5 outliers) 

      0.3503 (-0.0404)  0.2706 (-0.0600)  0.0611 (-0.0179)  0.0612 (-0.0136) 

      0.0971 (-0.0022)  0.1250 (0.0030)  0.0128 (0.0003)  0.0129 (0.0007) 

      2.1562 (-1.2028)  2.3962 (-1.3143)  0.5132 (-0.5245)  0.4968 (-0.4955) 

       0.8802 (0.7992)  0.8348 (0.7484)  0.0145 (-0.0446)  0.0145 (-0.0434) 

      2.5613 (-1.4266)  2.7394 (-1.5047)  0.5371 (-0.5470)  0.5244 (-0.5190) 

       1.0061 (0.8581)  0.9528 (0.8031)  0.0167 (-0.0528)  0.0166 (-0.0506) 

        0.0707 (0.1609)  0.0777 (0.2008)  0.0228 (0.1154)  0.0222 (0.1100) 
Note: Value in parentheses indicates the bias 
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Table 4. MSE (bias) values of estimates for      . 

 
 Mixreg-Huber Mixreg-Tukey MixregGM-

Mallows 

MixregGM-

Schweppe 

 Case I:        (   ) 

      0.0205 (-0.0048)  0.0196 (-0.0047)  0.0205 (-0.0030)  0.0206 (-0.0030) 

      0.0043 (-0.0006)  0.0041 (-0.0013)  0.0043 (-0.0006)  0.0043 (-0.0006) 

      0.0218 (0.0034)  0.0213 (0.0022)  0.0198 (0.0054)  0.0197 (0.0054) 

       0.0045 (0.0051)  0.0045 (0.0051)  0.0046 (0.0055)  0.0047 (0.0059) 

      0.0215 (0.0057)  0.0214 (0.0032)  0.0201 (0.0067)  0.0201 (0.0067) 

       0.0045 (-0.0020)  0.0044 (-0.0023)  0.0044 (-0.0012)  0.0044 (-0.0011) 

        0.0014 (0.0003)  0.0014 (0.0007)  0.0012 (-0.0007)  0.0012 (-0.0007) 

 Case II:          

      0.0415 (0.0177)  0.0489 (0.0151)  0.0523 (0.0129)  0.0504 (0.0122) 

      0.0080 (-0.0042)  0.0090 (-0.0045)  0.0071 (-0.0008)  0.0071 (-0.0011) 

      0.2600 (-0.2071)  0.2941 (-0.2218)  0.2283 (-0.3035)  0.2086 (-0.2734) 

       0.0105 (-0.0447)  0.0147 (-0.0602)  0.0090 (-0.0006)  0.0084 (-0.0044) 

      0.2644 (-0.2324)  0.3023 (-0.2507)  0.2456 (-0.3275)  0.2168 (-0.2911) 

       0.0104 (-0.0479)  0.0131 (-0.0621)  0.0115 (-0.0004)  0.0111 (-0.0053) 

        0.0255 (0.0952)  0.0255 (0.0977)  0.0094 (0.0613)  0.0090 (0.0595) 

 Case III:            (   )       (    ) 

      0.0301 (-0.0090) 0.0360 (-0.0077) 0.0440 (-0.0035) 0.0439 (-0.0041) 

      0.0057 (-0.0018) 0.0060 (-0.0021) 0.0058 (-0.0020) 0.0059 (-0.0018) 

      0.0278 (-0.0030) 0.0356 (0.0030) 0.1202 (-0.1988) 0.1077 (-0.1866) 

       0.0052 (-0.0075) 0.0055 (-0.0124) 0.0097 (0.0162) 0.0059 (0.0136) 

      0.0311 (0.0180) 0.0423 (0.0216) 0.1293 (-0.2092) 0.1125 (-0.1947) 

       0.0051 (-0.0125) 0.0054 (-0.0170) 0.0094 (0.0130) 0.0059 (0.0101) 

        0.0019 (0.0045) 0.0019 (0.0058) 0.0029 (0.0174) 0.0025 (0.0154) 

 Case IV:        (   ) (10 outliers) 

      0.3835 (0.0181) 0.2072 (-0.0117)  0.0279 (-0.0122)  0.0282 (-0.0118) 

      0.1146 (-0.0077) 0.1142 (0.0045)  0.0069 (-0.0012)  0.0070 (-0.0014) 

      2.2019 (-1.2476) 2.6361 (-1.4434)  0.5449 (-0.5805)  0.5254 (-0.5538) 

       0.9721 (0.9269) 0.9231 (0.8478)  0.0094 (-0.0457)  0.0095 (-0.0460) 

      2.6391 (-1.4760) 2.8753 (-1.5700)  0.5586 (-0.5961)  0.5487 (-0.5726) 

       1.0954 (0.9869) 0.9645 (0.8701)  0.0088 (-0.0443)  0.0089 (-0.0432) 

        0.0671 (0.1334) 0.0768 (0.1957)  0.0238 (0.1251)  0.0235 (0.1209) 
Note: Value in parentheses indicates the bias 

 

 

4. Real data example 

 

In this section, we will analyze the ethanol data set which is given by Hurvich et al. (1998). This data 

set contains the concentration of nitric oxide in engine exhaust and equivalence ratio, which is the 

richness of the air-ethanol mix in an engine. This data set can be accessed by using locfit package 

(Loader (1999)) in R. This data set also used by Hurn et al. (2003) in the context of mixture regression 

model for the Bayesian approach. Figure 1 shows the scatter plot and histogram of equivalence ratio. 

From these plots it is clear that there are two separate groups in the data set. 
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Figure 1. (a) The scatter plot of the data. (b) Histogram of the equivalence ratio 

 

 

Using this data set, we compare the performances of the estimators in the case of with and without 

outliers. We show the scatter plots with the fitted regression lines obtained from Mixreg-Huber, 

Mixreg-Tukey, MixregGM-Mallows and MixregGM-Schweppe procedures in Figure 2. Also, we give 

the estimates for regression coefficients and mixing probability along with the standard errors of 

estimators in Table 5. The standard errors for the estimates are computed using the asymptotic 

covariance matrix of the estimators given in Appendix. For the Mixreg-Huber and Mixreg-Tukey, we 

use the asymptotic results given in Bai et al. (2012). We also include the values of the integrated 

complete likelihood (ICL) (Biernacki et al. (2000)) criterion for these procedures. We see from figure 

that all estimation procedures give similar fits, but MixregGM-Mallows gives the best result in terms 

of ICL criterion. We can also compute the estimates for   using the equation given in (16). For 

simplicity we fix the   to compute the standard errors of regression coefficients and mixing 

probabilities. 

 

 

 
 

Figure 2. Fitted mixture regression lines for the ethanol data set 
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Table 5. Parameter estimates, standard errors of estimates and ICL information criterion for fitting 

different mixture regression models to the ethanol data set 

 

Model 
Parameter Estimates Information Criterion 

 ̂   ̂    ̂    ̂    ̂    ̂   ̂    ( ̂) ICL 

Mixreg-

Huber 

0.48761 

(0.00786) 

0.56468 

(0.12424) 

0.08533 

(0.05547) 

1.24774 

(0.11663) 

-0.08443 

(0.05601) 

0.05329 0.02585 499.66117 -967.98099 

Mixreg-

Tukey 

0.48827 

(0.00395) 

0.56437 

(0.12794) 

0.08586 

(0.05626) 

1.24795 

(0.06945) 

-0.08461 

(0.03364) 

0.05311 0.02582 689.9801 -1348.61901 

MixregGM-

Mallows 

0.48932 

(0.00089) 

0.56686 

(0.11890) 

0.08471 

(0.05394) 

1.24541 

(0.10830) 

-0.08274 

(0.04886) 

0.04393 0.02451 772.99552 -1514.64969 

MixregGM-

Schweppe 

0.48932 

(0.00089) 

0.56686 

(0.11890) 

0.08471 

(0.05394) 

1.24541 

(0.10830) 

-0.08274 

(0.04886) 

0.04393 0.02451 772.99553 -1514.64939 

         Note: Value in parentheses indicates the standard errors 

 

 

To see the performance of the estimators we add five outliers in the   direction. The scatter plots with 

the fitted regression lines obtained from Mixreg-Huber, Mixreg-Tukey, MixregGM-Mallows and 

MixregGM-Schweppe procedures are presented in Figure 3. We also give the parameter estimates, 

standard errors of estimates and the ICL criterion values in Table 6. We can observe from this figure 

that Mixreg-Huber and Mixreg-Tukey are affected by the outliers. However, since MixregGM-

Mallows and MixregGM-Schweppe are robust to the outliers in the   direction, they are not influenced 

by the outliers. According to the ICL criterion, MixregGM-Mallows has the best fit. 

 

 

 
 

Figure 3. Fitted mixture regression lines for the ethanol data set with five outliers 

 

 

Table 6. Parameter estimates, standard errors of estimates and ICL information criterion for fitting 

different mixture regression models to the ethanol data set with five outliers  

 

Model 
Parameter Estimates Information Criterion 

 ̂   ̂    ̂    ̂    ̂    ̂   ̂    ( ̂) ICL 

Mixreg-

Huber 

0.48118 

(0.00225) 

0.62943 

(0.13828) 

0.04735 

(0.04763) 

1.24886 

(0.10017) 

-0.08520 

(0.05000) 

0.06563 0.02762 435.74227 -839.75635 

Mixreg-

Tukey 

0.48167 

(0.00025) 

0.63033 

(0.15152) 

0.04713 

(0.05061) 

1.24825 

(0.07439) 

-0.08490 

(0.03928) 

0.06551 0.02750 612.95842 -11941.88649 

MixregGM-

Mallows 

0.50623 

(0.00372) 

0.60086 

(0.13824) 

0.06515 

(0.05477) 

1.24765 

(0.11844) 

-0.08452 

(0.05746) 

0.07056 0.02507 642.35526 -1252.98232 

MixregGM-

Schweppe 

0.50623 

(0.00372) 

0.60086 

(0.11499) 

0.06515 

(0.03452) 

1.24765 

(0.11844) 

-0.08452 

(0.05746) 

0.07056 0.02507 642.31718 -1252.906171 

      Note: Value in parentheses indicates the standard errors. 
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5. Conclusions 

 

In this paper, we have proposed a robust mixture regression model based on the GM regression 

estimation method. We have given an EM type algorithm to obtain the estimators for the proposed 

mixture regression model. We have provided a simulation study and a real data example to compare 

the performance of the proposed estimators over the estimators proposed by Bai (2010) and Bai et al. 

(2012). The simulation results have shown that all of the estimators behave similar in the cases of 

normality, heavy-tailedness without outlier in the   direction. However, the mixture regression model 

based on the GM-estimation method outperforms the mixture regression model proposed by Bai 

(2010) and Bai et al. (2012) when the data includes outliers in the   and   directions. From the real 

data example, we observe the similar results.  

 

 

Appendix 

 

Using the asymptotic covariance matrix for the mixture regression model based on the GM-estimation 

method, we obtain the standard errors given in Section 4. For the simplicity, we assume that scale 

parameters (       ) are fixed. Let  ̂ be the estimate of the unknown parameter vector   

(               )
 
 in the mixture regression model given in (2).  ̂ can be obtained by solving 

the following equations 
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Then, the solution will be obtained using the following equation  
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{ (    ) (    )

 
}   (18) 

 

Under the certain conditions, Maronna and Yohai (1981) show that GM-estimators are consistent and 

asymptotically normal. Thus, the  ̂ has the following distribution with asymptotic covariance matrix   
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√ ( ̂    )
 
→  (   )   

 

where          . The standard errors of  ̂ are obtained from the square root of the diagonal 

elements of the covariance matrix  . Note that for the finite sample case the expectation in (17) and 

(18) will be replaced by the average to compute the standard errors.  
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