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Abstract

Tweedie’s compound Poisson model is a popular method to model insurance claims with

probability mass at zero and nonnegative, highly right-skewed distribution. In particular, it is not

uncommon to have extremely unbalanced data with excessively large proportion of zero claims,

and even traditional Tweedie model may not be satisfactory for fitting the data. In this paper,

we propose a boosting-assisted zero-inflated Tweedie model, called EMTboost, that allows

zero probability mass to exceed a traditional model. We makes a nonparametric assumption

on its Tweedie model component, that unlike a linear model, is able to capture nonlineari-

ties, discontinuities, and complex higher order interactions among predictors. A specialized

Expectation-Maximization algorithm is developed that integrates a blockwise coordinate descent

strategy and a gradient tree-boosting algorithm to estimate key model parameters. We use

extensive simulation and data analysis on synthetic zero-inflated auto-insurance claim data to

illustrate our method’s prediction performance.

KEY WORDS: Claim frequency and severity; Gradient boosting; Zero-inflated insurance

claims data; EM algorithm.

1. INTRODUCTION

Setting premium for policyholders is one of the most important problems in insurance business,

and it is crucial to predict the size of actual but unforeseeable claims. For typical portfolios in
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property and casualty insurance business, the policy claim for a covered risk usually has a highly

right-skewed continuous distribution for positive claims, while having a probability mass at zero

when a claim does not occur. This phenomenon poses unique challenges for data analysis as the data

cannot be transformed to normality by power transformation and special treatment on zero claims is

often required. In particular, Jørgensen and Paes De Souza (1994) and Smyth and Jørgensen (2002)

used generalized linear models (GLM; Nelder and Wedderburn, 1972) with a Tweedie distributed

outcome, assuming Possion arrival of claims and Gamma distributed amount for individual claims,

to simultanuously model frequency and severity of insurance claims. Although Tweedie GLM

has been widely used in actuarial studies (e.g., Mildenhall, 1999; Murphy et al., 2000; Sandri and

Zuccolotto, 2008), its structure of the logarithmic mean is restricted to a linear form, which can be

too rigid for some applications. Zhang (2011) modeled the nonlinearity by adding splines to capture

nonlinearity in claim data, and generalized additive models (GAM; Hastie and Tibshirani, 1990;

Wood, 2006) can also model nonlinearity by estimating smooth functions. The structures of these

models have to be determined a priori by specifying spline degrees, main effects and interactions to

be used in the model fitting. More flexibly, Yang et al. (2017) proposed a nonparametric Tweedie

model to identify important predictors and their interactions.

Despite the popularity of the Tweedie model under linear or nonlinear logarithmic mean assump-

tions, it remains under-studied for problems of modeling extremely unbalanced (zero-inflated) claim

data. However, it is well-known that the percentage of zeros in insurance claim data can often be well

over 90%, posing challenges even for traditional Tweedie model. In statistics literature, there are two

general approaches to handle data sets with excess zeros: the “Hurdle-at-zero” models and the “zero-

inflated” models. The Hurdle models (e.g., Cragg, 1971; Mullahy, 1986) use a truncated-at-zero

strategy, whose examples include truncated Poisson and truncated negative-binomial models. On the

other hand, “zero-inflated” models typically use a mixture model strategy, whose examples include

zero-inflated Poisson regression and zero-inflated negative binomial regression (e.g., Lambert, 1992;

Hall, 2000; Frees et al., 2016), among many notable others.

In this paper, we aim to tackle the entremely unbalanced insurance data problem with excessive

zeros by developing a zero-inflated nonparametric Tweedie compound Poisson model. To our knowl-

edge, no existing work systematically studied the zero-inflated Tweedie model and its computational

issues. Under a mixture model framework that subsumes traditional Tweedie model as a special case,

we develop an Expectation-Maximization (EM) algorithm that efficiently integrates a blockwise
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coordinate descent algorithm and a gradient boosting-type algorithm to estimate key parameters.

We call our method as EMTboost for brevity.

The EMTboost method assumes a mixture of Tweedie model component and a mass zero

component. As one interesting feature, it can simultaneously provide estimation for the zero mass

probability as well as the dispersion/power parameters of the Tweedie model component, which are

useful information in understanding the zero-inflated nature of claim data under analysis. In addition,

we employ boosting techniques to fit the mean of the Tweedie component. This boosting approach is

motivated by its proven success for nonparametric regression and classification (Freund and Schapire,

1997; Breiman et al., 1998; Breiman, 1999; Friedman, 2001,2002,2001). By integrating a gradient-

boosting algorithm with trees as weak learners, the zero-inflated model can learn nonlinearities,

discontinuities and complex higher order interactions of predictors, and potentially reduce modeling

bias to produce high predictive performance. Due to the inherent use trees, this approach also

naturally handles missing values, outliers and various predictor types.

The rest of the article is organized as follows. Section 2 briefly present the models. The

main methodology with implementation details is given in Section 3. We use simulation to show

performance of EMTboost in Section 4, and apply it to analyze an auto-insurance claim data in

Section 5. Brief concluding remarks are given in Section 6.

2. ZERO-INFLATED TWEEDIE MODEL

To begin with, we give a brief overview of the Tweedie’s compound Poisson model, followed by

the introduction of the zero-inflated Tweedie model. Let N be a Poisson random variable denoted

by Pois(λ) with mean λ, and let Z̃d’s (d = 0, 1, . . . , N ) be i.i.d Gamma random variables denoted

by Gamma(α, γ) with mean αγ and variance αγ2. Assume N is independent of Z̃d’s. Define a

compound Poisson random variable Z by

Z =

 0 if N = 0,

Z̃1 + Z̃2 + · · ·+ Z̃N if N = 1, 2, . . .
. (1)

Then Z is a Poisson sum of independent Gamma random variables. The compound Poisson

distribution (Jørgensen and Paes De Souza, 1994; Smyth and Jørgensen, 2002) is closely connected

to a special class of exponential dispersion models (Jørgensen, 1987) known as Tweedie models
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(Tweedie, 1984), whose probability density functions are of the form

fZ(z|θ, φ) = a(z, φ) exp

{
zθ − κ(θ)

φ

}
, (2)

where a(·) and κ(·) are given functions, with θ ∈ R and φ ∈ R+. For Tweedie models, the

mean and variance of Z has the property E(Z) := µ = κ̇(θ), Var(Z) = φκ̈(θ), where κ̇(θ)

and κ̈(θ) are the first and second derivatives of κ(θ), respectively. The power mean-variance

relationship is Var(Z) = φµρ for some index parameter ρ ∈ (1, 2), which gives θ = µ1−ρ/(1− ρ),

κ(θ) = µ2−ρ/(2− ρ) and κ̈(θ) = µρ. If we re-parameterize the compound Poisson model by

λ =
1

φ

µ2−ρ

2− ρ
, α =

2− ρ
ρ− 1

, γ = φ(ρ− 1)µρ−1, (3)

then it will have the form of a Tweedie model Tw(µ, φ, ρ) with the probability density function

fTw(z|µ, φ, ρ) := a(z, φ, ρ) exp

(
1

φ

(
z
µ1−ρ

1− ρ
− µ2−ρ

2− ρ

))
(4)

where

a(z, φ, ρ) =


1, if z = 0,

1
z

∑∞
t=1 Wt(z, φ, ρ)

= 1
z

∑∞
t=1

ztα

(ρ−1)tα(2−ρ)tΓ(tα)φt(1+α)t!
, if z > 0,

(5)

with α = (2 − ρ)/(ρ − 1). When z > 0, the sum of infinite series
∑∞

t=1 Wt is an example of

Weight’s generalized Bessel function.

With the formulation above, the Tweedie model has positive probability mass at zero with

P(Z = 0) = P(N = 0) = exp(−λ). Despite its popularity in actuarial studies, Tweedie models do

not always give ideal performance in cases when the empirical distribution of claim data (e.g., in

auto insurance), is extremely unbalanced and has an excessively high proportion of zero claims,

which will be illustrated in the numerical exposition. This motivates us to consider a zero-inflated

mixture model that combines a Tweedie distribution with probability q and an exact zero mass with

probability 1− q :

Y =

 Z, with probability q, where Z ∼ Tw(µ, φ, ρ),

0, with probability 1− q.
(6)
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We denote this zero-inflated Tweedie model by Y ∼ ZIF-Tw(µ, φ, ρ, q). The probability density

function of Y can be written as

fZIF-Tw(y|µ, φ, ρ, q) := qfTw(y|µ, φ, ρ) + (1− q)I {y = 0} , (7)

so that P (Y = 0) = q exp
(
− 1
φ
µ2−ρ

2−ρ

)
+ (1− q) and E (Y ) = qµ.

3. METHODOLOGY

Consider a portfolio of polices D = {(yi,xi, ωi)}ni=1 from n independent insurance policy contracts,

where for the i-th contract, yi is the policy pure premium, xi is a p-dimensional vector of explanatory

variables that characterize the policyholder and the risk being insured, and ωi is the policy duration,

i.e., the length of time that the policy remains in force. Assume that each policy pure premium yi is

an observation from the zero-inflated Tweedie distribution Yi ∼ ZIF-Tw(µi, φ/ωi, ρ, q) as defined

in (6). For now we assume that the value of ρ is given and in the end of this section we will discuss

the estimation of ρ. Assume µi is determined by a regression function F : Rp → R of xi through

the log link function

log(µi) = log {E (Yi|xi)} = F (xi). (8)

Let θ = (F, φ, q) ∈ F × R+ × [0, 1] denote a collection of parameters to be estimated with F

denoting a class of regression functions (based on tree learners). Our goal is to maximize the

log-likelihood function of the mixture model

θ̂ = arg max
θ∈Θ

logL (θ; D) . (9)

where

L (θ; D) :=
n∏
i=1

fZIF-Tw (yi| exp (F (xi)) , φ/ωi, ρ, q), (10)

but doing so directly is computationally difficult. To efficiently estimate θ = (F, φ, q), we propose a

gradient-boosting based EM algorithm, referred to as EMTboost henceforth. We first give an outline

of the EMTboost algorithm and the details will be discussed further in Section 3.1–3.2. The basic
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idea is to first construct a proxy Q-function corresponding to the current iterate by which the target

likelihood function (10) is lower bounded (E-step), and then maximize the Q-function to get the

next update (M-step) so that 10 can be driven uphill:

E-Step Construction We introduce n independent Bernoulli latent variables Π1, . . . ,Πn such that

for i = 1, . . . , n, P (Πi = 1) = q, and Πi = 1 when yi is sampled from Tweedie(µi, φ/ωi, ρ) and

Πi = 0 if yi is from the exact zero point mass. Denote Π = (Π1, . . . ,Πn)>. Assume predictors xi’s

are fixed. Given Πi ∈ {0, 1} and θ, the joint-distribution of the complete model for each observation

is

f (yi,Πi|θ) := (q · fTw (yi| exp (F (xi)) , φ, ωi))
Πi ((1− q) · I {yi = 0})1−Πi . (11)

The posterior distribution of each latent variable Πi is

f (Πi|yi,θ) =
f (yi,Πi|θ)

f (yi,Πi|θ) + f (yi, 1− Πi|θ)
. (12)

For the E-step construction, denote θt = (F t, φt, qt) the value of θ during t-th iteration of the

EMTboost algorithm. The Q-function for each observation is

Qi

(
θ|θt

)
:= EΠi∼f(Πi|yi,θt) [log f (yi,Πi|θ)]

= f
(
Πi = 1|yi,θt

)
log f (yi,Πi = 1|θ) + f

(
Πi = 0|yi,θt

)
log f (yi,Πi = 0|θ)

= δt1,i(θ
t) log (q · fTw (yi| exp (F (xi)) , φ, ωi)) + δt0,i(θ

t) log (1− q) I {yi = 0} , (13)

where

δt1,i(θ
t) = f

(
Πi = 1|yi,θt

)
=


1, if yi > 0;

qt exp

(
ωi
φt

(
−

exp(Ft(xi)(2−ρ))
2−ρ

))
qt exp

(
ωi
φt

(
− exp(Ft(xi)(2−ρ))

2−ρ

))
+(1−qt)

, if yi = 0,
(14)

δt0,i(θ
t) = f

(
Πi = 0|yi,θt

)
= 1− δt1,i(θt) (15)
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Given n observations of data D = {(yi,xi, ωi)}ni=1, the Q-function is

Q
(
θ|θt

)
=

1

n

n∑
i=1

Qi
(
θ|θt

)
=

1

n

n∑
i=1

δt1,i(θ
t) log (q · fTw (yi| exp (F (xi)) , φ, ωi)) + δt0,i(θ

t) log ((1− q) · I {yi = 0})

=
1

n

n∑
i=1

δt1,i(θ
t) log

{
qa(yi, φ/ωi, ρ) exp

[
ωi
φ

(
yi
exp ((1− ρ)F (xi))

1− ρ
− exp ((2− ρ)F (xi))

2− ρ

)]}
+

1

n

∑
{i:yi=0}

δt0,i(θ
t) log (1− q) (16)

M-Step Maximization Given the Q-function (16), we update θt to θt+1 through maximization of

(16) by

θt+1 =
(
F t+1, φt+1, qt+1

)
←− arg max

θ∈Θ
Q
(
θ|θt

)
, (17)

in which F t+1, φt+1 and qt+1 are updated successively through blockwise coordinate descent

F t+1 ←− arg max
F∈F

Q
(
F |
(
F t, φt, qt

))
(18)

φt+1 ←− arg max
φ∈R+

Q
(
φ|
(
F t+1, φt, qt

))
(19)

qt+1 ←− arg max
q
Q
(
q|
(
F t+1, φt+1, qt

))
(20)

Specifically, (18) is equivalent to update

F t+1 ←− arg max
F∈F

n∑
i=1

δt1,i(F
t, φt, qt)Ψ(yi, F (xi), ωi), (21)

where the risk function Ψ is defined as

Ψ(yi, F (xi), ωi) = ωi

(
yi

exp (F (xi) (1− ρ))

1− ρ
− exp (F (xi) (2− ρ))

2− ρ

)
. (22)
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We use a gradient tree-boosted algorithm to compute (21), and its details are deferred to Section 3.1.

After updating F t+1 we then update φt+1 in (19) using

φt+1 ←− arg max
φ∈R+

n∑
i=1

δt1,i(F
t+1, φt, qt)

{
log a(yi, φ/ωi, ρ), (23)

+
ωi
φ

(
yi

exp ((1− ρ)F t+1(xi))

1− ρ
− exp ((2− ρ)F t+1(xi))

2− ρ

)}
.

Conditional on the updated F t+1 and qt, maximizing the log-likelihood function with respect to φ

in (23) is a univariate optimization problem that can be solved by using a combination of golden

section search and successive parabolic interpolation (Brent, 2013).

After updating F t+1 and φt+1, we can use a simple formula to update qt+1 for (20)

qt+1 ←− 1

n

n∑
i=1

δt1,i
(
F t+1, φt+1, qt

)
. (24)

We repeat the above E-step and M-step iteratively until convergence. In summary, the complete

EMTboost algorithm is shown in Algorithm 1.

Algorithm 1: EMTboost Algorithm
Input :Dataset D = {(yi,xi, ωi)}ni=1 and the index parameter ρ.
Output :Estimates θ̂ = (F̂ , φ̂, q̂).

1 Initialize θ0 = (F 0, φ0, ρ0). Compute the index set I = {i : yi = 0} and initialize
{δ0

0,i, δ
0
1,i}i∈I by setting δ1i = 1, δ0i = 0 for i /∈ I.

2 for t = 0, 1, 2, . . . , T do
3 E-step: Update {δt0,i, δt1,i}i∈I by (14) and (15).
4 M-step: Update θt+1 = (F t+1, φt+1, qt+1) by using (21) that calls Algorithm 3, (23) and

(24).

F t+1 ←− arg max
F∈F

Q
(
F |
(
F t, φt, qt

))
φt+1 ←− arg max

φ∈R+
Q
(
φ|
(
F t+1, φt, qt

))
qt+1 ←− arg max

q
Q
(
q|
(
F t+1, φt+1, qt

))
5 end
6 Return θ̂ = (F̂ , φ̂, q̂) =

(
F T , φT , qT

)
.
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So far we only assume that the value of ρ is known when estimating θ = (F, φ, q). Next we give

a profile likelihood method to jointly estimate (θ, ρ) = (F, φ, q, ρ) when ρ is unknown. Following

Dunn and Smyth (2005), we pick a sequence of K equally-spaced candidate values {ρ1, · · · , ρK}

on the interval (1, 2), and for each fixed ρk, k = 1, . . . , K, we apply Algorithm 1 to maximize the

log-likelihood function (10) with respect to θρk = (Fρk , φρk , qρk), which gives the corresponding

estimators θ̂ρk =
(
F̂ρk , φ̂ρk , q̂ρk

)
and the log-likelihood function L

(
θ̂ρk ; D, ρk

)
. Then from the

sequence {ρ1, · · · , ρK} we choose the optimal ρ̂ as the maximizer of L.

ρ̂ = arg max
ρ∈{ρ1,··· ,ρK}

{
L
(
θ̂ρ; D, ρ

)}
. (25)

We then obtain the corresponding estimator θ̂ρ̂ =
(
F̂ρ̂, φ̂ρ̂, q̂ρ̂

)
.

Algorithm 2: Profile Likelihood for EMTboost
Input :Dataset D = {(yi,xi, ωi)}ni=1.
Output :Estimates θ̂ρ̂ =

(
F̂ρ̂, φ̂ρ̂, q̂ρ̂

)
.

1 Pick a sequence of K equally-spaced candidate values {ρ1, · · · , ρK} on the interval (1, 2). for
k = 1, . . . , K do

2 Set ρ = ρk.

3 Call Algorithm 1 to compute θ̂ρk =
(
F̂ρk , φ̂ρk , q̂ρk

)
and the corresponding log-likelihood

function L
(
θ̂ρk ; D, ρk

)
.

4 end
5 Compute the optimal ρ̂

ρ̂ = arg maxρ∈{ρ1,··· ,ρK}

{
L
(
θ̂ρ; D, ρ

)}
.

6 Return the final estimator θ̂ρ̂ =
(
F̂ρ̂, φ̂ρ̂, q̂ρ̂

)
.

3.1. Estimating F (·) via Tree-based Gradient Boosting

To minimize the weighted sum of the risk function (22), we employ the tree-based gradient boosting

algorithm to recover the predictor function F (·) :

F̃ (·) = arg min
F (·)∈F

n∑
i=1

δ1,iΨ(yi, F (xi), ωi), (26)
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Note that the objective function does not depend on φ. To solve the gradient-tree boosting, each

candidate function F ∈ F is assumed to be an ensemble of L-terminal nodes regression trees, as

base learners:

F (x) = F [0] +
M∑
m=1

β[m]h
(
x; ξ[m]

)
, (27)

= F [0] +
M∑
m=1

β[m]

{
L∑
l=1

u
[m]
l I(x ∈ R[m]

l )

}
(28)

where F [0] is a constant scalar, β[m] is the expansion coefficient and h(x; ξ[m]) is the m-th base

learner, characterized by the parameter ξ[m] = {R[m]
l , u

[m]
l }Ll=1 , with R[m]

l being the disjoint regions

representing the terminal nodes of the tree, and constants u[m]
l being the values assigned to each

region.

The constant F̂ [0] is chosen as the 1-terminal tree that minimizes the negative log-likelihood. A

forward stagewise algorithm (Friedman, 2001) builds up the components β[m]h
(
x; ξ[m]

)
sequentially

through a gradient-descent-like approach with m = 1, 2, . . . ,M . At iteration stage m, suppose that

the current estimation for F̃ (·) is F̂ [m−1] (·). To update from F̂ [m−1] (·) to F̂ [m] (·), the gradient-

tree boosting method fits the m-th regression tree h
(
x; ξ[m]

)
to the negative gradient vector by

least-squares function minimization:

ξ̂[m] = arg min
ξ[m]

n∑
i=1

[
g

[m]
i − h

(
xi; ξ

[m]
)]2

, (29)

where
(
g

[m]
1 , · · · , g[m]

n

)>
is the current negative gradient vector of Ψ with respect to (w.r.t.) F̂ [m−1]:

g
[m]
i = −∂Ψ (yi, F (xi) , ωi)

∂F (xi)

∣∣∣∣
F (xi)=F̂ [m−1](xi)

. (30)

When fitting this regression trees, first use a fast top-down “best-fit” algorithm with a least-squares

splitting criterion (Friedman et al., 2000) to find the splitting variables and the corresponding splitting

locations that determine the terminal regions {R̂[m]
l }Ll=1, then estimate the terminal-node values

{û[m]
l }Ll=1 . This fitted regression tree h(x; {û[m]

l , R̂
[m]
l }Ll=1) can be viewed as a tree-constrained

approximation of the unconstrained negative gradient. Due to the disjoint nature of the regions

produced by regression trees, finding the expansion coefficient β[m] can be reduced to solving L
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optimal constants η[m]
l within each region R̂[m]

l . And the estimation of F̃ for the next stage becomes

F̂ [m] = F̂ [m−1] + ν

L∑
l=1

η̂
[m]
l I(x ∈ R̂[m]

l ), (31)

where 0 ≤ ν ≤ 1 is the shrinkage factor that controls the update step size. A small ν imposes more

shrinkage, while ν = 1 gives complete negative gradient steps. Friedman (2001) has found that the

shrinkage factor reduces overfitting and improve the predictive accuracy. The complete algorithm is

shown in Algorithm 3.

Algorithm 3: TDboost Algorithm
Input :Dataset D = {(yi,xi, ωi)}ni=1 and the index parameter ρ.
Output :Estimates F̂ .

1 Initialize F̂ [0] = log
(∑n

i=1 ωiyi∑n
i=1 ωi

)
.

2 for m = 0, 1, 2, . . . ,M do
3 Compute the negative gradient vector (g

[m]
1 , . . . , g

[m]
n )>

g
[m]
i = ωi

{
−yi exp

[
(1− ρ)F̂ [m−1](xi)

]
+ exp

[
(2− ρ)F̂ [m−1](xi)

]}
, i = 1, . . . , n.

4 Fit the negative gradient vector to (x1, . . . ,xn)> by an L-terminal node regression tree,
giving the partition {R̂[m]

l }Ll=1.
5 Compute the optimal terminal node predictions η[m]

l for each region R̂[m]
l , l = 1, 2, . . . , L

η̂
[m]
l = log

∑i:xi∈R̂
[m]
l
ωiyi exp

[
(1− ρ)F̂ [m−1](xi)

]
∑

i:xi∈R̂
[m]
l
ωiyi exp

[
(2− ρ)F̂ [m−1](xi)

]


6 Update F̂ [m] for each region R̂[m]
l by (31).

7 end
8 Return F̂ = F̂ [M ].

3.2. Implementation details

Next we give a data-driven method to find initial values for parameter estimation. The idea is that

we approximately view the latent variables as Πi ≈ I{yi 6= 0}. That is, we treat all zeros as if

they are all from the exact zero mass portion, which can be reasonable for extremely unbalanced
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zero-inflated data. If the latent variables were known, it is straightforward to find the MLE solution

of a constant mean model:

θ0 = arg max
θ∈Θ

logL
(
θ; D, Π̃

)
, (32)

where Θ = C × R+ × [0, 1] , C = {F ≡ η | η ∈ R}, and η is a constant scalar. We then find initial

values successively as follows:

Initialize F 0 by

F 0 = arg min
η∈R

n∑
i=1

I{yi 6= 0} ·Ψ(yi, η, ωi)

= log

[∑n
i=1 I{yi 6= 0} · yi · ωi∑n
i=1 I{yi 6= 0} · ωi

]
. (33)

Initialize φ0 by

φ0 = arg min
φ∈R+

n∑
i=1

I{yi 6= 0}
(

log a(yi, φ/ωi, ρ) +
ωi
φ

(yi
exp (F 0 (1− ρ))

1− ρ
− exp (F 0 (2− ρ))

2− ρ
)

)
,

(34)

Initialize q0 by

q0 =
1

n

n∑
i=1

I{yi 6= 0}. (35)

Given θ0 obtained above, we can then initialize (δ1,i, δ0,i) by equation (14) and (15), giving(
δ0

0,i, δ
0
1,i

)
.

As a last note, when implementing EMTboost algorithm, for more stable computation, we may

want to avoid that the probability q converges to 1 (or 0). In such case, we can add a regularization

term r log(1− q) on q so that each M-step in Q-function (16) becomes

PQ
(
θ|θt

)
= Q

(
θ|θt

)
+ r log (1− q)︸ ︷︷ ︸

regularization term

, (36)

where r ∈ R+ is a non-negative regularization parameter. Apparently, when maximizing the

penalized log-likelihood function (36), larger q will be penalized more. We establish the EM

algorithm similar as before, and only need to modify the Maximization step of (24) w.r.t. q:

qt+1
P =

1
n

∑n
i=1 δ

t
1,i

r + 1
, (37)
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pulling the original update qt+1 = 1
n

∑n
i=1 δ

t
1,i towards 0 by fraction r + 1. Alternatively, if in some

cases, we want to avoid that the EMTboost model degrades to an exact zero mass, the regularization

term can be chosen as r log (1− |1− 2q|). The updating step with respect to q becomes a soft

thresholding update with the threshold r:

qt+1
P ′ =

1

2
−
Sr
(
1− 2

n

∑n
i=1 δ

t
1,i

)
2(r + 1)

(38)

where Sr(·) is the soft thresholding function with Sr(x) = sign(x)(|x| − r)+. We apply these

penalized EMTboost methods to the real data application in Appendix C.1.

4. SIMULATION STUDIES

In this section, we compare the EMTboost model (Section 3) with a regular Tweedie boosting model

(that is q ≡ 1; TDboost) and the Gradient Tree-Boosted Tobit model (Grabit; Sigrist and Hirnschall,

2017) in terms of the function estimation performance. The Grabit model extends the Tobit model

(Tobin, 1958) using gradient-tree boosting algorithm. We here present two simulation studies in

which zero-inflated data are generated from zero-inflated Tweedie model (Case 1 in Section 4.2) and

zero-inflated Tobit model (Case 2 in Section 4.3). An additional simulation result (Case 3) in which

data are generated from a Tweedie model is put in Appendix B.

Fitting Grabit, TDboost and EMTboost models to these data sets, we get the final predictor

function F̂ (·) and parameter estimators. Then we make a prediction about the pure premium by

applying the predictor functions on an independent held-out testing set to find estimated expectation:

µ̂(x) = E (y|x). For the three competing models, the predicted pure premium is given by equations

µ̂Grabit(x) = ϕ
(
−F̂Grabit(x)

)
+ F̂Grabit(x)

(
1− Φ

(
−F̂Grabit(x)

))
, (39)

µ̂TDboost(x) = exp(F̂TDboost(x)), (40)

µ̂EMTboost(x) = (1− q̂EMTboost) exp
(
F̂EMTboost(x)

)
, (41)

where ϕ (·) is the probability density function of the standard normal distribution and Φ(·) is its

cumulative distribution function. The predicted pure premium of the Grabit model is derived in

detail in Appendix A. As the true model is known in simulation settings, we can campare the
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difference between the predicted premiums and the expected true losses. For the zero-inflated

Tobit model in case 2, the expected true loss of this model is given by EZIF-Tobit [y|F (x)] =

q [ϕ (−F (x)) + F (x) (1− Φ (−F (x)))], with q being the probability that response y comes from

the Tobit model and F (x) the true target funtion.

4.1. Measurement of Prediction Accuracy

Given a portfolio of policies D = {(yi,xi, ωi)}ni=1, yi is the claim cost for the i-th policy and ŷi is

denoted as the predicted claim cost. We consider the following three measurements of prediction

accuracy of {ŷi}ni=1.

Gini Index (Ginia) Gini index is a well-accepted tool to evaluate the performance of predictions.

There exists many variants of Gini index and one variant we use is denoted by Ginia (Ye et al.,

2018): for a sequence of numbers {s1, · · · , sn}, let R(si) ∈ {1, · · · , n} be the rank of si in

the sequence in an increasing order. To break the ties when calculating the order, we use the

LAST tie-breaking method, i.e., we set R(si) > R(sj) if si = sj, i < j. Then the normalized

Gini index is referred to as:

Ginia =

∑n
i=1 yiR(ŷi)∑n

i=1 yi
−
∑n

i=1
n−i+1
n∑n

i=1 yiR(yi)∑n
i=1 yi

−
∑n

i=1
n−i+1
n

. (42)

Note that this criterion only depends on the rank of the predictions and larger Ginia index

means better prediction performance.

Gini Index (Ginib) We exploit an popular alternative–the ordered Lorentz curve and the associ-

ated Gini index (denoted by Ginib; Frees et al., 2011, 2014) to capture the discrepancy between

the expected premium P (x) = µ̂(x) and the true losses y. We successively specify the predic-

tion from each model as the base premium and use predictions from the remaining models as

the competing premium to compute the Ginib indices. Let B(x) be the “base premium” and

P (x) be the “competing premium”. In the ordered Lorentz curve, the distribution of losses and

the distribution of premiums are sorted based on the relative premium R(x) = P (x)/B(x).

The ordered premium distribution is

D̂P (s) =

∑n
i=1B(xi)I {R(xi) ≤ s}∑n

i=1B(xi)
, (43)
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and the ordered loss distribution is

D̂L(s) =

∑n
i=1 yiI {R(xi) ≤ s}∑n

i=1 yi
. (44)

Then the ordered Lorentz curve is the graph of
(
D̂P (s), D̂L(s)

)
. Twice the area between the

ordered Lorentz curve and the line of equality measures the discrepancy between the premium

and loss distributions, and is defined as the Ginib index.

Mean Absolute Deviation (MAD) Mean Absolute Deviation with respect to the true losses

{yi}ni=1 is defined as 1
n

∑n
i=1 |yi − ŷi|. In the following simulation studies, we can directly

compute the mean absolute deviation between the predicted losses {ŷi}ni=1 and the expected

true losses {E [yi|xi]}ni=1 to obtain 1
n

∑n
i=1 |E [yi|xi]− ŷi|, while in the real data study, we can

only compute the MAD against true losses {yi}ni=1.

4.2. Case 1

In this simulation case, we generate data from the zero-inflated Tweedie models with two different

target functions: one with two interactions and the other generated from Friedman (2001)’s “random

function generator” (RFG) model. We fit the training data using Grabit, TDboost, and EMTboost.

In all numerical studies, five-fold cross-validation is adopted to select the optimal ensemble size M

and regression tree size L, while the shrinkage factor ν is set as 0.001.

4.2.1 Two Interactions Function (Case 1.1)

In this simulation study, we demonstrate the performance of EMTboost to recover the mixed data

distribution that involves exact zero mass, and the robustness of our model in terms of premium

prediction accuracy when the index parameter ρ is misspecified. We consider the true target function

with two hills and two valleys:

F (x1, x2) = e−5(1−x1)2+x22 + e−5x21+(1−x2)2 , (45)

which corresponds to a common scenario where the effect of one variable changes depending on the

effect of the other. The response Y follows a zero-inflated Tweedie distribution ZIF-Tw(µ, φ, ρ, q)
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with Tweedie portion probability q:

Y ∼

 Z, with probability q, Z∼Tw(µ, φ, ρ),

0, with probability 1− q,
(46)

where

µ = exp(F (x1, x2)) , x1, x2
ind.∼Unif(0, 1),

with φ = 1, ρ = 1.5 and q chosen from a decreasing sequence of values: q ∈ {1, 0.85, 0.75, 0.50,

0.25, 0.10}.

We generate n = 500 observations {xi, yi}ni=1 for training and n′ = 1200 for testing, and fit the

training data using Grabit, TDboost and EMTboost models. The true target functions are known,

and we use MAD (against expected true premium) and Ginia index as performance criteria.

When fitting EMTboost, we design three scenarios to illurstrate the robustness of our method

w.r.t. ρ. In the first scenario, set ρ = 1.5, which is the true value. In the second scenario, set ρ = 1.7,

which is misspecified. In the last scenario, we use the profile likelihood method to estimate ρ.

The resulting MADs and Ginia indices of the three competing models on the held-out testing

data are reported in Table 1 and Table 2, which are averaged over 20 independent replications for

each q. Boxplots of MADs comparing Grabit, TDboost and EMTboost (with estimated ρ) are shown

in Figure 1. In all three scenarios, EMTboost outperforms Grabit and TDboost in terms of the ability

to recover the expected true premium by giving smallest MADs and largest Ginia indices, especially

when zeros inflate: q ∈ {0.5, 0.25, 0.1}. The prediction performance of EMTboost when ρ = 1.7 is

not much worse than that when ρ = 1.5, showing that the choice of ρ has relatively small effect on

estimation accuracy.
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Table 1: Simulation results for case 1.1 with MADs.

Competing Models

q TDboost Grabit
EMTboost

ρ = 1.5 ρ = 1.7 tuned ρ
1.00 0.597 (.013) 0.746 (.029) 0.594 (.016) 0.598 (.012) 0.598 (.015)
0.85 0.565 (.015) 0.761 (.032) 0.554 (.017) 0.555 (.017) 0.562 (.016)
0.75 0.561 (.018) 0.706 (.026) 0.489 (.010) 0.485 (.011) 0.503 (.010)
0.50 0.454 (.024) 0.674 (.044) 0.365 (.012) 0.375 (.014) 0.361 (.012)
0.25 0.301 (.013) 0.382 (.019) 0.240 (.010) 0.242 (.011) 0.237 (.010)
0.10 0.135 (.005) 0.169 (.009) 0.122 (.004) 0.124 (.004) 0.124 (.004)
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Figure 1: Simulation results for case 1.1: comparing MADs of Grabit, TDboost and EMTboost
with decreasing q. Boxplots display empirical distributions of MADs based on 20 independent
replications.

Table 2: Simulation results for case 1.1 with Ginia indices.

Competing Models

q TDboost Grabit
EMTboost

ρ = 1.5 ρ = 1.7 tuned ρ
1.00 0.480 (.008) 0.449 (.011) 0.481 (.006) 0.481 (.006) 0.481 (.006)
0.85 0.393 (.008) 0.354 (.009) 0.397 (.007) 0.397 (.007) 0.397 (.007)
0.75 0.343 (.009) 0.300 (.020) 0.363 (.008) 0.365 (.007) 0.361 (.008)
0.50 0.242 (.012) 0.186 (.016) 0.289 (.011) 0.288 (.012) 0.292 (.011)
0.25 0.172 (.016) 0.116 (.020) 0.219 (.016) 0.215 (.017) 0.217 (.015)
0.10 0.085 (.028) 0.107 (.023) 0.137 (.027) 0.122 (.028) 0.136 (.025)
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4.2.2 Random Function Generator (Case 1.2)

In this case, we compare the performance of the three competing models in various complicated and

randomly generated predictor functions. We use the RFG model whose true target function F is

randomly generated as a linear expansion of functions {gk}20
k=1 :

F (x) =
20∑
k=1

bkgk (zk) . (47)

Here, each coefficient bk is a uniform random variable from Unif[−1, 1]. Each gk (zk) is a function

of zk, where zk is defined as a pk-sized subset of the p-dimensional variable x in the form

zk =
{
xψk(j)

}pk
j=1

. (48)

where each ψk is an independent permutation of the integers {1, · · · , p}. The size pk is randomly

selected by min (b2.5 + rkc, p), where rk is generated from an exponential distribution with mean 2.

Hence, the expected order of interaction presented in each gk (zk) is between four and five. Each

function gk (zk) is a pk-dimensional Gaussian function:

gk (zk) = exp

{
−1

2
(zk − uk)T Vk (zk − uk)

}
, (49)

where each mean vector uk is randomly generated from N (0, Ipk). The pk × pk covariance matrix

Vk is defined by

Vk = UkDkUT
k, (50)

where Uk is a random orthonormal matrix, Dk = diag {dk [1] , · · · , dk [pk]}, and the square root

of each diagonal element
√
dk [j] is a uniform random variable from Unif [0.1, 2.0]. We generate

data {yi, xi}ni=1 from zero-inflated Tweedie distribution where xi ∼ N (0, Ip), µi = exp {F (xi)},

i = 1, · · · , n.

We randomly generate 20 sets of samples with φ = 1 and ρ = 1.5, each sample having

2000 observations, 1000 for training and 1000 for testing. When fitting EMTboost for each

q ∈ {1, 0.85, 0.75, 0.5, 0.25, 0.1}, the estimates of Tweedie portion probability have mean q̄∗ =

0.96, 0.79, 0.71, 0.53, 0.28, 0.13. Figure 2 shows simulation results comparing the MADs of Grabit,
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TDboost and EMTboost. We can see, in all the cases, EMTboost outperforms Grabit and becomes

very competitive compared to TDboost when q decreases.
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Figure 2: Simulation results for case 1.2: comparing MADs of Grabit, TDboost and EMTboost
with decreasing q. Boxplots display empirical distributions of the MADs based on 20 independent
replications.

4.3. Case 2

In this simulation case, we generate data from the zero-inflated Tobit models with two target functions

similar to that of case 1. For all three gradient-tree boosting models, five-fold cross-validation is

adopted for developing trees. Profile likelihood method is used again.

4.3.1 Two Interactions Function (Case 2.1)

In this simulation study, we compare the performance of three models in terms of MADs. Consider

the data generated from the zero-inflated Tobit model where the true target function is given by

F (x1, x2) = 2 cos
(
2.4π(|x1|3 + |x2|3)0.5

)
. (51)

Conditional on covariates X = (X1, X2), the latent variable Y ∗ follows a Gaussian distribution:

Y ∗ = F (X1, X2) + ε, Xk i.i.d. ∼ Unif(−1, 1), k = 1, 2, ε ∼ N(0, 1).
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The Tobit response YTobit can be expressed as YTobit = max(Y ∗, 0), and we generate the zero-inflated

Tobit data using the Tobit response:

Y ∼

YTobit, with probability q,

0, with probability 1− q.
(52)

where q takes value from the sequence {1, 0.85, 0.75, 0.5, 0.25, 0.1}.

We generate n = 500 observations for training and n′ = 4500 for testing. Figure 3 shows simu-

lation results when comparing MADs of Grabit, TDboost and EMTboost based on 20 independent

replications. We can see from the first boxplot that when q = 1, zero-inflated Tobit distribution

degenerates to a Tobit distribution, and not surprisingly, Grabit outperforms EMTboost in MADs.

As q decreases, meaning the proportion of zeros increases, the prediction performance of EMTboost

gets improved. When the exact zero mass probability is 1−q = 0.9, the averaged MADs of the three

models are MADGrabit = 0.0697, MADTDboost = 0.0681, MADEMTboost = 0.0664, with EMTboost

performing the best.
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Figure 3: Simulation results for case 2.1: comparing the MADs of Grabit, TDboost and
EMTboost with decreasing q. Boxplots display empirical distributions of MADs based on 20
independent replications.

4.3.2 Random Function Generator (Case 2.2)

We again use the RFG model in this simulaiton. The true target function F is randomly generated as

given in Section 4.2.2. The latent variable Y ∗ follows

Y ∗ = F (xi) + ε, xi ∼ N (0, Ip) , ε ∼ N(0, 1), i = 1, · · · , n.
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We set YTobit = max(Y ∗, 0) and generate the data following the zero-inflated Tobit model (52) with

Tobit portion probability q ∈ {1, 0.85, 0.75, 0.5, 0.25, 0.1}. We randomly generate 20 sets of sample

from the zero-inflated Tobit model for each q, and each sample contains 2000 observations, 1000

for training and 1000 for testing. Figure 4 shows MADs of Grabit, TDboost and EMTboost as

boxplots. Interestingly, for all the q’s, TDboost and EMTboost outperform Grabit even though

the true model is a Tobit model. The MAD of EMTboost becomes better when q decreases, and

is competitive with that of TDboost when q = 0.1: the averaged MADs of the three models are

MADGrabit = 0.0825, MADTDboost = 0.0565, MADEMTboost = 0.0564. As for the averaged Ginia

indices, EMTboost performs the best when q = 0.1: GiniaGrabit = 0.0463, GiniaTDboost = 0.0816,

GiniaEMTboost = 0.1070.
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Figure 4: Simulation results for case 2.2: comparing the MADs of Grabit, TDboost and
EMTboost when decreasing q. Boxplots display empirical distributions of MADs based on 20
independent replications.

5. APPLICATION: AUTOMOBILE CLAIMS

5.1. Data Set

We consider the auto-insurance claim data set as analyzed in Yip and Yau (2005) and Zhang et al.

(2005). The data set contains 10,296 driver vehicle records, each including an individual driver’s

total claim amount (zi) and 17 characteristics xi = (xi,1, · · · , xi,17) for the driver and insured vehicle.

We want to predict the expected pure premium based on xi. The description statistics of the data are

provided in Yang et al. (2017). Approximately 61.1% of policyholders had no claims, and 29.6% of

the policyholders had a positive claim amount up to $10, 000. Only 9.3% of the policy-holders had a

high claim amount above $10, 000, but the sum of their claim amount made up to 64% of the overall
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sum. We use this original data set to synthesize the often more realistic scenarios with extremely

unbalanced zero-inflated data sets.

Specifically, we randomly under-sample (without replacement) from the nonzero-claim data

with certain fraction λ to increase the percentage of the zero-claim data. For example, if we set

the under-sampling fraction as λ = 0.15, then the percentage of the non-claim policyholders will

become approximately 61.1/(61.1 + 38.9λ) = 91.28%. We choose a decreasing sequence of under-

sampling fractions λ ∈ {1, 0.75, 0.5, 0.25, 0.15, 0.1}. For each λ, we randomly under-sample the

positive-loss data without replacement and combine these nonzero-loss data with the zero-loss data

to generate a new data set. Then we separate this new data set into two sets uniformly for training

and testing . The corresponding percentages of zero-loss data among the new data set w.r.t. different

λ are presented in Table 3. The Grabit, TDboost and EMTboost models are fitted on the training set

and their estimators are obtained with five-fold cross-validation.

Table 3: Real - Zero percentage w.r.t. λ.

λ 1 0.75 0.50 0.25 0.15 0.10 0.05

Zero Percentage 61.1% 67.7% 75.9% 86.3% 91.3% 94.0% 96.9%

5.2. Performance Comparison

To compare the performance of Grabit, TDboost and EMTboost models, we predict the pure premium

P (x) by applying each model on the held-out testing set. Since the losses are highly right-skewed,

we use the orderd Lorentz curve and the associated Ginib index described in Section 4.1 to capture

the discrepancy between the expected premiums and true losses.

The entire procedure of under-sampling, data separating and Ginib index computation are

repeated 20 times for each λ. A sequence of matrices of the averaged Ginib indices and standard

errors w.r.t. each under-sampling fraction λ are presented in Table 4. We then follow the “minimax”

strategy (Frees et al., 2014) to pick the “best” base premium model that is least vulnerable to the

competing premium models. For example, when λ = 0.15, the maximal Ginib index is 40.381 when

using B(x) = µ̂Grabit(x) as the base premium, 36.735 when B(x) = µ̂TDboost(x) , and −22.674 when

B(x) = µ̂EMTboost(x). Therefore, EMTboost has the smallest maximum Ginib index at −22.674,

hence having the best performance. Figure 5 also shows that when Grabit (or TDboost) is selected

as the base premium, EMTboost represents the most favorable choice.
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Figure 5: The ordered Lorentz curves for the synthetic data on a single replication when
λ = 0.15. Grabit (or TDboost) is set as the base premium and the EMTboost is the competing
premium. The ordered Lorentz curve of EMTboost is below the line of equality when choosing
Grabit or TDboost as the base premium.

After computing the Ginib index matrix and using the “minimax” strategy to choose the best

candidate model, we count the frequency, out of 20 replications, of each model chosen as the

best model and record the ratio of their frequencies. The results w.r.t each λ are demenstrated in

Figure 6. From Table 4 and Figure 6, we find that when λ decreases, the performance of EMTboost

gradually outperforms that of TDboost in terms of averaged Ginib indices and the corresponding

model-selection ratios. In particular, TDboost outperforms EMTboost when λ = 1, 0.75, 0.5,

and EMTboost outperforms TDboost when λ = 0.25, 0.15, 0.1, 0.05. When λ = 0.25, 0.15, 0.1,

EMTboost has the largest model-selection ratio among the three.
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Table 4: Grabit, TDboost and EMTboost Ginib indices. The “best” base premium models are
emphasized based on the matrices of averaged Ginib indices.

Competing Premium

Base Premium Grabit TDboost EMTboost

λ = 1

Grabit 0 11.459 (0.417) 11.402 (0.386)
TDboost 6.638 (0.409) 0 0.377 (0.355)

EMTboost 7.103 (0.357) 2.773 (0.414) 0

λ = 0.75

Grabit 0 14.955 (0.413) 15.162 (0.435)
TDboost 5.466 (0.425) 0 1.848 (0.504)

EMTboost 6.152 (0.385) 2.622 (0.560) 0

λ = 0.50

Grabit 0 25.047 (1.539) 25.621 (1.492)
TDboost 3.516 (0.963) 0 4.056 (0.651)

EMTboost 5.702 (0.698) 2.525 (0.501) 0

λ = 0.25

Grabit 0 51.502 (1.062) 51.581 (1.005)
TDboost −18.248 (2.445) 0 20.035 (2.414)

EMTboost 1.283 (2.593) 3.929 (2.544) 0

λ = 0.15

Grabit 0 37.290 (2.505) 40.381 (1.822)
TDboost −23.569 (2.607) 0 36.735 (3.188)

EMTboost −22.674 (1.975) −22.926 (2.604) 0

λ = 0.10

Grabit 0 −1.189 (5.828) 16.721 (5.120)
TDboost 14.581 (6.587) 0 35.298 (3.026)

EMTboost −2.742 (4.884) −20.080 (3.572) 0

λ = 0.05

Grabit 0 −16.851 (2.662) −8.652 (3.059)
TDboost 42.493 (3.792) 0 27.754 (3.784)

EMTboost 32.169 (3.767) −13.448 (3.551) 0
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Figure 6: Barplots of model-selection ratio among Grabit, TDboost and EMTboost w.r.t. Ginib

indices under 20 independent replications when λ increases.

Table 5: Comparing Grabit, TDboost and EMTboost with MADs.

Competing Models

λ Grabit TDboost EMTboost
1.00 4.248 (.014) 4.129 (.012) 4.067 (.012)
0.75 3.879 (.017) 3.679 (.011) 3.622 (.012)
0.50 3.345 (.026) 2.994 (.017) 2.928 (.016)
0.25 2.439 (.014) 1.945 (.021) 1.766 (.014)
0.15 1.720 (.015) 1.489 (.023) 1.309 (.019)
0.10 1.265 (.011) 1.100 (.015) 0.986 (.014)
0.05 0.714 (.012) 0.578 (.015) 0.402 (.009)

We also find that TDboost and EMTboost both outperform Grabit when λ = 1, 0.75, 0.5, 0.25,

0.15, 0.1, but Grabit becomes the best when λ = 0.05; interestingly, if we compare MAD results in

Table 5, the prediction error of EMTboost becomes the smallest for each λ. This inconsistent results

between the criteria MAD and Ginib index when λ = 0.05 can be explained by the different learning

characteristics of the EMTboost methods and the Grabit methods. To see it more clearly, we compute

the MADs on the positive-loss dataset, denoted by MAD+, and zero-loss dataset, denoted by MAD0

seperately, and compute the Ginia indices on the nonzero dataset, denoted by Ginia+. When λ =
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0.05, EMTboost obtains the smallest averaged MAD on zero-loss dataset (MAD0
EMTboost = 0.146 <

MAD0
TDboost = 0.269 < MAD0

Grabit = 0.422), while Grabit obtains the smallest averaged MAD on

positive-loss dataset (MAD+
EMTboost = 10.406 > MAD+

TDboost = 10.297 > MAD+
Grabit = 9.927).

The MAD0 performance shows that EMTboost captures the zero information much better than

TDboost and Grabit. The somewhat worse MAD+ performance of EMTboost when λ = 0.05 can

be explained by the deficiency of the nonzero data points (only about 100 nonzeros comparing with

over 3000 zeros); if we fix the nonzero sample size with under-sampling fraction λ = 0.2, and at the

same time, over-sample the zero-loss part with over-sampling fraction η = 3 to obtain about 96%

zero proportion, then the averaged Ginib results summarized in Table 10 in Appendix C.2 indeed

show that EMTboost remains to perform competitively compared with the other methods under this

large zero proportion setting.

6. Concluding Remarks

We have proposed and studied the EMTboost model to handle very unbalanced claim data with

excessive proportion of zeros. Our proposal overcomes the difficulties that traditional Tweedie

model have when handling these common data scenarios, and at the same time, preserves the

flexibility of nonparametric models to accomdate complicated nonlinear and high-order interaction

relations. We also expect that our zero-inflated Tweedie approach can be naturally extended to high-

dimensional linear settings (Qian et al., 2016). It remains interesting to develop extended approaches

to subject-specific zero-inflation settings, and provide formal procedures that can conveniently test

if zero-inflated Tweedie model is necessary in data analysis compared to its simplified alternatives

under both parametric and nonparametric frameworks.
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A. Appendix A: Tobit Model (Truncated Normal Distribution)

Suppose the latent variable Y ∗ follows, conditional on covariate x, a Gaussian distribution:

Y ∗|x ∼ N(µ(x), σ2) (53)

This latent variable Y ∗ is observed only when it lies in an interval [yl, yu]. Otherwise, one observes

yl or yu depending on whether the latent variable is below the lower threshold yl or above the upper

threshold yu, respectively. Denoting Y as the observed variable, we can express it as:

Y =


yl, if Y ∗ ≤ yl,

Y ∗, if yl < Y ∗ < yu,

yu, if yu ≤ Y ∗.

(54)
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The density of Y is given by:

fTobit (y;µ(x), σ) = Φ

(
yl − µ(x)

σ

)
Iyl(y) +

(
1− Φ

(
yu − µ(x)

σ

))
Iyu(y).

+
1

σ
ϕ

(
y − µ(x)

σ

)
I {yl < y < yu} (55)

Then the expectation of Y |x is given by:

Eσ [y|x] =

∫ +∞

−∞
yfTobit (y;µ(x), σ) dy

= ylΦ (α) +

∫ yu

yl

y
1

σ
ϕ

(
y − µ(x)

σ

)
dy + yu (1− Φ (β))

= ylΦ (α) +

∫ β

α

(sσ + µ(x))ϕ (s) ds+ yu (1− Φ (β))

= ylΦ (α) + σ (ϕ (α)− ϕ (β)) + µ(x) (Φ (β)− Φ (α)) + yu (1− Φ (β)) , (56)

where α = yl−µ(x)
σ

, β = yu−µ(x)
σ

. And

φ(ξ) =
1√
2π

exp

(
−1

2
ξ2

)
(57)

is the probability density function of the standard normal distribution and Φ(·) is its cumulative

distribution function:

Φ(y) =

∫ y

−∞
ϕ(ξ)dξ (58)

In simulation 2, the latent variable is truncated by 0 from below, i.e., yl = 0, yu = ∞. So we

have ϕ(β) = 0,Φ(β) = 1. We also set the variance of the Gaussian distribution as σ = 1. Then the

expectation of Y |x is given by:

Eσ=1 [y|x] = ϕ (−µ(x)) + µ(x) (1− Φ (−µ(x))) . (59)

B. Appendix B: Case 3

In this simulation study, we demonstrate that our EMTboost model can fit the nonclaim dataset well.

We consider the data generated from the Tweedie model, with the true target function (45). We
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generate response Y from the Tweedie distribution Tw(µ, φ, ρ), with µ = exp(F (x1, x2)) , x1, x2 ∼

Unif(0, 1) and the index parameter ρ = 1.5. We find that when the dispersion parameter φ takes

large value in R+, Tweedie’s zero mass probability P(YTw = 0) = exp(− 1
φ
µ2−ρ

2−ρ ) gets closer to 1. So

we choose three large dispersion values φ ∈ {20, 30, 50}.

We generate n = 500 observations {xi, yi}ni=1 for training and n′ = 1000 for testing, and fit

the training data using Grabit, TDboost and EMTboost models. For all three models, five-fold

cross-validation is adopted and the shrinkage factor ν is set as 0.001. The profile likelihood method

is used.

The discrepancy between the predicted loss and the expected true loss in criteria MAD and

Ginib index are shown in Table 6 and Table 7, which are averaged over 20 independent replications

for each φ. Table 6 shows that EMTboost obtains the smallest MAD. In terms of Ginib indices,

EMTboost is also chosen as the “best” model for each φ.

In this setting, P(YTw = 0) ≈ 0.83, 0.88, 0.91, which means that all the customers are generally

very likely to have no claim. The assumption of our EMTboost model with a general exact zero

mass probability coincides with this data structure. Its zero mass probability estimation 1 − q̂ is

0.863, 0.909 and 0.943 respectively, showing that EMTboost learns this zero part of information

quite well. As a result, EMTboost performs no worse than TDboost, which is based on the true

model assumption.

Table 6: Simulation results for case 3 with MADs.

Competing Models

φ Grabit TDboost EMTboost
20 2.499 (.072) 2.465 (.057) 2.449 (.054)
30 2.442 (.068) 2.492 (.060) 2.442 (.060)
50 2.553 (.091) 2.560 (.082) 2.544 (.080)
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Table 7: Simulation results for case 3 with Ginib indices.

Competing premium

Base premium Grabit TDboost EMTboost

φ = 20

Grabit 0 8.205 (3.492) 8.052 (3.471)
TDboost 4.487 (2.462) 0 4.104 (2.283)

EMTboost 3.153 (1.982) 2.347 (1.656) 0

φ = 30

Grabit 0 4.273 (3.447) 3.244 (3.411)
TDboost 4.017 (3.257) 0 3.454 (3.191)

EMTboost 1.404 (2.730) 0.846 (2.403) 0

φ = 50

Grabit 0 5.452 (4.806) 10.362 (4.801)
TDboost 3.479 (3.654) 0 2.476 (3.899)

EMTboost −0.836 (2.785) 1.031 (3.354) 0

C. Appendix C: Real Data

C.1. Implemented EMTboost: Penalization on q

When fitting the EMTboost model, we want to avoid the situation that the Tweedie portion prob-

ability estimation q̂ degenerates to 0. So we add a regularization term r log (1− q) to the Q-

function, as equation (37) in Section 3.2. We choose an increasing sequence of penalty parameter

log10 (r) ∈ {−2, · · · , 1}41, and use the strategy of “warm start” to improve the computation ef-

ficiency, i.e., setting the current solution
(
µ̂ (rl) , φ̂ (rl) , q̂ (rl)

)
as the initialization for the next

solution
(
µ̂ (rl+1) , φ̂ (rl+1) , q̂ (rl+1)

)
.

We use this implemented EMTboost model to train the penalized solution paths with respect to

the sequence of penalty parameter r on the extremely zero-inflated training data (λ = 0.05) under 20

independent replications, and then apply the estimators to the testing data to compute the discrepancy

under MAD. We also compute the MADs on zero-loss dataset (MAD0) and positive-loss dataset

(MAD+) seperately, and the Ginia indices on positive-loss dataset (Ginia+). Table 8 and Figure 7

shows the implemented EMTboost MAD path w.r.t. the logrithm of a sequence of penalty parameter

r.
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Table 8: Implemented EMTboost (λ = 0.05) results with MADs, MAD0s and MAD+s.

log(r) −2.00 −1.10 −0.65 0.25 0.70

MAD 0.432 (0.047) 0.377 (0.036) 0.351 (0.033) 0.330 (0.032) 0.328 (0.031)
MAD0 0.114 (0.026) 0.054 (0.011) 0.026 (0.005) 0.004 (0.001) 0.002 (0.000)
MAD+ 10.452 (1.017) 10.527 (1.017) 10.560 (1.017) 10.587 (1.017) 10.590 (1.017)
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Figure 7: Implemented EMTboost (λ = 0.05) results: MAD error path with its one standard
deviation when increasing regularization parameter r. The blue lines are the training error lines,
and the red ones are the testing error lines. Top figure: averaged MAD drops when penalty
parameter increases. Bottom left: averaged MAD0 and its standard deviation drop remarkably
and approximate 0 when r increases. Bottom right: averaged MAD+ is flat and increases a
little when r increases. All the averaged testing MADs are within one standard deviation of the
averaged training MADs.
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Table 9 shows the results of Grabit, TDboost, EMTboost, and implemented EMTboost (r = 1/6).

Implemented EMTboost performs the worst in Ginia, Ginia+ and MAD+, but the best in MAD and

MAD0.

Table 9: Comparing Grabit, TDboost, EMTboost and Implemented EMTboost (r = 1/6) with
Ginia indices and MADs.

λ = 0.05 Grabit TDboost EMTboost Implemented EMTboost

q̂ - - 0.697 (.018) 0.132 (.003)
Ginia 0.415 (.023) 0.134 (.040) 0.238 (.033) 0.261 (.033)
Ginia+ 0.104 (.030) −0.116 (.039) −0.164 (.031) −0.103 (.040)
MAD 0.714 (.012) 0.578 (.015) 0.482 (.013) 0.356 (.008)
MAD0 0.422 (.009) 0.269 (.012) 0.146 (.008) 0.032 (.002)
MAD+ 9.927 (.223) 10.287 (.226) 10.406 (.228) 10.551 (.227)

C.2. Resampleing: Under-sampling Fraction λ = 0.2 and Over-sampling Fraction η = 3

We control the nonzero sample size in real application by under-sampling the nonzero-loss data set

with fraction λ = 0.2 and over-sampling the zero-loss data with fraction η = 3, generating a data set

containing 95.9% zeros. Following the training and testing procedure in Section 5, Table 10shows

that EMTboost has the smallest of the maximal (averaged) Ginib indices, thus is chosen as the “best”

model.

Table 10: Grabit, TDboost, EMTboost Ginib indices with λ = 0.2 and η = 3.

λ = 0.2, η = 3 Competing Premium

Base Premium Grabit TDboost EMTboost

Grabit 0 23.872 (3.928) 35.616 (2.655)
TDboost −4.822 (2.822) 0 27.234 (2.152)

EMTboost −5.583 (1.599) −14.806 (1.681) 0
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