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Abstract

The R-package REPPlab is designed to explore multivariate data sets using one-
dimensional unsupervised projection pursuit. It is useful in practice as a pre-
processing step to find clusters or as an outlier detection tool for multivariate
numerical data. Except from the package tourr that implements smooth se-
quences of projection matrices and rggobi that provides an interface to a dy-
namic graphics package called GGobi, there is no implementation of exploratory
projection pursuit tools available in R especially in the context of outlier detec-
tion. REPPlab is an R interface for the Java program EPP-lab that implements
four projection indices and three biologically inspired optimization algorithms.
The implemented indices are either adapted to cluster or to outlier detection
and the optimization algorithms have at most one parameter to tune. Following
the original software EPP-lab, the exploration strategy in REPPlab is divided
into two steps. Many potentially interesting projections are calculated at the
first step and examined at the second step. For this second step, different tools
for plotting and combining the results are proposed with specific tools for outlier
detection. Compared to EPP-lab, some of these tools are new and their perfor-
mance is illustrated through some simulations and using some real data sets in
a clustering context. The functionalities of the package are also illustrated for
outlier detection on a new data set that is provided with the package.

Keywords: genetic algorithms, Java, kurtosis, particle swarm optimization,
projection index, Tribes, projection matrix, unsupervised data analysis

1 Introduction

Exploratory Projection Pursuit (EPP) aims at finding potentially existing struc-
tures, typically clusters or outliers, in multivariate data sets by optimizing some
index that reflects the interestingness of low dimensional linear projections.
Principal Component Analysis (PCA) can be seen for example as a projection
pursuit approach when using a scale measure as projection index. However, the
main idea of EPP is to go beyond traditional PCA which only focuses on sec-
ond order moments and to consider other projection indices usually measuring
non-gaussianity. The founding papers of EPP Friedman and Tukey [1974], Hu-
ber [1985] date back to the seventies and eighties and proposed already several
projection indices together with different strategies about how to apply them
for data exploration.

Recently, there is a renewed interest for EPP in several fields like for example
hyperspectral imagery Malpica et al. [2008], chemistry Hou and Wentzell [2011]
and genetics Espezua et al. [2014]. In these fields, the number of variables may
be high with a limited number of samples and projection pursuit is suitable since
it avoids the curse of dimensionality by projecting the data onto low dimensional
subspaces. Nevertheless, as noticed by several authors, there exists almost no
implementation of static EPP tools in statistical software. The R packages
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tourr Wickham et al. [2011] and tourrGui Huang et al. [2012], which contains
a graphical user interface for tourr, are dedicated to tour animations while the
rrggobi package Cook and Swayne [2007] provides a command line interface
to the interactive and dynamic graphical package GGobi. The package pcaPP

Filzmoser et al. [2014] is concerned with robust Principal Component Analysis.
The standalone Java program EPP-lab Berro and Larabi Marie-Sainte [2014]

is a program dedicated to EPP, described in Larabi Marie-Sainte [2016] and
freely available on GitHub. EPP-lab provides the possibility to run several
times an optimization algorithm for a chosen one-dimensional projection index
and to analyze the resulting projections in detail. Different projection indices
and several biologically inspired algorithms are implemented in EPP-lab. The
package REPPlab Fischer et al. [2015] is an interface that gives R users access
to all implemented projection indices and optimization algorithms of EPP-lab.
And in addition it provides several functions to visualize and analyze the re-
sults from EPP-lab to permit a thorough exploratory analysis of the obtained
projections using R functionalities.

In general, EPP has two essential ingredients: a projection index and an
optimization algorithm. Concerning the projection index, it is widely accepted
in the EPP literature that it should measure the non-gaussianity of a projection,
the gaussian distribution being considered as the most uninteresting. There
exist several families of indices as detailed in Caussinus and Ruiz-Gazen [2009],
Rodriguez-Martinez et al. [2010] and Koch [2014] that are aimed at revealing
different non-gaussian structures. The four indices implemented in EPP-lab are
the Friedman-Tukey, the Friedman, the discriminant and the kurtosis (either
maximized or minimized) indices. They belong to different families and, except
for the so-called discriminant index which is a new proposal, they are well known
indices that have been studied in detail in the statistical literature.

As for the optimization algorithms, many proposals have been made for
EPP (see Berro et al. [2010] for some references and also Tu et al. [2003], Gou
et al. [2010], Espezua et al. [2014]). Following Berro et al. [2010] and Larabi
Marie-Sainte et al. [2010], EPP-lab implements genetic and particle swarm op-
timization (PSO) algorithms that are biologically inspired. Such algorithms do
no rely on any smoothness assumption of the function to optimize. Moreover
the Tribe algorithm, which is a particular PSO algorithm, is especially suited to
find local optima which are of interest given the exploratory strategy we propose
to follow and describe now.

The exploration philosophy in EPP-lab is not one of the traditional strategies
in EPP. Usually, either a dynamical approach as in tourr or rggobi, or a global
optimization method together with a structure removal Friedman [1987a] is used.
A dynamic approach is clearly of interest but it may be considered as tedious for
the data analyst. The usual alternative strategy consists in iterating a two step
procedure: look for the best projection direction, namely the one associated with
the global optimum of the projection index, and remove the structure found from
the data set. However, such a strategy may have some drawbacks. For example
finding a global optimum for a projection index is usually not a trivial task.
This strategy disregards also all the possible different local optima found during
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this optimization process and may be time consuming. Moreover, as stated
in Friedman [1987a], the structure removal based on orthogonal projections
may miss some interesting projections and other proposals are time consuming.
The strategy in EPP-lab differs from the previous one in the sense that all the
local optima are saved for further analysis Ruiz-Gazen et al. [2010]. Such a
strategy has also been recently discussed in the discussion Villa-Vialaneix and
Ruiz-Gazen [2015], Wickham et al. [2015a] of the paper Wickham et al. [2015b].
The use of genetic and particle swarm optimization methods helps in exploring
efficiently the space of one-dimensional projections in this context.

Given the many potentially interesting projections obtained by using several
projection indices and optimization algorithms, it is necessary to summarize
the information because several directions may contain the same information as
already stated in Friedman [1987b]. One way to do this is by combining the
different projection directions as proposed in Liski et al. [2016]. This method
basically combines several projection matrices with possibly different ranks to
obtain an average projection matrix which also automatically chooses the rank
for the average projection. Using this approach for EPP leads to summarized
the similar projections in only one direction while different directions, that may
correspond to some other local minima from the same or other projection indices
or optimization algorithms, are combined in separate directions. The method is
illustrated in the present paper through simulations and on a real data set.

The package REPPlab can be used as a preliminary step before clustering.
First, it may help the data analyst in checking whether the data actually contains
some clusters and thus helps in validating the use of some clustering method.
EPP can also give guidelines for the choice of the number of clusters. Moreover,
clustering may be performed on projection directions rather than on the orig-
inal variables. This idea will be detailed in the simulations section. Another
interesting feature of REPPlab is its ability to detect multivariate outliers. Ob-
servations that differ from the main bulk of the data are likely to be revealed by
some projections associated with local maxima of the kurtosis for instance. And
the package incorporates some specific functions to tag the observations that are
far from the mean, or other location estimates, in terms of number of standard
deviations, or other scale estimates, on the selected projection directions.

The outline of the paper is the following. In the second section, the projection
indices and the optimization algorithms implemented in EPP-lab are described
together with the proposed combining methodology. Then the main features of
the package are given in the third section. The advantage of combining several
methods and local minima is illustrated in the fourth section using a simulation
study in a clustering context. The data exploratory process using REPPlab is
detailed for clusters and for outlier detection in Section 5 using three data sets.
The last section concludes the paper.
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2 Exploratory projection pursuit

The implementation of EPP-lab follows the work by Berro et al. [2010] and
Larabi Marie-Sainte et al. [2010] who showed the value of considering several
projection indices and several optimization algorithms in order to get the most
of exploratory projection pursuit. It is described in Larabi Marie-Sainte [2016].

2.1 Projection indices

When implementing EPP-lab, the choice was made to consider three well-known
indices from different families together with a new proposal called discriminant
index. The Friedman-Tukey, the Friedman and the kurtosis indices have been
widely studied in the literature but, up to our knowledge, they are not imple-
mented in R. We recall the indices definition below but more details can be
found in Berro et al. [2010]. We denote by X = (x1, . . . , xn)> the data set con-
sisting of n p-variate observations, u the p-dimensional unit projection vector
and I, indexed by some initials, the projection indices.

The Friedman-Tukey index is of the formIFT (u) = s(u)d(u) where s de-
pends only on the global variance structure while d captures the local density of
the data Friedman and Tukey [1974]. The term s can be avoided for standard-
ized data (see Section 3.1). The objective is to maximize this index. Note that it
is minimized when the data follow a parabolic distribution which is not far from
a Gaussian distribution and thus, in some sense, it measures the departure of
the projected data from normality. However, it is is known to be very sensitive
to outliers.

Using a kernel density estimate for d Jones and Sibson [1987], this index can
be written as:

ÎFT (u) =
1

n2h

n∑
i=1

n∑
j=1

K

(
u>(xi − xj)

h

)
,

where h denotes the bandwidth. Following Klinke [2012] for the kernel choice
and Silverman [1986] for the bandwidth choice, we use the uniform kernel

K(x) =
35

32
(1− x2)31{|x|≤1}, (1)

where 1A(x) equals 1 if x belongs to A and 0 otherwise and h = 3.12n−
1
6 .

The Friedman index is an approximation of a weighted L2 measure of
departure of the projected data distribution from the Gaussian distribution.
The objective is to maximize this index and the approximation is based on
density expansions using Legendre orthogonal polynomials. It was introduced
by Friedman [1987a] with the idea of up-weighting distances in the center of
the distribution rather than in the tails in order to detect clusters and avoid
the influence of outliers. Actually, it is known that the Friedman’s index per-
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forms better than the Friedman-Tukey’s index when the objective is to separate
clusters. The index is an approximation of∫

R

(f(x)− φ(x))2g(x)dx, (2)

where f is the density of the projected data, φ is the univariate standard normal
density and g is a weight function Cook et al. [1993]. This weighted L2 distance
between f and φ is approximated after a variable change by the sum of the first
m terms of a Legendre polynomial expansion. Its expression is:

IF,m(u) =

m∑
j=1

2j + 1

2

[
1

n

n∑
i=1

Lj{2Φ(u>xi)− 1}

]2
, (3)

where Φ is the cumulative distribution function of the standardized gaussian
distribution and Lj is the Legendre polynomial of degree j, for j = 1, . . . ,m.
Friedman [1987a] suggested to choose 2 ≤ m ≤ 6 and Sun [1993] showed that
m should be at least 3. In our implementation, we use m = 3.

The kurtosis index is the fourth moment of the projected standardized
data and is simply defined by:

IK(u) =

n∑
i=1

(u>xi)
4. (4)

As detailed in Peña and Prieto [2001] for a mixture of two distributions, max-
imizing the kurtosis coefficient of the projected data implies detecting outliers
in the projections, whereas minimizing the kurtosis coefficient implies maximiz-
ing the bimodality of the projections. Thus, because local maxima and local
minima may be both of interest, we consider minimization and maximization of
IK .

The discriminant index was introduced in Berro et al. [2010]. For stan-
dardized data it is defined as

ID(u) =

∑N−1
i=1

∑N
j=i+1 w(u>(xi − xj))(u>(xi − xj))2∑N−1
i=1

∑N
j=i+1 w(u>(xi − xj))

, (5)

where w(·) is a decreasing and positive weight function. Following Caussinus
and Ruiz-Gazen [2009], who developed similar ideas in a different context, we
use w(x) = exp(−x) in our implementation. In the presence of clusters, this
index can be seen as a measure of the within variance of the projected data but
with unknown group labels. The idea is to mimic discriminant analysis in an
unsupervised context and minimize the within variance in order to detect the
presence of potential clusters. Note that potential interesting projections are
associated with minima of ID.

Because the Friedman-Tukey and the discriminant indices involve double
sums, their computations are time-consuming while the Friedman and the kur-
tosis indices are relatively fast to compute (see Larabi Marie-Sainte [2016] and
Section 5 below for details).
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2.2 Optimization algorithms

The implementation of EPP-lab for searching local optima is based on bio-
logically inspired optimization algorithms. Such algorithms are known to be
efficient in finding local optima and in exploring the whole search space. More-
over, no regularity assumption is needed on the function to optimize. However,
such algorithms have been sparsely used in the literature on EPP (see Tu et al.
[2003], Gou et al. [2010], Espezua et al. [2014] and more references in Berro
et al. [2010]). A genetic algorithm and two Particle Swarm Optimization (PSO)
algorithms are available in EPP-lab. The genetic algorithm together with the
first PSO algorithm are described in Berro et al. [2010] while the second PSO
algorithm, called Tribes, is described in Larabi Marie-Sainte et al. [2010].

Genetic algorithms are stochastic search heuristics inspired by genetics
Goldberg [1989]. For a given optimization problem, a population of candidate
solutions is created and evolves iteratively by selection, recombination and mu-
tation. Concerning the genetic algorithm implemented in EPP-lab, the size of
the population has to be fixed by the user. For this given size, the initial pop-
ulation is randomly generated. It is made of individuals that correspond to
standardized projection vectors and cover the search space. The function to
optimize is associated with each individual and is the projection index. The
evolution of the population consists of a selection step, based on a tournament
with three participants, a recombination step, with a two-point crossover and a
probability equal to 0.65, and a mutation step which permits a random explo-
ration of the local neighborhood of existing solutions, with a probability equal
to 0.05.

Two Particle Swarm Optimization algorithms are implemented in EPP-

lab as alternatives to the genetic algorithm. A PSO algorithm Eberhart and
Kennedy [1995] is a population-based search algorithm which simulates the so-
cial behavior of birds within a flock. It differs from other evolutionary methods
such as the genetic algorithms by using some notion of cooperation between
individuals of the population, called particles.

For the first implemented PSO algorithm, the size of the population has to
be given by the user. Then a population of random standardized projection
vectors that correspond to the particles is generated and the search for op-
tima is obtained by updating the position of the particles. During this iterative
process, each particle moves according to a velocity vector which is updated
taking into account not only the memory of the particle but also the memory
of the neighboring particles. All the formula and the choice of the parameters
are given in Berro et al. [2010]. In particular, note that a “cosine” neighbor-
hood adapted to our statistical context is used when taking into account the
neighboring particles.

The Tribes algorithm Cooren et al. [2009] is a particular PSO algorithm
whose main advantage is that the user does not need to precise the size of the
population of particles. The algorithm adapts itself to the complexity of the
data set. In what follows, it is our preferred algorithm.
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2.3 Combining Projection directions

As explained in the introduction, the strategy followed by EPPlab is based
on the finding of several local optima by using many starting points in the
optimization algorithms. Because many of the projection directions are likely
to be redundant, it is interesting to propose some methodology to analyze and
summarize the set of projection directions. Following Liski et al. [2016], we
propose to combine the different one-dimensional directions by averaging the
associated orthogonal projection matrices and obtain a few number of projection
directions that will take into account the set of all projection directions found.
Roughly speaking, the idea is that if many directions are similar in the sense that
the cosines between them is close to one, all these directions will be summarized
in one direction in the combined projection matrix. While if some directions
differ they will constitute different directions in the combined projection matrix.

3 The R-package REPPlab

The package REPPlab is freely available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=REPPlab and is
published under the GNU General Public Licence (GPL) 2.0 or higher licence.
For the package to work it is necessary to have besides R also the Java Develop-
ment Kit JDK, version 1.4 or higher as well as the R packages rJava Urbanek
[2016], lattice Sarkar [2008] and LDRTools Liski et al. [2015] installed.

A schematic overview of the functions of REPPlab and their corresponding
methods is provided in Figure 1. The package consists mainly of the three
functions EPPlab, EPPlabOutlier and WhitenSVD where EPPlab is the main
function of the package being the R interface to the actual Java program. The
most important arguments of EPPlab are the data matrix x, the desired pro-
jection index PPindex which should be computed using the algorithm PPalg

and how often the index should be computed (n.simu). The default projection
index is KurtosisMax. The names of the three possible algorithms are GA for
the genetic algorithm and PSO and Tribe for the two particle swarm optimiza-
tion algorithms. When specifying these arguments it is sufficient to supply the
shortest unique string.

3.1 Preliminary standardization

The function EPPlab always centers and scales the data, by subtracting the
column means and dividing by the columns standard deviation, and the argu-
ment sphere controls whether or not the data should also be uncorrelated. The
default is FALSE, but if set to TRUE the function WhitenSVD is used to whiten
the data. WhitenSVD uses a singular value decomposition to achieve this and
estimates the rank of the data as the number of eigenvalues larger than 1E-
06. Therefore whitening can also be done if there are fewer observations than
dimensions.
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EPPlab

print

summary

plot

screeplot

pairs

fitted

predict

coef

EPPlabAgg

WhitenSVD

EPPlabOutlier

plot

summary

print

Figure 1: Schematic overview over the functions in the REPPlab package.

3.2 Input parameters for the optimization algorithms

To fine tune the algorithms it is possible to specify the number of particles
(particles) for the standard particle swarm optimization algorithm and the
number of individuals (individuals) for the genetic algorithm. Concerning the
stopping criterion, it can be modified either by specifying the maximum number
of iterations (maxiter) or by specifying the convergence criteria step_iter

and eps. The algorithms stop as soon as one of the two following conditions
holds: the maximum number of iterations is reached or the relative difference
between the index value of the present iteration i and the value of iteration
i-step_iter is less than eps. In the last situation, the algorithm is said to
converge and the function EPPlab will return the number of iterations needed to
attain convergence. If the convergence is not reached but the maximum number
of iterations is attained, the function will return a warning. The default values
are 10 for step_iter and 1E-06 for eps.

3.3 Description of the outputs of the EPPlab function

The function EPPlab returns an object of class epplab which contains the esti-
mated n.simu directions and their criterion value as well as other useful infor-
mation. Note that the found directions are ordered according to their criterion
(index) value. For convenient working with an object of class epplab, the meth-
ods print, summary, plot, pairs, screeplot, fitted, predict and coef are
provided.
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Since in usual applications of the function EPPlab the number of times the
algorithms are called (n.simu) will be large it will often not be meaningful
to look at all results at once. For example print will present only informa-
tion about the direction with the largest index criterion whereas all the other
functions have usually an argument which to decide which directions should be
investigated. By default often only the first 10 directions will be presented. A
natural first option to explore the results is to investigate them graphically. The
function screeplot can be used to compare the objective criterion values from
the different runs. The function plots the run number against its criterion value
and this should give an impression which directions might actually be the same.
The plot function offers three types of plots controlled by the type argument.
For type = "angles" the angles between the run with the largest objective
criterion and all other runs are plotted. This again should give an idea which
directions might actually differ and which not. The default plotting type is how-
ever type = "density" which plots for the chosen directions marginal kernel
density estimates while type = "hist" will give the corresponding histograms.
Both options indicate if the corresponding directions yield anything interesting
like clusters or outliers. Similarly the function pairs produces a scatter plot
matrix of the directions included in which in order to evaluate correlations be-
tween directions or possible multidimensional structures. For further analysis
of the desired directions, the projected data can be easily extracted using the
fitted function, for new observations the function predict computes the cor-
responding projections. The projecting directions can be obtained using the
coef function.

3.4 Description of the EPPlabOutlier function

If the purpose of the analysis is outlier detection the function EPPlabOutlier is
the best way to extract the relevant information from an epplab object. In the
EPPlabOutlier function the user can specify which location and scale measure
are to be used and what is the factor k that classifies an observation as outlier
based on the location and scale used. The location and scale arguments
take as input, functions which return the corresponding quantities for a vector.
The defaults are mean and sd but, for example, also median and mad might
be used. The EPPlabOutlier creates an object of class epplabOutlier for
which print, summary and plot functions are available. The output of these
three functions is most meaningful if the data given to EPPlab before calling
epplabOutlier has row labels for the observations. Just printing the object
of class epplabOutlier returns a binary matrix where 1 in its ij-th element
indicates that the observation i is considered an outlier in direction j. A visual
presentation of this binary matrix is obtained using plot where the user can
choose the colors for outliers and non-outliers and whether only those rows
should be plotted which are considered at least in one direction as an outlier.
A maybe more informative overview is provided using summary which informs
about the total number of outliers found and in how many directions each of
the identified outliers are considered atypical.
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3.5 Description of the EPPlabAgg function

This function is designed to combine and summarize the different projection
directions. The input for the function is either an epplab object or a list of
such objects when for example results from different calls with different indices
or algorithms should be combined. The combining idea is quite simple. Denote
as ui, i = 1, . . . , N the N unit projection vectors which should be combined and
as Pi, i = 1, . . . , N the corresponding projection matrices which all have rank 1.
This function basically performs an eigenvalue - eigenvector decomposition of

P ∗ =
1

N

N∑
i=1

Pi

obtaining the p eigenvalues λ1 ≥ . . . ≥ λp and corresponding eigenvectors. The
idea is then to keep those k eigenvectors which explain “most” of P ∗. For a
detailed description and the theoretic foundation see Liski et al. [2016] who also
suggest methods to automatically decide upon the value k. The function EP-

PlabAgg offers then three options to decide upon k using the method argument.
Two automatic ones denoted "inverse" and "sq.inverse" follow Liski et al.
[2016] or as alternative the method "cumulative", which chooses the minimal k

such that
∑k

i=1 λi/
∑N

i=1 λi ≥ c where c is the percentage given by the argument
percentage.

4 Simulations

EPP is often used as preprocessing step to find clusters in data. In the follow-
ing simulation study we will compare different indices and combination methods
implemented in REPPlab for that purpose. For the comparison we consider two
different settings each having three underlying clusters. In the first setting the
cluster sizes are balanced with n1 = n2 = n3 = 100 whereas in the second setting
the sizes are unbalanced with n1 = 200, n2 = 80, n3 = 20. For the cluster design
we follow Hou and Wentzell [2011] and have three 10-variate normal populations
with N10(µi,Σ), where µ1 = (−1,−0.58, 0, . . . , 0)>, µ2 = (1,−0.58, 0, . . . , 0)>,
µ3 = (0, 1.15, 0, . . . , 0)> and Σ = diag(0.1, 0.2, 1, . . . , 1). In order to make the
design not simply visible, we then rotate the observations with a random or-
thogonal matrix. Hence when performing dimension reduction for clustering,
k=2 directions should be sufficient to find the three clusters. The success of
the different preprocessing methods will be evaluated using the adjusted Rand
index Rand [1971] when k-means clustering is used when searching for the three
clusters. The index has the range 0 to 1 and the larger the better.

For both settings we simulated 1000 times all indices in the package ep-

plab with the settings PPalg = "Tribe", n.simu = 100, maxiter = 200 and
sphere = TRUE.

To get an idea of the computational complexity the computation times for
each setting and all the indices are shown in Figure 2. As can be seen here,
the setting does not matter but there are considerably differences between the
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Figure 2: Computation times for the 100 projection directions based on 1000
repetitions in both settings.

indices. Both kurtosis indices (kmin and kmax) are the fastest to compute
whereas the discriminant index (disc) and the Friedman Tukey index (ft) are
quite slow to compute. The Friedman index (fried) is intermediate in terms of
computation time.

Therefore, when evaluating the performance of combination methods we ei-
ther combine all indices or only the fast indices designed for clustering (kmin and
fried) and the two combinations will be denoted as ‘all’ and ‘fast’ respectively
in what follows.

When combining results we used the in-build methods as provided by EP-

PlabAgg. We used options "inverse", "sq.inverse" and "cumulative" with
percentages 85% and 95%, denoted as ‘cum85’ and ‘cum95’. In the following we
will show however only the results of inverse and cum85 as using sq.inverse

was a little worse than inverse and cum95 was clearly the worst from all of them.
Figure 3 shows the performance for both cases. Obviously, maximizing kur-

tosis is not a good idea as a preparation for clustering since the index is designed
for finding outliers. The Friedman-Tukey index is also not very good and the
discriminant index differs a lot between the two settings.

However when combining all indices the performance is in general good, but
better with only the fast indices. Note that, when combining all methods, the
performance does not fail although bad performing indices are included. When
comparing the two aggregation methods it seems that for the balanced case
cum85 is better while for the unbalanced case the inverse method is better.

In Figure 4 is shown how many directions the different aggregation methods
choose. Recall that the number of clusters is 3 and so k = 2 should be right but
naturally from the figure one cannot conclude if when k = 2 the right two direc-
tions are chosen. The Figure nevertheless gives the number of directions selected
and in general it seems that cum85 chooses more directions than inverse.
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Figure 3: Adjusted Rand index for the different combinations of the found
projections based on 1000 repetitions in both settings (balanced at the top and
unbalanced at the bottom).
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Figure 4: Number of directions chosen by the different aggregation methods.
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Figure 5: Adjusted Rand index for k-means underlying different component
selection methods.

At the end of this Section we put EPP in context to competing methods.
We consider applying k-means to the raw data using all 10 dimensions as well
as principal component analysis, where we use the first PC, the first two PCs
and the first l PCs which explain 80% of the variation. We also compare EPP
to invariant coordinate selection (ICS) Tyler et al. [2009] using the default as
implemented in ICS Nordhausen et al. [2008] and choose the first two and last
two components. The corresponding adjusted Rand index values are compared
to our EPP approach in Figure 5.

From this comparison one can conclude that using PCA in this context is
not beneficial at all. It seems even worse than applying k-means on the raw
data. ICS is a clear improvement but still not as good as EPP. While for the
balanced setting the Friedman index is performing best when aggregated using
85% in the cumulative approach, for the unbalanced setting the combination
of Friedmann and minimizing kurtosis using the inverse aggregation approach
seems best. In general we believe that the best index and aggregating method
is data dependent. However combining several projections using the inverse
aggregation seems to be a safe choice.

The whole simulation script as well as all simulation results are available
upon request. The packages used for the simulations were REPPlab, MCLUST

Fraley et al. [2012], ICS and lattice.

5 Examples

The following examples will show how to use the REPPlab package for ex-
ploratory data analysis to find clusters and outliers in multivariate data. All
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examples are made using the 64-bit version of R 3.3.1 R Core Team [2015] and
the packages REPPlab 0.9.4, rJava 0.9-8 Urbanek [2016], lattice 0.20-33, amap
0.8-14 Lucas [2014] and LDRTools 0.2. Note that Java needs to be installed
and that, on Windows, often only the 32-bit version of Java will be installed
by default and so the 64-bit version needs to be installed separately. For repro-
ducibility a random seed is set which will be passed from R to Java, where we
are using the 64-bit version of Java 8 Update 66.

5.1 Detecting clusters

First we consider how to detect clusters in multivariate data using the REPPlab

package. For this demonstration purpose we first use the so-called Lubishew
data which is available in the package amap. The data set is known to contain
three clusters and the goal is to find all of them assuming that the number of
clusters is also unknown. It is a very simple example helpful to understand the
different steps of the strategy that can be implemented using REPPlab. At the
end of the subsection, we have a short look at a more complex data set which
consists in 572 olive oil samples from Italy available in the package tourr.

We first load the necessary packages and the data and also fix the random
seed.

> library("REPPlab")

> library("amap")

> set.seed(4567)

> data("lubisch")

> X <- lubisch[, 2:7]

> Class <- lubisch[, 8]

For convenience we denoted the variables which will be used to identify the
clusters as X and stored the correct class labels in the vector Class. Looking at
the scatterplot matrix in Figure 6 does indicate that there are clusters but not
so clearly that there are three clusters.

> pairs(X)

We use now the function EPPlab to obtain 100 directions using the Friedman
index for the sphered data using the Tribes algorithm.

> res.Fried.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex =

+ "Friedman", n.simu = 100, maxiter = 200, sphere = TRUE)

> summary(res.Fried.Tribe, digits=4)

REPPlab Summary

---------------

Index name : Friedman

Index values : 0.5517 0.5517 0.5517 0.5517 0.5517 0.5517
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Figure 6: Scatterplot matrix of the Lubishew data.

0.5517 0.5517 0.5517 0.5517

Algorithm used : Tribe

Sphered : TRUE

Iterations : 48 52 48 53 47 55 42 53 58 46

The summary is here not too informative but tells us which index and algo-
rithm were used as well as if the data was sphered or not. It shows also the index
value of the first 10 directions and how many iterations they needed. For the
first 10 directions the criterion value is always the same, but to see if different
directions are found, plots are more informative.

First we look at the screeplot of the res.Fried.Tribe object

> screeplot(res.Fried.Tribe, which = 1:100)

which, as Figure 7 reveals, gives the same criterion value for around the first
60 directions. Then there is a sharp drop and the next around 20 directions
have the same criterion value before a final small drop occurs for around 10
directions. Finally, the last six directions are associated with some dispersed
index values. Naturally, two identical criterion values do not exclude different
directions and the last small drop might also not be a new interesting direction.
This can be further investigated by looking at the angles between the directions.

> plot(res.Fried.Tribe, type = "angles", which = 1:100)

Figure 8 shows that the directions in each of the three criterion groups actu-
ally are identical and supports the hypothesis that the three different criterion
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Figure 7: Screeplot of the criterion values of the Friedman index for the Lu-
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Figure 9: Marginal density plots for direction 1, 70 and 90 for the Lubishew
data.

groups correspond to different directions of interest. This can be verified for
example by looking at candidates from all these groups. We choose for this
purpose one direction from each of the three groups using Figure 8, namely
directions 1, 70 and 90 which have the criterion values

> res.Fried.Tribe$PPindexVal[c(1, 70, 90)]

[1] 0.5517 0.5223 0.5214

The code

> plot(res.Fried.Tribe, which = c(1, 70, 90), layout = c(3, 1))

> pairs(res.Fried.Tribe, which = c(1, 70, 90))

gives the different marginal kernel density estimates as shown in Figure 9
and reveals that, at least for direction 1 and 70, there seem to be two clusters.
Looking therefore at the scatter plot matrix of these three directions shows in
Figure 10 that the directions 1 and 70 combined reveal three clusters whereas
direction 90 seems not really to add anything of interest.

This can be verified as for example shown in Figure 11 using the class infor-
mation labels and the code

> plot(fitted(res.Fried.Tribe, which = c(1, 70)), col = Class,

+ pch = 16)
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Figure 10: Scatter plot matrix of directions 1, 70 and 90 for the Lubishew data.
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Figure 11: Scatter plot of directions 1, 70 for the Lubishew data with colored
groups.
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The analysis above is fast to do but focuses on one index only and is dif-
ficult to automatize. Following the recently suggested methodology of Liski
et al. [2016] to summarize many projections, as implemented in the function EP-

PlabAgg, provides therefore a way to combine several indices as already demon-
strated in Section 4.

For this data, we will then compute, three more indices, each with 100 runs.

> set.seed(1234)

> res.Dis.Tribe <- EPPlab(X, PPalg = "Tribe",PPindex =

+ "Discriminant", n.simu = 100, maxiter = 200, sphere = TRUE)

> res.Kmin.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex =

+ "KurtosisMin", n.simu = 100, maxiter = 200, sphere = TRUE)

> res.FT.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex =

+ "FriedmanTukey", n.simu = 100, maxiter = 200, sphere = TRUE)

Note from the previous warning that the convergence criterion was not
reached for one simulation run but this has no impact on the final result given
the large number of runs.

> res.ALL <- list(res.Fried.Tribe, res.Dis.Tribe, res.Kmin.Tribe,

+ res.FT.Tribe)

The object res.ALL is then a combination of all the different indices and too
summarize the results we use the function EPPlabAgg with the option method =

"inverse" which automatically chooses the rank of the final projection matrices
as recommended in Liski et al. [2016].

> ALL.agg.inverse <- EPPlabAgg(res.ALL, method = "inverse")

> ALL.agg.inverse

$P

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1348388 -0.10816 -0.175969 -0.27195 0.0004297

[2,] -0.1081595 0.11554 0.005420 0.29396 -0.0580827

[3,] -0.1759687 0.00542 0.952801 -0.05655 0.0013430

[4,] -0.2719504 0.29396 -0.056552 0.78319 0.0225220

[5,] 0.0004297 -0.05808 0.001343 0.02252 0.9960878

[6,] -0.0060522 0.02602 -0.103813 0.07568 -0.0037547

[,6]

[1,] -0.006052

[2,] 0.026020

[3,] -0.103813

[4,] 0.075682

[5,] -0.003755

[6,] 0.017540

$O
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Figure 12: Scatter plot matrix of three directions derived from AOP for the
Lubishew data.

[,1] [,2] [,3]

[1,] 0.13100 -0.03286 0.341465

[2,] -0.09881 0.19532 -0.260050

[3,] 0.06848 -0.75548 -0.614302

[4,] -0.42228 0.51235 -0.585116

[5,] -0.88796 -0.33415 0.309765

[6,] -0.03980 0.12595 0.009663

$k

[1] 3

attr(,"class")

[1] "epplabagg"

Hence we can see that, by combining all the 400 one-dimensional projec-
tions, three interesting directions are suggested by this method. Looking at the
scatterplot based on these three directions,

> pairs(as.matrix(X) %*% ALL.agg.inverse$O)

reveals in Figure 12 also three clusters. To verify that these are indeed the
correct classes we can color them also again appropriately.

> pairs( as.matrix(X) %*% ALL.agg.inverse$O, col = Class, pch=16)
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Figure 13: Scatter plot matrix of three directions derived from AOP for the
Lubishew data, where the different colors correspond to the different classes.

Figure 13 reveals that we have found the correct clusters. However, actually
for the separation here, the second direction is not useful at all and also, with
the first and second directions, the separation is not as clear as in Figure 11
with the two directions 1 and 70. But the second analysis was more automated
and can combine results from different indices. Note that it is also possible to
combine projection matrices obtained using different optimization algorithms.

Let us now consider quickly the olive data set which contains 8 fatty acid
measurements for 572 olive oil samples. The olive oils are from different regions
from Italy and there are some regional differences in the compositions. The data
was analyzed e.g. in Cook and Swayne [2007] and Berro et al. [2010]. For details
we refer to Larabi Marie-Sainte [2016] and just quickly show that applying EPP
is here better suited as a preprocessing step for classification compared to for
example PCA.

We load first the data from the tourr and then compute 100 projection
directions where we minimize the kurtosis.

> library("REPPlab")

> library("tourr")

> data("olive")

> set.seed(1)

> X <- olive[ , 3:10]

> res.Kmin.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex =

+ "KurtosisMin", n.simu = 100, maxiter = 200, sphere = TRUE)
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Figure 14: Screeplot for the olive data based on 100 directions minimizing
kurtosis.

We then look at the corresponding screeplot

> screeplot(res.Kmin.Tribe, which = 1:100)

given in Figure 14. Based on this figure we choose to look at the kernel
densities of directions 1, 60 and 80.

> plot(res.Kmin.Tribe, which = c(1, 60, 80), layout = c(3, 1))

All of them show clear clusters and hence we look at the scatterplot matrix
of these directions.

> pairs(res.Kmin.Tribe, which = c(1, 60, 80))
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Figure 15: Kernel densities for directions 1, 60 and 80.

23



Run1

−2 −1 0 1 2

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●
●

●

●
●

● ●

●

●●

●
●●

●

●●

●

●

●●
●

●

●
●

●

●
●●

●

●●●
●

●

●

●

●

●●

●

●

●

●

● ●●

●

●●
●

●

●●
●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●
●
●

●●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●●
●

● ●
●

●

●

●
●

●● ●
●

●

●●

●

●
●● ●
●●

●
●

●

●

●
●

●●
●●

●●

●●
● ●

●●●
●

●● ●

●●

●

●●

●

● ●●

●

●

●●

●

●

●●

●

●

●
●●●

●
●

●
●●

●●

●

●
●●

●

●

●

●
●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●
●
●

●

●●
●●

●
●

●●
●●

●●●
●
●

●
●

●●
● ●
●

●
●

●
●

●
●

●
●●●

●
●●●

●
●●● ●●●● ●●

●

●
●

● ●●●●●
●
●●

●
●●●

●
● ●● ●

●
●

●

●
●●

●●
● ●

●
●●

●● ●●●
●

● ●
●●

● ●●●
●● ●

●

●●
●

●
● ●
●●

●

●
●
●●

●
●●
●●●●●●● ●●●●

●●
●

●

●●
●

●●●● ●

●

● ●
● ● ●

●
●

●
●

●

●

●

●
●●

●
●
●

●●
●

●
●
●

●●●●

●

●●●
●

●
●

●

●
●

●●●
●●

●

●●●
●●●

● ●● ●

●

●
●
●●●

●

●
● ●●

●
●●

●

●

●
●

●
●

●
● ●●
●

●

●●●

●●
●●

●●
●

●
●

● ●●●●● ●
●

●
●● ●●

●
●

●
●

●

●

−
2

−
1

0
1

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●●

●

●●

●
●●

●

●●

●

●

● ●
●

●

●
●

●

●
● ●

●

●●●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●●
●

●

●●
●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●
●

● ●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●●
●

●

●

●
●

● ●●
●

●

●●

●

●
●●

●
●●

●
●

●

●

●
●

●●● ●
●●

● ●
●●

● ● ●
●

● ●●

●●

●

● ●

●

●● ●

●

●

● ●

●

●

● ●

●

●

●
●●●

●
●

●
●●

●●

●

●
●●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●●
● ●

●
●

●●
●●

● ●●
●
●

●
●

●●
●●
●

●
●

●
●

●
●

●
●●●
●
●● ●

●
●●●●● ●●●●

●

●
●

●●● ●●●
●
●●

●
●●●

●
●●●●

●
●

●

●
●●

●●
●●

●
● ●

●●● ●●
●

●●
●●

●●● ●
● ●●

●

●●
●
●
●●

●●

●

●
●
●●

●
●●
●●●●●●●
●●●●
●●●

●

●●
●
●●●●●

●

●●
●●●
●

●
●
●

●

●

●

●
●●
●

●
●

● ●
●

●
●

●
●●●●

●

●●●
●

●
●

●

●
●
●●●

●●

●

●●●
● ●●

●●● ●

●

●
●

●●●

●

●
●●●

●
●●

●

●

●
●

●
●

●
●●●

●

●

● ● ●

●●
●●

●●
●

●
●
● ●● ● ●●●

●
●

●●● ●
●

●
●

●
●

●

−
2

−
1

0
1

2
●

●

●●●

●
●

●
● ●

●

●

● ●

●
●
●

●

●

●

● ●

●

●

●

●

●

●
●

●●● ●

●●● ●

● ●

●

●
●●

●
●

●
●

●
●

●

●
●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●●

●

● ●●●
●

●

●

●
●

●

●
●

●●
●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●●●

●
●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●● ●

●

● ●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●●●●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●
●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●● ●

●●
●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●●

● ●

●

●
●●

●
●

●
●
●

●

●●●●
●●

●●●

●

●
●

●

●

●

● ●
●●
●
●

●

●●●
●

●●●
●●
●

●

●
●

●

●●
●
●
●●
●●

●●

●●
●
●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●●
●

●

●●●

●

●

●

●
●

● ●
●●●●●

●
●

●
●
●
●

●
●

●●

●
●

●●●●
●●●

●
●
●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●●
●●

●
●●●

●

●●●
●

●●

●

●

●
●
●●●

●
●

●
●●●
●

●

●

●●

●

●
●●●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●

● ●

●

●

●
●

●
●

●●

●
●

●
●

●●●●
●

●●

●
●●

●

●

●

●

●

●
●

● Run60

●

●

● ●●

●
●

●
●●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●●●

●●●●

●●

●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●●

●

●● ●●
●

●

●

●
●
●

●
●

●●
●

●

● ●●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●

●
●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●●

●

●●

●●

●
●

●

●

●

●

●●
●

●

●

●

●●● ●●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●● ●

●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●● ●

● ●
●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●●

●●

●

●
●●

●
●

●
●
●

●

●●
●●

●●

●●●

●

●
●
●

●

●

●●
● ●

●
●

●

●● ●
●

●●●
●●
●

●

●
●

●

●●
●

●
● ●
●●

●●

●●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●●●

●

●

●

●
●

●●
●●●●●

●
●
●
●
●
●

●
●

●●

●
●
●●●●
●●●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●●

●
●

● ●
●●

●
●●●

●

●●●
●

● ●

●

●

●
●

●●●
●

●
●

●● ●
●

●

●

●●

●

●
●●●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●

●●

●

●

●
●

●
●

●●

●
●

●
●

●● ● ●
●

●●

●
●●

●

●

●

●

●

●
●

●

−2 −1 0 1

●

●

●

●● ●
●

●●

● ●
●

●

●

●

●●

●

●
●●

●
● ●●

●

●

●
●

●
●
●

● ●

●●

●
●

●

● ●
●

●
●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●
●
● ●●●

●

●● ●

●

●

●

●

●

●●●

●
●

●●
●
●●●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●●

● ●

●●

●

●
●

●

●
● ●●●

●
●

● ●●● ● ●

●

●

●
●

●

●

●●
●

●

●

●● ●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●
●

●
●●

●

●●
●

●

●
●

●
● ●●
●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●
●●●●

●

●

●●

●
●

●

●
●●

●
●

●●
●●
●●

●

●
●●●

●
●

●
●●●● ● ●●●
● ●
●
●●●●●
●
●

●●●●
●
●

●●●●●

●

●

●

●

●

●

●
●●●●

●
●●●

●
●●
●

●

●●
●

●
●●

●●
●
●

●

●

●
●

●●

●●
●

●
●

●
●●●

●

●

●

●●●

●●●● ●
●●

●
● ●●●●

●●●●●●●●●●
●●

●
●●●●● ●●
●●●●

●●

●

●●

●

●
●

●

●
●●●
●

● ●●● ●

●

●

●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●
●

● ●●●

●
●● ●●

●

●

●

●

●
●

●●

●● ●●
●
●
●

●

●
●●●

●
●●●

● ●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●
●●

● ●
●
●

●
●

●
●

●

●

● ●

●

●

●●●
●

● ●

● ●
●

●

●

●

●●

●

●
● ●

●
●● ●

●

●

●
●

●
●
●
● ●

●●

●
●

●

●●
●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●●

●

●

●●
●

●●●●

●

●● ●

●

●

●

●

●

●● ●

●
●

● ●
●
●● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●
●●

●●

●●

●

●
●

●

●
●●●●
●

●

●●● ● ●●

●

●

●
●

●

●

●●
●

●

●

● ●●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●

●
●

●●

●

● ●
●

●

●
●

●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●● ●●

●

●

●●

●
●
●

●
●●

●
●
●●

●●
●● ●

●
●●●
●

●

●
●● ●● ●●● ●
●●

●
●●●● ●

●
●

● ●●●
●
●

●● ●●●

●

●

●

●

●

●

●
●●●●

●
●●●

●
● ●

●

●

●●
●

●
●●

●●
●

●

●

●

●
●

● ●

●●
●

●
●

●
●● ●

●

●

●

● ●●

●●●● ●
●●

●
●●●●●

●●●●●●●●●●
●●

●
●●●●●●●

●●●●
● ●

●

● ●

●

●
●

●

●
● ●●

●

●●●● ●

●

●

●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●
●

● ●●●

●
●● ●●

●

●

●

●

●
●

●●

●● ●●
●

●
●

●

●
● ●

●

●
●●●

●●
●

●
●

●

●
●●

●

●

●

●

● ●

●

●

● ●●●

●

●●

●

●

●

●

●
●●

●●
●

●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Run80

Figure 16: Scatter plot matrix of directions 1, 60 and 80.

This clearly suggests that there are several clusters in the data. As the
reference we show the scatter plot matrix of the first three principal components,
based on the correlation matrix which do no show such clear clusters.

> pairs(princomp(X, cor=TRUE)$scores[,1:3])

For a further discussion about applying EPP to this data set see Berro et al.
[2010] and Larabi Marie-Sainte [2016].

5.2 Outlier detection example

In this example the goal is to detect outliers. For the demonstration we use
the ReliabilityData which is made available in REPPlab. The data provides
55 measurements made on 520 units during one production process. For the
producer, it is of interest to find those produced units which might be faulty in
order to check them before selling them.

Looking first at all marginal boxplots as shown in

> library("REPPlab")

> data("ReliabilityData")

> boxplot(ReliabilityData)

reveals, that the scales of the variables differ considerably and shows many
marginal outliers. The exact number of marginal outliers can be obtained for
example using the code
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Figure 17: Scatter plot matrix of the first three principal components for the
olive data set.
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Figure 18: Boxplots for all variables in the data set ReliabilityData.
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> id.out <- function(x)

+ { ind <- 1:length(x)

+ BD <- boxplot.stats(x, do.conf = FALSE, do.out = FALSE)

+ ind[x < BD$stats[1] | x > BD$stats[5]]}

> OUT.IDS <- apply(ReliabilityData,2,id.out)

> OUT.IDS.unique <- sort(unique(unlist(OUT.IDS)))

> N.out <- length(OUT.IDS.unique)

> N.out

[1] 239

However according to the manufacturer all marginal measurements are in the
acceptable range and such a huge number of outliers seems unrealistic. Therefore
rather multivariate methods should be applied. For many multivariate methods
it is however a problem that several of these variables have almost no variation

> round(head(sort(apply(ReliabilityData, 2, sd))), 4)

V1 V42 V21 V38 V24 V52

0.0066 0.0095 0.0104 0.0108 0.0121 0.0122

> round(head(sort(apply(ReliabilityData, 2, mad))), 4)

V24 V22 V1 V11 V20 V14

0.0000 0.0033 0.0040 0.0060 0.0068 0.0086

For example methods based on the MCD (Minimum Covariance Determinant),
a popular estimate for robust scatter, cannot be computed here for the whole
data set due to these variables with almost equal measurements. EPP on the
other hand does not have such problems as we will demonstrate now. The
recommended projection index for outlier detection is KurtosisMax for which
we will compute 100 runs for this data.

> set.seed(4567)

> res.KurtM.Tribe <- EPPlab(ReliabilityData, PPalg = "Tribe",

+ n.simu = 100, maxiter = 200, sphere = TRUE)

The summary of the object res.KurtM.Tribe

> summary(res.KurtM.Tribe)

REPPlab Summary

---------------

Index name : KurtosisMax

Index values : 64529 63631 62662 61471 61455 60359 60260

59984 59885 59371

Algorithm used : Tribe

Sphered : TRUE

Iterations : 68 96 71 109 75 83 72 44 63 76
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does not reveal anything useful for this purpose. For outlier detection it is better
to call the function EPPlabOutlier on the object. To define an outlier in this
context we use first the rule that the observation must deviate by more than 5
standard deviations from the mean.

> OUTms <- EPPlabOutlier(res.KurtM.Tribe, k = 5, location =

+ mean, scale = sd)

> summary(OUTms)

REPPlab Outlier Summary

-----------------------

Index name : KurtosisMax

Algorithm used : Tribe

Location used : mean

Scale used : sd

k value used : 5

-----------------------

Number of outliers detected:

5

Observations considered outliers:

OutlierID: obs57 obs268 obs414 obs503 obs512

Frequency: 2 1 73 1 79

Percentage: 2 1 73 1 79

The summary of this function reveals that five observations are considered
outliers in this context. Observations 414 and 512 were extreme in 73 and 79
runs out of the 100 runs while the other three observations were only rarely
considered outliers. As we used 100 runs here, the values for Frequency and
Percentage are identical. A graphical display (see Figure 19) of this result is
obtained as

> plot(OUTms, las = 1)

In case it is costly to check for production errors, one may require that an
observation is an outlier only when it is detected so in at least four directions.

> totms <- apply(OUTms$outlier, 1, sum)

> totms[totms > 3]

obs414 obs512

73 79

This condition leaves two candidates.
It is however well known that both mean and standard deviation suffer con-

siderably from the presence of outliers. Therefore also robust measures can be
used to categorize outliers. Common choices are for example to replace the mean
and the standard deviation with the median and the median absolute deviation
respectively.
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Figure 19: Visual representation of the observations considered outliers for the
ReliabilityData when using mean and standard deviation.

> OUTmm <- EPPlabOutlier(res.KurtM.Tribe, k = 5, location =

+ median, scale = mad)

> summary(OUTmm)

REPPlab Outlier Summary

-----------------------

Index name : KurtosisMax

Algorithm used : Tribe

Location used : median

Scale used : mad

k value used : 5

-----------------------

Number of outliers detected:

32

Observations considered outliers:

OutlierID: obs34 obs48 obs57 obs74 obs129 obs135 obs156

Frequency: 2 2 33 2 2 2 1

Percentage: 2 2 33 2 2 2 1

OutlierID: obs164 obs173 obs174 obs178 obs183 obs196

Frequency: 2 2 2 2 3 2

Percentage: 2 2 2 2 3 2
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Figure 20: Visual representation of the observations considered outliers for the
ReliabilityData when using median and median absolute deviation.

OutlierID: obs225 obs259 obs268 obs319 obs326 obs344

Frequency: 1 1 1 3 1 2

Percentage: 1 1 1 3 1 2

OutlierID: obs355 obs363 obs367 obs372 obs375 obs414

Frequency: 3 1 6 2 1 74

Percentage: 3 1 6 2 1 74

OutlierID: obs429 obs460 obs461 obs466 obs478 obs503

Frequency: 2 1 2 2 2 1

Percentage: 2 1 2 2 2 1

OutlierID: obs512

Frequency: 81

Percentage: 81

In that case, 32 observations are considered outliers. The most extreme ones
are, as for the non-robust call, observations 414 and 512. But also observation
57 is now considered quite often as an outlier. Again we can also visualize this
(Figure 20) via

> plot(OUTmm, las = 1)

Selecting now only those observations which were considered in at least 4
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directions as outlier, gives the following observations

> totmm <- apply(OUTmm$outlier, 1, sum)

> totmm[totmm > 3]

obs57 obs367 obs414 obs512

33 6 74 81

Hence, next to the same two observations from the previous call, we have
to add two more suspects. A scatter plot of the first and second direction
(Figure 21) will then be used to see how extreme the observations are in these
directions.

> ProjDir1 <- fitted(res.KurtM.Tribe)

> ProjDir2 <- fitted(res.KurtM.Tribe, which = 2)

> range(ProjDir1)

[1] -10.22 15.17

> range(ProjDir2)

[1] -12.98 13.64

> plot(ProjDir1[-c(57, 367, 414, 512)], ProjDir2[-c(57, 367,

+ 414, 512)], ylim = c(-16, 16), xlim = c(-16, 16),

+ ylab = "Projection 1",

+ xlab = "Projection 2")

> points(ProjDir1[c(57, 367, 414, 512)], ProjDir2[c(57, 367,

+ 414, 512)], col = 2:5, pch = 15)

> text(ProjDir1[c(57, 367, 414, 512)], ProjDir2[c(57, 367,

+ 414, 512)], pos = 2, label = row.names(ReliabilityData)

+ [c(57, 367, 414, 512)])

As can be seen in this last figure, the two directions lead to a similar rep-
resentation and all four observations can be considered as quite extreme with
observations 414 and 512 being more extreme than 57 and 367.

6 Conclusion

EPP is a useful and interesting preliminary step in data analysis that may re-
veal non-gaussian hidden structures such as clusters or outliers in multivariate
numerical data sets. However, very few EPP tools are available in the stan-
dard statistical softwares. The package REPPlab is a good opportunity for R
users to access several projection indices and optimization algorithms that are
already available in the Java program EPP-lab. REPPlab also offers some extra
functionality to explore and summarize the obtained projections. Some of the
functionalities, such as the exploration of the projection index values and the
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Figure 21: Visual inspection of the four outlier candidates in the Reliabili-

tyData for the first two projections.

cosines between projection directions and also some outlier detection tools, were
already present in EPP-lab. Nevertheless, the novel approach of combining sev-
eral projections from many different indices or/and algorithms is original and
seems promising in view of the shown simulation results and examples. The im-
plementation of other PP indices like the Stahel-Donoho index used for instance
in Maronna and Yohai [1995] for outlier detection is one of the perspectives of
the present work.
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