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Abstract

In this paper, we study a smoothness regularization method for a varying co-

efficient model based on sparse and irregularly sampled functional data which is

contaminated with some measurement errors. We estimate the one-dimensional co-

variance and cross-covariance functions of the underlying stochastic processes based

on a reproducing kernel Hilbert space approach. We then obtain least squares

estimates of the coefficient functions. Simulation studies demonstrate that the pro-

posed method has good performance. We illustrate our method by an analysis of

longitudinal primary biliary liver cirrhosis data.

Keywords: Functional data analysis, regularization, reproducing kernel Hilbert space,

sparsity, varying coefficient model.

1 Introduction

Varying coefficient models are introduced by Hastie and Tibshirani (1993). They are an

extension of classical linear regression models where the coefficients are smooth functions.

They are used for modeling the dynamic impacts of the underlying covariates on the

response. Varying coefficient models have been extensively studied in the literature. Var-

ious types of varying coefficient models have been studied and developed for longitudinal

data, time series, high dimensional data and functional data. See, for example, Hoover

et al. (1998), Kauermann and Tutz (1999), Wu and Chiang (2000), Chiang et al. (2001),

Huang et al. (2004), Ramsay and Silverman (2005), Şentürk and Müller (2010), Zhu et

al. (2012), Verhasselt (2014), Song et al. (2014), Klopp and Pensky (2015) and Lee and

Mammen (2016) among others.

In this paper, we consider the following multiple varying coefficient model

Y (t) = β0(t) +

d1∑
p=1

βp(t)Xp(t) +

d2∑
q=1

αq(t)Zq + η(t), t ∈ T (1)
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where Y (t) is the response process, X1(t), . . . , Xd1(t) are the predictor processes, Z1, . . . , Zd2

are time-independent predictors, η(t) is a noise process with zero mean and independent

of the predictors, and β0(t), β1(t), . . . , βd1(t) and α1(t), . . . , αd2(t) are smoothed param-

eter functions. It is assumed that Y (t) and X1(t), . . . , Xd1(t) are square integrable and

Z1, . . . , Zd2 have finite second moments.

The aim of this article is estimating the parameter functions in the situation that the

observations are sparse and irregular longitudinal data and combined with some mea-

surement errors. Following Yao et al. (2005), we model this situation as follows. Let Uij

and Vij denote the observations of the random functions Xi and Yi respectively at the

random times Tij, contaminated with measurement errors εpij and εi j respectively, which

are assumed to be independent and identically distributed with means zero and variances

σ2
Xp

and σ2
Y

respectively, and independent of the random functions. We represent the

observed data as

Upij = Xpi(Tij) + εpij, j = 1, . . . , Mi; i = 1, . . . , n ,

Vij = Yi(Tij) + εij, j = 1, . . . , Mi; i = 1, . . . , n .
(2)

Here Mi is a nonnegative integer-valued random variable that denotes the sampling fre-

quency for ith trajectory.

For sparse noisy functional data, Şentürk and Müller (2010) studied model (1) with

one functional predictor. They obtained a representation for the coefficient function

based on one-dimensional covariance and cross-covariance functions of the predictor and

response processes. They used local linear smoother method for their estimation proce-

dures. Şentürk and Nguyen (2011) extended the approach of Şentürk and Müller (2010)

to multiple predictors including both functional and non-functional predictors. Mostafaiy

et al. (2016) considered one functional predictor. They proposed a reproducing kernel

Hilbert space approach to estimate the coefficient function.

By taking expectation from the both sides of (1), we have

β0(t) = µY (t)−
d1∑
p=1

βp(t)µXp(t)−
d2∑
q=1

αq(t)µZq , t ∈ T , (3)

where µY (t) = E[Y (t)], µXp(t) = E[Xp(t)], p = 1, . . . , d1 and µZq = E[Zq], q = 1, . . . , d2.

Substituting equation (3) in (1) yields

Y (t)− µY (t) =

d1∑
p=1

βp(t)(Xp(t)− µXp(t)) +

d2∑
q=1

αq(t)(Zq − µZq) + η(t), t ∈ T (4)
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By multiplying both sides of (4) by Xp(t), p = 1, . . . , k1 and Zq, q = 1, . . . , k2, and

then taking expectations and writing the results in matrix form, we get

[β1(t), . . . , βk1(t), α1(t), . . . , αk2(t)]
′ = Γ−1

t γt, (5)

where

Γt =



CX1X1(t) . . . CX1Xk1
(t) CX1Z1(t) . . . CX1Zk2

(t)
...

. . .
...

...
. . .

...

CXk1
X1(t) . . . CXk1

Xk1
(t) CXk1

Z1(t) . . . CXk1
Zk2

(t)

CZ1X1(t) . . . CZ1Xk1
(t) CZ1Z1 . . . CZ1Zk2

...
. . .

...
...

. . .
...

CZk2
X1(t) . . . CZk2

Xk1
(t) CZk2

Z1 . . . CZk2
Zk2


,

and

γt =
[
CY X1(t) . . . CY Xk1

(t) CY Z1(t) . . . CY Zk2
(t)
]′
.

Here CXp1Xp2
(t) = cov(Xp1(t), Xp2(t)), CXpZq(t) = CZqXp(t) = cov(Xp(t), Zq), CZq1Zq2

=

cov(Zq1 , Zq2), CY Xp(t) = cov(Y (t), Xp(t)) and CY Zq(t) = cov(Y (t), Zq). Based on the

representation (5), we introduce an estimate of the parameter functions. To do this,

we estimate every elements of Γt and γt. The scalar parameters of Γt can be easily

estimated. To estimate the parameter functions of Γt and γt, we use a reproducing kernel

Hilbert space (RKHS) framework. By assuming the sample paths of Xps, p = 1, . . . , k1,

and Y to be smooth such that they belong to some RKHSs, we show that the one-

dimensional covariance and cross-covariance functions come from some RKHSs. Based

on these results, we introduce some smoothness regularization methods to estimate these

parameter functions. By simulation, we investigate the merits of the proposed method

especially by comparing it to some other existing methods.

The paper is organized as follows. In Section 2, we review some basic properties of

RKHS. In Section 3, we utilize a regularization method to estimate the one-dimensional

covariance and cross-covariance functions and then provide estimates of the coefficient

functions. Simulation studies in two cases (one predictor and multiple predictors) are

provided in Section 4. In Section 5, we apply the method to longitudinal primary biliary

liver cirrhosis data.

2 Reproducing kernel Hilbert spaces

The theory of RKHS plays a pivotal role in this paper. In this section, we present some

fundamental concepts and basic facts of RKHS. The readers are referred to Aronszajn
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(1950), Berlinet and Thomas-Agnan (2004) and Hsing and Eubank (2015) for more details.

Definition 1. A symmetric, real-valued bivariate function K on T × T is nonnegative

definite, denoted by K ≥ 0, provided that

N∑
i=1

N∑
j=1

αiαjK(ti, tj) ≥ 0,

for all N ∈ N, α1, . . . , αN ∈ R, and t1, . . . , tN ∈ T . In other words, K ≥ 0 provided that

for every N ∈ N and distinct points, {t1, . . . , tN} ⊆ T , the matrix K := [K(ti, tj)] be a

nonnegative definite matrix, that is K ≥ 0.

Lemma 1. Let H is a Hilbert space with inner product 〈·, ·〉H and φ : T −→ H is a function

on T . Then the function K(s, t) := 〈φ(s), φ(t)〉H on T × T is nonnegative definite.

Definition 2. For a Hilbert space H with inner product 〈·, ·〉H, a bivariate function

K(s, t) for s, t ∈ T is called a reproducing kernel of H if the following are satisfied:

(i) For every t ∈ T , K(·, t) ∈ H.

(ii) For every t ∈ T and every f ∈ H,

f(t) = 〈f,K(·, t)〉H. (6)

Relation (6) is called the reproducing property of K.

Definition 3. A Hilbert space H of functions on T is called an RKHS if there exist a

reproducing kernel K of H.

From now on, we denote a reproducing kernel Hilbert space H with the reproducing

kernelK byH(K) and the corresponding inner product and norm by 〈·, ·〉H(K) and ‖·‖H(K),

respectively.

By using properties (i) and (ii) in Definition 2, for anyN,N ′ ∈ N, α1, . . . , αN , α
′
1, . . . , α

′
N ′ ∈

R and t1, . . . , tN , t
′
1, . . . , t

′
N ′ ∈ T , we have

〈
N∑
i=1

αiK(·, ti),
N ′∑
j=1

α′jK(·, t′j)〉H(K) =
N∑
i=1

N ′∑
j=1

αiα
′
jK(ti, t

′
j) (7)

The following proposition states the uniqueness of reproducing kernel K and RKHSH(K).

Proposition 1. If K is a reproducing kernel of H(K) then K is nonnegative definite

and unique. Conversely, if K is a nonnegative definite bivariate function on T × T ,
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there exists a uniquely determined Hilbert space H(K) of functions on T , admitting the

reproducing kernel K.

In the next proposition, we give a condition which characterizes the function that

belong to an RKHS.

Proposition 2. A real-valued function f defined on T belongs to the reproducing kernel

Hilbert space H(K) if and only if there exists a constant C such that, C2K(s, t)−f(s)f(t)

is a nonnegative definite function on T × T , i.e. C2K(s, t)− f(s)f(t) ≥ 0.

Let H(K1 ⊗ K2) := H(K1) ⊗ H(K2) is the tensor product Hilbert space of H(K1)

and H(K2), where H(K1) and H(K2) are two RKHSs of functions defined on T with

reproducing kernels K1 and K2 respectively. Consider the map φ : T −→ H(K1 ⊗ K2)

defined by φ(t)(·, ∗) = (K1 ⊗K2)((·, ∗), (t, t)). Then, for s, t ∈ T ,

K1(s, t)K2(s, t) = 〈K1(·, s), K1(·, t)〉H(K1)〈K2(∗, s), K2(∗, t)〉H(K2)

= 〈(K1 ⊗K2)((·, ∗), (s, s)), (K1 ⊗K2)((·, ∗), (t, t))〉H(K1⊗K2)

= 〈φ(s), φ(t)〉H(K1⊗K2).

Therefore by Lemma 1, the pointwise product of two reproducing kernel K1 and K2

is nonnegative definite and so it is a reproducing kernel by Proposition 1. So we can

construct the RKHS H(K1K2) uniquely. In particular, if K is reproducing kernel of

H(K) then K2 is reproducing kernel of H(K2).

The following Theorem is fundamental for estimation procedures in the next section.

Theorem 1. Suppose that X and Y are two stochastic processes such that the sample

paths of X and Y , respectively, belong toH(K1) andH(K2) almost surely and E‖X‖2
H(K1) <

∞ and E‖Y ‖2
H(K2) <∞. Then

(i) µX and µY belong to H(K1) and H(K2) respectively.

(ii) CXX and CXY belong to H(K2
1) and H(K1K2) respectively.

The proof is based on the following Lemma.

Lemma 2. Let A and B are two N dimensional matrices and A◦B denotes the Hadamard

product of A and B.

(i) If A ≥ 0 and B ≥ 0 then A ◦B ≥ 0.

(ii) If A ≥ B ≥ 0 then A ◦A ≥ B ◦B.
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Proof (i) Let A = [aij], B = [bij] and T = {1, . . . , N}. Suppose that f1 and f2

are two functions on T × T such that f1(i, j) = aij and f2(i, j) = bij, (i, j) ∈ T × T .

Then f1 and f2 are nonnegative definite functions. Because the pointwise product of two

nonnegative definite functions is again nonnegative definite, we have A ◦B ≥ 0.

(ii) We have A+B ≥ 0 and A−B ≥ 0. By part (i) of this Lemma, (A+B)◦(A−B) ≥ 0

and so A ◦A−B ◦B = (A + B) ◦ (A−B) ≥ 0 or A ◦A ≥ B ◦B.

Proof of Theorem 1. By Jensen’s inequality, we have

‖µX‖2
H(K1) ≤ E‖X‖2

H(K1) <∞ and ‖µY ‖2
H(K2) ≤ E‖Y ‖2

H(K2) <∞,

which complete proof of (i). To prove (ii), we only show that CXY ∈ H(K1K2), as

CXX ∈ H(K2
1) is an immediate consequence of CXY ∈ H(K1K2). Let s, t ∈ T . First

notice that

CXY (t) = E[X(t)Y (t)]− µX(t)µY (t)

=: µXY (t)− (µXµY )(t).

Because X ∈ H(K1) almost surely, by Proposition 2, there exists a constant C1 such that

C2
1K1(s, t)−X(s)X(t) ≥ 0, a.s. (8)

Similarly, there exists a constant C2 such that

C2
2K2(s, t)− Y (s)Y (t) ≥ 0, a.s. (9)

Therefore Lemma 2 together with the equations (8) and (9) imply that

(C1C2)2(K1K2)(s, t)− [X(s)Y (s)][X(t)Y (t)] ≥ 0, a.s.

Now, Proposition 2 implies that XY belongs to H(K1K2) almost surely and therefore by

part (i) of this Theorem, µXY ∈ H(K1K2). It remains to show that µXµY ∈ H(K1K2).

Part (i) of this Theorem and Proposition 2 implies that there exists constants C3 and C4

such that

C2
3K1(s, t)− µX(s)µX(t) ≥ 0

and

C2
4K2(s, t)− µY (s)µY (t) ≥ 0.
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So, by Lemma 2,

(C3C4)2(K1K2)(s, t)− [µX(s)µY (s)][µX(t)µY (t)] ≥ 0.

Now Proposition 2 implies that µXµY ∈ H(K1K2).

3 Estimation Methods

In this section, we introduce estimates of the parameters involved in (3) and (5). Assume

that the sample paths of Y and Xp for p = 1, . . . , k1 respectively belong to H(K) and

H(Kp) almost surely, where H(K) and H(Kp) are some RKHSs. Since Zqs are time-

independent, a natural estimate for µZq is µ̂Zq = Z̄q =
1

n

n∑
i=1

Zqi. Also the mean functions

µY (t) and µXp(t) can be estimated by either of the methods given in Yao et al. (2005),

Li and Hsing (2010), Cai and Yuan (2011) and Zhang and Wang (2016). Denote the

estimated mean functions of Y and Xp by µ̂Y (t) and µ̂Xp(t) respectively. The covariance

CZq1Zq2
can be simply estimated by ĈZq1Zq2

=
1

n

n∑
i=1

(Zq1i − Z̄q1)(Zq2i − Z̄q2). To estimate

the one-dimensional covariance and cross-covariance functions, define the raw covariance

terms

CXp1Xp2 ,ij
(Tij) = [Up1ij − µ̂Xp1

(Tij)][Up2ij − µ̂Xp2
(Tij)],

CY Xp,ij(Tij) = [Vij − µ̂Y (Tij)][Upij − µ̂Xp(Tij)],

CXpZq ,ij(Tij) = [Upij − µ̂Xp(Tij)][Zqi − Z̄q],

CY Zq ,ij(Tij) = [Vij − µ̂Y (Tij)][Zqi − Z̄q].

By Theorem 1, CXp1Xp2 ∈ H(Kp1Kp2), CXpZq ∈ H(Kp), CY Xp ∈ H(KKp) and CY Zq ∈
H(K). Based on these results, we estimate the one-dimensional covariance and cross-

covariance functions as follows:

• Estimate of CXp1Xp2 . Define

ĈXp1Xp2
= arg min

C∈H(Kp1Kp2 )

{
`
Xp1Xp2

(C) + λ
Xp1Xp2

‖C‖2
H(Kp1Kp2 )

}
, (10)

where

`
Xp1Xp2

(C) =
1

n

n∑
i=1

1

Mi

Mi∑
j=1

{
CXp1Xp2 ,ij

(Tij)− C(Tij)
}2
,

and λ
Xp1Xp2

is a smoothing parameter.
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• Estimate of CXpZq . Define

ĈXpZq = arg min
C∈H(Kp)

{
`
XpZq

(C) + λ
XpZq
‖C‖2

H(Kp)

}
, (11)

where

`
XpZq

(C) =
1

n

n∑
i=1

1

Mi

Mi∑
j=1

{
CXpZq ,ij(Tij)− C(Tij)

}2
,

and λ
XpZq

is a smoothing parameter.

• Estimate of CY Xp . Define

ĈY Xp = arg min
C∈H(KKp)

{
`
Y Xp

(C) + λ
Y Xp
‖C‖2

H(KKp)

}
, (12)

where

`
Y Xp

(C) =
1

n

n∑
i=1

1

Mi

Mi∑
j=1

{
CY Xp,ij(Tij)− C(Tij)

}2
,

and λ
Y Zq

is a smoothing parameter.

• Estimate of CY Zq . Define

ĈY Zq = arg min
C∈H(K)

{
`
Y Zq

(C) + λ
Y Zq
‖C‖2

H(K)

}
, (13)

where

`
Y Zq

(C) =
1

n

n∑
i=1

1

Mi

Mi∑
j=1

{
CY Zq ,ij(Tij)− C(Tij)

}2
,

and λ
Y Zq

is a smoothing parameter.

Now, we explain how the minimization problem (10) can be solved. The solutions of

(11), (12) and (13) are obtained similarly. Following the representer theorem (see Wahba

(1990)), we consider CXp1Xp2
as the form

CXp1Xp2
(t) =

n∑
i=1

Mi∑
j=1

aijKp1(t, Tij)Kp2(t, Tij) (14)
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for some vector a = [a11, . . . , a1M1 , . . . , an1, . . . , anMn ]′. Now by equation (7) we have

‖CXp1Xp2
‖2
H(Kp1Kp2 ) =

n∑
i=1

Mi∑
j=1

n∑
i′=1

Mi′∑
j′=1

aijai′j′Kp1(Ti′j′ , Tij)Kp2(Ti′j′ , Tij)

= a′Qa,

where

Q =


Q11 Q12 Q13 · · · Q1n

Q21 Q22 Q23 · · · Q2n

...
...

. . .
...

...

Qn1 Qn2 Qn3 . . . Qnn


and for i1, i2 = 1, . . . , n, the (i1, i2) partition of Q, that is Qi1i2 , is an Mi1×Mi2 dimensional

matrix with entries Kp1(Ti1j1 , Ti2j2)Kp2(Ti1j1 , Ti2j2). Define

g = [g11, . . . , g1M1 , . . . , gn1, . . . , gnMn ]′,

where

gij = CXp1Xp2 ,ij
(Tij), i = 1, . . . , n, j = 1, . . . ,Mi.

Suppose ‖ · ‖2
F

represents the Frobenius norm. Then

`2(CXp1Xp2
) + λ2 ‖CXp1Xp2

‖2
H(Kp1Kp2 ) =

1

n
‖m ◦ g −m ◦ (Qa)‖2

F
+ λXp1Xp2

a′Qa, (15)

where m = [ 1√
M1

1′
M1
, . . . , 1√

Mn
1′

Mn
]′ and 1M is an M dimensional vector with all one entry.

So to solve the minimization problem (10), it suffices to find a vector a that minimizes

the right hand side of (15). It is not hard to show that the minimizer of right hand side

of (15) is

a =

(
P + (

n∑
i=1

Mi)λXp1Xp2
I

)−1

(m ◦m ◦ g),

where P = Q ◦ (1′
n∑

i=1
Mi

⊗m) ◦ (1′
n∑

i=1
Mi

⊗m).

The plug-in estimators of the intercept and coefficient functions are given by

[β̂1(t), . . . , β̂k1(t), α̂1(t), . . . , α̂k2(t)]
′ = Γ̂−1

t γ̂t

and

β̂0(t) = µ̂Y (t)−
d1∑
p=1

β̂p(t)µ̂Xp(t)−
d2∑
q=1

α̂q(t)µ̂Zq .
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4 Simulation studies

In this section, we evaluate the performance of the proposed method. We provide two

simulation examples. In the first simulation, we consider one functional predictor and

compare our method, denoted by LSRK, with the methods given in Şentürk and Müller

(2010) and Mostafaiy et al. (2016). In the second simulation, we consider two functional

and one time-independent predictors and compare our method with the method of Şentürk

and Nguyen (2011). The methods of Şentürk and Müller (2010) and Şentürk and Nguyen

(2011) are implemented in the MATLAB package PACE which can be downloaded from the

website http://www.stat.ucdavis.edu/PACE/. In the all simulation studies, we consider

T = [0, 1]. To face with sparse and irregular situation, we generated uniformly the number

of measurements for each trajectory from {4, 5, 6, 7, 8} and the random locations Tijs from

T .

As in Şentürk and Nguyen (2011), we measure the estimation accurracy by mean

absolute deviation error (MADE) and weighted average squared error (WASE) defined by

MADE =
1

d1d2

[
d1∑
p=1

∫ 1

0
|βp(t)− β̂p(t)|dt

range(βp)
+

d2∑
q=1

∫ 1

0
|αq(t)− α̂q(t)|dt

range(αq)

]

and

WASE =
1

d1d2

[
d1∑
p=1

∫ 1

0
(βp(t)− β̂p(t))2dt

range2(βp)
+

d2∑
q=1

∫ 1

0
(αq(t)− α̂q(t))

2dt

range2(αq)

]
.

All integrals numericaly computed by Gaussian quadrature method.

We consider various combinations of the sample size n ∈ {100, 150, 200} and the

signal-to-noise ratio StN ∈ {4, 8, ∞}. For each configuration, we repeat the experiment

500 times.

4.1 Simulation study 1

The random function X1 was generated as

X1(t) = µX1(t) +
50∑
k=1

akξkφk(t),

where

µX1(t) =
50∑
k=1

(−1)kk−3/2φk(t),

ak = 4(−1)k/k2,

10
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and

φk(t) =
√

2 cos(2kπt) .

The marginal distributions of ξ1, . . . , ξ50 are N(0, 1). Observations from process X(t) were

obtained by adding measurement errors U1ij = X1i(Tij) + εij, where εijs were indepen-

dently generated from N(0, σ2
X1

) with σ2
X1

= (4.2954/ StN)2.

In the model (1) with only one predictor X1, we consider β0(t) = 2 sin(2πt) and

β1(t) = 2et. The sparse and noisy response observations were obtained by Vij = β0(Tij) +

β1(Tij)Uiij + εij, where the noise terms εijs randomly drawn from N(0, σ2
Y

) with σ2
Y

=

(15.6815/ StN)2.

Table 1 presents the Monte Carlo values of MADE and WASE for the three competi-

tive methods LSRK (proposed), Şentürk and Müller (2010) and Mostafaiy et al. (2016).

Although the method of Mostafaiy et al. (2016) outperforms other two methods but it

is slightly better than LSRK. From this Table, we observe that LSRK has significantly

better performance than the method of Şentürk and Müller (2010). The performance of

LSRK is improved by increasing either the sample size or the signal-to-noise ratio. In

Figure 1, we provide the mean integrated squared errors of β̂0 and β̂1 for the method

LSRK. In this Figure, the left panel is for β̂0 and the right panel for β̂1. We observe

that increasing both the sample size n and the signal-to-noise ratio StN lead to accurate

estimates. This improvement is more significant when StN is large.
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Figure 1: Effect of signal-to-noise ratio and sample size on integrated squared errors of
β̂0 (left panel) and β̂1 (right panel) for the method LSRK.
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LSRK Şentürk and Müller (2010) Mostafaiy et al. (2016)
n StN MADE WASE MADE WASE MADE WASE

4 0.4366 0.4083 0.7273 1.8194 0.3109 0.2576

100 8 0.2477 0.1736 0.6053 1.3622 0.1197 0.0446

∞ 0.2238 0.1434 0.6213 1.3932 0.0895 0.0302

4 0.3806 0.3270 0.7143 4.3996 0.2666 0.1867

150 8 0.2036 0.1109 0.6470 2.0066 0.1083 0.0371

∞ 0.1905 0.1015 0.6235 1.1665 0.0886 0.0293

4 0.3527 0.2739 0.7028 1.5030 0.2388 0.1487

200 8 0.1817 0.0857 0.6670 1.5393 0.1055 0.0354

∞ 0.1669 0.0766 0.6400 1.3321 0.0855 0.0259

Table 1: Mean absolute deviation error (MADE) and weighted average squared error
(WASE) for various combinations of sample size (n) and signal-to-noise ratio (StN).
The compared three methods are: LSRK (proposed), Şentürk and Müller (2010), and
Mostafaiy et al. (2016).

4.2 Simulation study 2

The first functional predictor is same as previous subsection. For the second functional

predictor, we took

X2(t) = µX2(t) +
50∑
k=1

bkζkψk(t),

where

µX2(t) = sin(2πt)− te−t ,

ψk(t) =


√

2 sin(2kπt) for k ≤ 49

1 for k = 50

and

bk =


√

3/2k for k ≤ 49
√

3 for k = 50 .

Also ζ1, . . . , ζ50 are marginally distributed as N(0, 1). Sparse and noisy observations U2ijs

from random function X2 were obtained based on model (2), where ε2ijs were independent

12



distributed as N(0, σ2
X2

) with σ2
X2

= (1.2733/ StN)2. The marginal distribution of the

time-independent covariate Z is N(1, 1). To have correlation between the predictors, let

Σ = [Σkl] be the covariance matrix of the random vector [Z, ξ1, . . . , ξ50, ζ1, . . . , ζ50]′,

where

Σkl =



1 for k = l

0.4l−1 for k = 1, 2 ≤ l ≤ 51

(−0.3)l−51 for k = 1, l ≥ 52

0.8l−50 for k = l − 50, l ≥ 52

0 otherwise .

The response observations Vijs were obtained from

Vij = β0(Tij) + β1(Tij)U1ij + β2(Tij)U2ij + α1(Tij)Zi + εij,

where random errors εijs were independently generated fromN(0, σ2
Y

) with σ2
Y

= (15.8525/ StN)2.

Also β0(t) and β1(t) are same as simulation study 1, and β2(t) = 5te−t and α1(t) = 2t.

We compare LSRK with the method of Şentürk and Nguyen (2011). Table 2 summa-

rizes the Monte Carlo values of MADE and WASE for two methods. In all combinations

of n and StN, LSRK has the smallest values of MADE and WASE. Moreover, LSRK ap-

pears to be more stable. As expected, increasing either sample size n and signal-to-noise

ration StN decreases estimation errors. Figure 2 displays mean integrated squared errors

of the estimated coefficient functions, the top left panel for β̂0, the top right panel for α̂1,

the bottom left panel for β̂1 and the bottom right panel for β̂2. This Figure reveals that

there is a general tendency for the mean integrated squared errors to decrease as either

sample size or signal-to-noise ratio increases.

5 Application

Primary biliary cirrhosis (PBC) is an autoimmune liver disease. It caused by damage to

the bile (a fluid produced in the liver to aid in the digestion of fat) ducts in the liver.

When the bile ducts are damaged, bile builds up and causes liver scarring, cirrhosis,

and eventually liver failure. The dataset that we use in this paper was collected by the

Mayo Clinic between 1974 and 1984. The dataset is given in Appendix D of Fleming

and Harrington (1991) and also included in the R package survival which is available

at https://cran.r-project.org/package=survival. The patients were scheduled to

have their blood characteristics measured at six months, one year and annually after

13
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LSRK Şentürk and Nguyen (2011)
n StN MADE WASE MADE WASE

4 0.5556 0.7703 1.6690 8378.6490

100 8 0.3228 0.4987 0.9533 280.0505

∞ 0.2918 0.3709 0.8757 412.0377

4 0.4808 0.4899 1.3142 1177.7210

150 8 0.2587 0.3119 0.8899 98.4621

∞ 0.2220 0.2771 0.9590 279.5293

4 0.4255 0.3679 1.1581 312.3150

200 8 0.2197 0.2809 0.9329 636.4345

∞ 0.1922 0.2254 0.9388 675.6874

Table 2: Mean absolute deviation error (MADE) and weighted average squared error
(WASE) for various combinations of sample size (n) and signal-to-noise ratio (StN). The
compared two methods are: LSRK (proposed), and Şentürk and Nguyen (2011).

diagnosis. Because of missing appointments, death or liver transplantation during the

study and other factors, the actual times of the measurements are random, irregular and

sparse.

This dataset contains some general information for example age in days and sex, and

some multiple laboratory results for example serum bilirubin in mg/dl, albumin in gm/dl

and prothrombin time in seconds. Bilirubin is a yellow substance that is formed during

the normal breakdown of red blood cells. After circulating in the blood, the liver excretes

bilirubin into bile ducts. The normal adult serum bilirubin level is less than 1 mg/dl.

The accumulation of bilirubin leads to jaundice. Albumin is a protein made by the liver.

It is the main protein in the blood that causes fluid to remain within the bloodstream.

A diseased liver produces insufficient albumin. The normal albumin range is 3.5 to 5.5

g/dl. Prothrombin time is the time it takes for blood to clot. Liver disease can cause slow

blood clotting. The average time range for prothrombin time is about 10 to 14 seconds.

The objective of this analysis is to explore the association between prothrombin time

(Y ) as a response and age (Z1), serum bilirubin (X1) and albumin (X2) as predictors.

Among 276 female patients, we include 137 patients having D-penicillamine and their

measurements before 2500 days. The median number of observations per patients is 5.

14



●

●

●

5
10

15

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

100 150 200

●

●
●

5
10

15

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●
●

5
10

15

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or StN=4
StN=8
StN=∞

●

●

●

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

100 150 200

●

●

●

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●
●0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

100 150 200

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

100 150 200

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

●

●
●

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Sample Size

M
ea

n 
In

te
gr

at
ed

 S
qu

ar
ed

 E
rr

or

Figure 2: Effect of signal-to-noise ratio and sample size on integrated squared errors of β̂0

(top left panel), α̂1 (top right panel), β̂1 (bottom left panel) and β̂2 (bottom right panel)
for the method LSRK.

Individual trajectories and data along with the smoothed estimated mean functions of

prothrombin time, bilirubin and albumin are given in Figure 3. The mean prothrombin

time slightly increases by passing time but it is normal. The mean amount of bilirubin

is above the normal level and it has an increasing trend. By passing the time, the mean

amount of albumin made by the liver decreases.

Figure 4 plots the estimated varying coefficient functions β0, α1, β1 and β2 using

LSRK. From the Figure we observe that before 2000 days the association between age

and prothrombin time is negligible but after 2000 days age has a negative effect on pro-

thrombin time. There exists a negative association between albumin and prothrombin

time, especially after 2000 days. The effect of bilirubin on prothrombin time before 2000

days is minor and fluctuates between positive and negative while after 2000 days the
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Figure 3: The left panels give the observed individual trajectories, the top panel for
prothrombin time, the middle panel for bilirubin, and the lower panel for albumin. The
observed data along with the estimated mean functions (solid line) are shown in the right
panels, the top panel for prothrombin time, the middle panel for bilirubin, and the lower
panel for albumin.
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association tends to be negative.
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Figure 4: The estimated varying coefficient functions β0, α1, β1 and β2.
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