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Quantile regression for compositional covariates

Xuejun Ma ∗ Ping Zhang †

Abstract

Quantile regression is a very important tool to explore the relationship between the
response variable and its covariates. Motivated by mean regression with LASSO for
compositional covariates proposed by Lin et al. (2014), we consider quantile regression
with no-penalty and penalty function. We develop the computational algorithms based
on linear programming. Numerical studies indicate that our methods provides the
better alternative than mean regression under many settings, particularly for heavy-
tailed or skewed distribution of the error term. Finally, we study the fat data using
the proposed method.

Key words: compositional data; quantile regression; linear programming; mean
regression; adaptive LASSO.
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1 Introduction

Compositional data are defined traditionally as constrained data, like proportions or
percentages, with a fixed constant sum constraint (such as unit-sum constraint), which
can find applications in a wide range of geology, sociology, economics, biology and so on
(Shanmugam (2018)). Sometimes, we are especially interested in relative information,
not the absolute values, such as geochemical compositions of rocks. Since the seminal
work of Aitchison (1982), statistical methodologies have been proposed for compositional
data analysis. However, owing to the special nature of compositional data, the usual
linear regression model is inappropriate for our purposes. The linear log-contrast model of
Aitchison and Bacon-Shone (1984) is a very common method for regression to deal with
compositional data. To the best of authors’ knowledge, statistical methods discussed mean
regression. As we known, mean regression is not robust against outliers. For the testing
problem, we address quantile regression in the paper.

Quantile regression is robust to outliers and heavy-tailed conditional error distribu-
tions. Moveover, it can provide a more complete picture than mean regression when the
conditional distribution of the response variable is asymmetric. Hence, quantile regression
has been applied in survival analysis, financial economics, investment analysis and so on
(Koenker and Basseet (1978), Koenker and Geling (2001) and Yu et al. (2003)). Variable
selection is an important issue in statistical modeling. In recent years, many different types
of penalties have been introduced. Tibshirani (1996) proposed LASSO, which imposed the
same penalty on every regression coefficient leading to excessive compression of larger co-
efficients. To tackle the problem, Fan and Li (2001) developed SCAD, which has three
properties: unbiasedness, sparsity, continuity. Zou (2006) introduced the adaptive LASSO
by using adaptive penalizing weights for different coefficients in the LASSO penalty, which
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meets above three properties. Besides, there are fused LASSO (Tibshirani et al. (2005)),
elastic net (Zou and Hastie (2005)) and MCP (Zhang (2010)). We also refer to Wu and Liu
(2009).

For compositional data, Lin et al. (2014) studied variable selection in mean regression
by LASSO. However, this method is sensitive to outliers. When the error follows the
heavy-tailed distribution or asymmetric distribution, it works not well. In this paper, we
develop a novel method to overcome these difficulties via combining quantile regression
with the adaptive LASSO penalty, showing the new algorithms based on linear programme.

The paper is organized as follows. In Section 2, we introduce the proposed methods of
quantile regression and its variable selection, and give a method for selecting the tuning
parameter. In Section 3, we present the computational algorithms. Simulation studies
and an empirical example are presented in Section 4. The article concludes in Section 5.

2 Quantile regression for compositional data

Let (Yi, Xi) be an observation collected from the subject (i = 1, . . . , n), where Yi ∈ R is
the response of interest, Xi = (Xi1, . . . , Xip)⊤ ∈ Rp is the p-dimensional covariates lying in

the (p − 1)-dimensional positive simplex Sp−1 =
{

(Xi1, . . . , Xip)|Xij > 0,
∑p

j=1 Xij = 1
}

.

Y = (Y1, . . . , Yn)⊤. We apply the log-ratio transformation of Aitchison (1982), and lead
to the linear log-contrast model

Y = Zpβ\p + ε, (1)

where Zp = {log(Xij/Xip)} is an n × (p − 1) log-ratio matrix with the pth component
as the reference component, β\p = (β1, . . . , βp−1)⊤, ε is an n-vector of independent error
term.

In the model (1), the reference component selection is not easy. As Lin et al. (2014),
let βp = −

∑p−1
j=1 βj , the expression can be rewritten as

Y = Zβ + ε,
p∑

j=1

βj = 0, (2)

where Z = {log xij}n×p = (Z1, . . . , Zn)⊤, β = (β1, ..., βp)⊤. Note that the intercept is not
included in the model, since it can be eliminated by centring the response and predictor
variables. So, the estimatorof quantile regression is to minimize the following objective
function

arg min
β

n∑

i=1

ρτ (Yi − Z⊤
i β), (3)

s.t.
p∑

j=1

βj = 0,

where ρτ (u) = u(τ − I(u < 0)) is called the check function. τ ∈ (0, 1) is the quantile, and
I(·) is an indicative function. β = (β1, . . . , βp)⊤ is the unknown parameter vector.

Now, we consider quantile regression with the adaptive LASSO, which is motivated
by the LASSO penalty mean regression proposed by Lin et al. (2014). As we known, the
adaptive LASSO penalty function is a generalization of the LASSO penalty via adaptive
weights. Hence, we consider the constrained optimization problem

arg min
β

( n∑

i=1

ρτ (Yi − Z⊤
i β) + λ

p∑

j=1

wj |βj |
)
, (4)

s.t.
p∑

j=1

βj = 0,
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where wj =
1

|β̃j |κ
, and κ > 0. β̃ is the solution of model (3). Here, λ is the tuning

parameter. As the suggestion of Zou (2006), we set κ = 1 in our paper.
In the problem (4), the tuning parameter is very important because the penalty method

depends on the choice of it. We can use the BIC criterion to select the parameter λ
(Wang et al. (2007)), which is defined as

BIC(λn) = log
( n∑

i=1

ρτ (Yi − Z⊤
i β)

)
+

log n

n
× df

where df is the number of nonzero coefficients. The optimal regularization parameter
λopt = arg minλn

BIC(λn).

3 Algorithms

From (3) and (4), they are the constrained optimization problems. First of all, we
deal with quantile regression with the adaptive LASSO. Here, we give the computational
algorithm, which introduces some slack variables replacing the objective function with an
equality constraint so that (4) can be transformed into a linear programming problem.

Let ui = max(0, Yi − Z⊤
i β), vi = max

(
0, −(Yi − Z⊤

i β)
)
, β+

j = max(0, βj), β−
j =

max(0, −βj). βj = β+
j − β−

j and |βj | = β+
j + β−

j . w = (w1, . . . , wp)⊤. By the expressions
of slack variables, (4) can be re-expressed as

n∑

i=1

ρτ (Yi − Z⊤
i β) + λ

p∑

j=1

wj |βj |

=
n∑

i=1

(
τui + (1 − τ)vi

)
+ λ

p∑

j=1

wj(β+
j + β−

j )

=τI⊤
n u + (1 − τ)I⊤

n v + λw⊤β+ + λw⊤β−

=(λw⊤, λw⊤, τI⊤
n , (1 − τ)I⊤

n )((β+)⊤, (β−)⊤, u⊤, v⊤)⊤

.
=Aγ

Here u = (u1, . . . , un)⊤ and v = (v1, . . . , vn)⊤. β+ = (β+
1 , . . . , β+

p )⊤ and β− = (β−
1 , . . . , β−

p )⊤.

In denotes the n-vector of ones. A = (λw⊤, λw⊤, τI⊤
n , (1−τ)I⊤

n ) and γ =
(
(β+)⊤, (β−)⊤, u⊤, v⊤

)⊤
.

The constrained condition is

Y − Zβ = u − v

Elementary calculations show that

[
Z −Z En −En

]




β+

β−

u
v


 = Y

where En denotes the n × n identity matrix.
Let

B =

[
I⊤

p −I⊤
p 0⊤

n −0⊤
n

Z −Z En −En

]

and
H = (0, Y ⊤)⊤.
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where 0n denotes the n-vector of zeros. Combined with
∑p

j=1 βj = 0, the constrained
optimization problem (4) can be transformed into a linear programming problem

min Aγ

s.t.Bγ = H

Similarly, quantile regression without penalty model (3) can also transform into a linear
programming problem

min A1γ1

s.t.B1γ1 = H1

where A1 = (0⊤
n , 0⊤

n , τI⊤
n , (1 − τ)I⊤

n ), B1 = B, γ1 = γ, and H1 = H.

4 Numerical studies

4.1 Simulations

As Lin et al. (2014), we generate the covariate data in the following way. We first
generate an n×p data matrix O = (oij) from a multivariate normal distribution Np(µ, Σ),
and then obtain the covariate matrix X = (xij), where xij = exp(oij)/

∑p
k=1 exp(oik).

Here µ = (µ1, . . . , µp)⊤. We repeat 500 times for each setting. The error term ε is
generated from five distributions.
Case 1. ε ∼ N(0, 1).
Case 2. ε ∼ t(3), which is symmetric and heavy-tail distribution.
Case 3. ε ∼ pareto(2, 1), which is the heavy-tail distribution.
Case 4. ε ∼ gpd(0.2, 0, 1.2), which is the skewed distribution.
Case 5. ε ∼ gev(0.2, 3, 1.5), which is the extreme value distribution, and the skewed
distribution.

In Example 1, we examine the performance of mean regression (MR) and quantile
regression (QR, τ = 0.5). In Example 2, we conduct the Monte Carlo comparisons for
variable selection.

Example 1. Let

µj =

{
log(0.5 ∗ p), j = 1, 2, 3

0, others

and Σ = ρ|i−j| with ρ = 0.2. We set n = {50, 100, 200, 500}, and generate the re-
sponses according to model (2) with β = (1, −0.8, 0.6, −1.5, −0.5, 1.2)⊤ . We evaluate the
performance through the following two criteria:

(1) bj = 1
500

∑500
m=1 |β̂

(m)
j − βj |

(2) L1 = 1
500

∑500
m=1

∑p
j=1 |β̂

(m)
j − βj |

Here β̂
(m)
j is the estimator of βj based on the m-th sample. We compare the performance

of quantile regression (QR) with mean regression (MR).

Table 1 summarizes the simulation results. We can draw the following conclusions:

(1) When the error distribution follows the normal distribution, MR is slightly better than
QR. As the sample size increases, the differences between them are decreasing.

(2) When the error distribution is the heavy-tailed or skewed, QR performs better than
MR since these distributions have outliers.
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Table 1: Simulation results for Example 1

Distribution n Method b1 b2 b3 b4 b5 b6 L1

N(0, 1) 50 MR 0.114 0.118 0.118 0.118 0.119 0.114 0.701
QR 0.143 0.149 0.142 0.148 0.145 0.143 0.870

100 MR 0.074 0.079 0.083 0.082 0.082 0.077 0.477
QR 0.095 0.101 0.105 0.105 0.099 0.098 0.603

200 MR 0.054 0.057 0.058 0.057 0.056 0.054 0.336
QR 0.070 0.071 0.074 0.072 0.069 0.068 0.424

500 MR 0.033 0.035 0.034 0.036 0.037 0.034 0.209
QR 0.040 0.044 0.043 0.044 0.045 0.042 0.259

t(3) 50 MR 0.186 0.191 0.196 0.200 0.202 0.184 1.159
QR 0.157 0.167 0.172 0.173 0.166 0.160 0.995

100 MR 0.128 0.133 0.133 0.139 0.143 0.128 0.803
QR 0.110 0.114 0.112 0.113 0.115 0.110 0.674

200 MR 0.090 0.090 0.092 0.095 0.097 0.088 0.553
QR 0.075 0.076 0.077 0.077 0.078 0.074 0.457

500 MR 0.056 0.058 0.060 0.058 0.062 0.060 0.355
QR 0.047 0.048 0.049 0.047 0.049 0.047 0.287

pareto(2, 1) 50 MR 0.198 0.212 0.217 0.221 0.219 0.193 1.261
QR 0.077 0.083 0.084 0.080 0.084 0.078 0.486

100 MR 0.162 0.169 0.173 0.166 0.168 0.160 0.999
QR 0.050 0.053 0.053 0.054 0.053 0.053 0.317

200 MR 0.128 0.130 0.129 0.130 0.134 0.128 0.779
QR 0.037 0.039 0.040 0.039 0.039 0.036 0.231

500 MR 0.079 0.091 0.084 0.081 0.086 0.083 0.506
QR 0.024 0.025 0.025 0.025 0.025 0.024 0.147

gpd(0.2, 0, 1.2) 50 MR 0.209 0.217 0.224 0.217 0.210 0.206 1.284
QR 0.147 0.154 0.155 0.162 0.156 0.149 0.924

100 MR 0.141 0.150 0.146 0.148 0.143 0.140 0.868
QR 0.099 0.109 0.107 0.109 0.104 0.104 0.632

200 MR 0.104 0.105 0.111 0.107 0.113 0.102 0.641
QR 0.071 0.075 0.076 0.075 0.078 0.073 0.448

500 MR 0.064 0.070 0.068 0.067 0.068 0.068 0.404
QR 0.045 0.049 0.048 0.048 0.049 0.045 0.285

gev(0.2, 3, 1.5) 50 MR 0.291 0.316 0.323 0.318 0.314 0.312 1.874
QR 0.255 0.272 0.279 0.286 0.271 0.264 1.627

100 MR 0.200 0.213 0.216 0.210 0.217 0.213 1.270
QR 0.166 0.188 0.191 0.191 0.186 0.186 1.109

200 MR 0.146 0.150 0.152 0.157 0.158 0.137 0.900
QR 0.128 0.133 0.134 0.128 0.134 0.125 0.781

500 MR 0.093 0.097 0.096 0.097 0.097 0.093 0.573
QR 0.082 0.085 0.081 0.085 0.084 0.079 0.495

Example 2. Let

µj =

{
log(0.5 ∗ p), j = 1, . . . , 5

0, others

and β = (1, −0.8, 0.6, 0, 0, −1.5, −0.5, 1.2, 0, . . . , 0)⊤. We set (n, p)={(50, 10), (100, 10),
(100, 20), (200, 20)}. To summarize the variable selection results and evaluate estimation
accuracy, we consider the following criteria:

(1) TP: the average number of true positives, which denotes the average number of the
true zero correctly set to zero.
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(2) TN: the average number of true negatives, which denotes the average number of the
true nonzero correctly set to nonzero.

(3) FP: the average number of false positives, which denotes the average number of the
true zero incorrectly set to nonzero.

(4) FN: the average number of false negetives, which denotes the average number of the
true nonzero incorrectly set to zero.

We compare three method: quantile regression with adaptive LASSO (QR-ALA, τ = 0.5),
mean regression with LASSO (MR-LA) and adaptive LASSO (MR-ALA). The other set-
tings are the same as Example 1.

From Tables 2 and 3, we can get the following comments:

(1) From L1, QR-ALA is better than MR-LA and MR-ALA, especially for the heavy-
tail or skewed distribution. Even if N(0, 1), QR-ALA is still slightly better, which
implies that QR-ALA is more accurate. The performances of three methods increase
gradually with n.

(2) For variable selection, QR-ALA and MR-ALA outperform than MR-LA, which is more
inclined to set zero coefficients to nonzero since FP is very large. When the error term
follows the normal distribution, MR-ALA is better than QR-ALA. However, when the
error term follows other distributions, QR-ALA is superior to MR-ALA, which clearly
indicates that the proposed method is more efficient.
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Table 2: Simulation results for Example 2 (Cases 1–2)

Distribution (n, p) Method L1 TP TN FP FN

N(0, 1) (50, 10) MR-LA 1.197 5.952 2.318 1.682 0.048
MR-ALA 1.245 5.770 3.856 0.144 0.230
QR-ALA 1.160 5.740 3.598 0.402 0.260

(100, 10) MR-LA 0.915 5.996 2.596 1.404 0.004
MR-ALA 1.047 5.952 3.988 0.012 0.048
QR-ALA 0.728 5.968 3.752 0.248 0.032

(100, 20) MR-LA 1.251 5.998 11.154 2.846 0.002
MR-ALA 1.048 5.936 13.930 0.070 0.064
QR-ALA 0.832 5.950 13.488 0.512 0.050

(200, 20) MR-LA 0.850 6.000 11.478 2.522 0.000
MR-ALA 0.943 5.990 13.998 0.002 0.010
QR-ALA 0.511 6.000 13.724 0.276 0.000

t(3) (50, 10) MR-LA 2.139 5.242 2.558 1.442 0.758
MR-ALA 1.934 4.920 3.626 0.374 1.080
QR-ALA 1.648 5.110 3.702 0.298 0.890

(100, 10) MR-LA 1.502 5.750 2.746 1.254 0.250
MR-ALA 1.426 5.472 3.838 0.162 0.528
QR-ALA 0.840 5.878 3.832 0.168 0.122

(100, 20) MR-LA 2.125 5.418 11.964 2.036 0.582
MR-ALA 1.525 5.330 13.566 0.434 0.670
QR-ALA 1.029 5.812 13.518 0.482 0.188

(200, 20) MR-LA 1.492 5.910 12.034 1.966 0.090
MR-ALA 1.098 5.848 13.816 0.184 0.152
QR-ALA 0.586 5.988 13.818 0.182 0.012
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Table 3: Simulation results for Example 2 (Cases 3–5)

Distribution (n, p) Method L1 TP TN FP FN

pareto(2, 1) (50, 10) MR-LA 2.162 5.132 2.394 1.606 0.868
MR-ALA 2.193 4.992 3.538 0.462 1.008
QR-ALA 0.640 5.898 3.824 0.176 0.102

(100, 10) MR-LA 1.643 5.472 2.514 1.486 0.528
MR-ALA 1.750 5.344 3.702 0.298 0.656
QR-ALA 0.345 6.000 3.956 0.044 0.000

(100, 20) MR-LA 2.335 5.046 11.156 2.844 0.954
MR-ALA 1.959 5.048 13.278 0.722 0.952
QR-ALA 0.415 5.998 13.844 0.156 0.002

(200, 20) MR-LA 1.921 5.382 10.794 3.206 0.618
MR-ALA 1.582 5.438 13.548 0.452 0.562
QR-ALA 0.270 6.000 13.940 0.060 0.000

gpd(0.2, 0, 1.2) (50, 10) MR-LA 2.235 5.210 2.382 1.618 0.790
MR-ALA 2.241 4.772 3.560 0.440 1.228
QR-ALA 1.470 5.356 3.732 0.268 0.644

(100, 10) MR-LA 1.621 5.702 2.312 1.688 0.298
MR-ALA 1.665 5.242 3.778 0.222 0.758
QR-ALA 0.806 5.896 3.844 0.156 0.104

(100, 20) MR-LA 2.500 4.972 10.716 3.284 1.028
MR-ALA 1.894 5.074 13.314 0.686 0.926
QR-ALA 0.967 5.860 13.554 0.446 0.140

(200, 20) MR-LA 1.851 5.608 9.502 4.498 0.392
MR-ALA 1.347 5.654 13.680 0.320 0.346
QR-ALA 0.577 6.000 13.748 0.252 0.000

gev(0.2, 3, 1.5) (50, 10) MR-LA 3.186 4.350 2.532 1.468 1.650
MR-ALA 3.355 3.956 3.162 0.838 2.044
QR-ALA 2.779 3.940 3.696 0.304 2.060

(100, 10) MR-LA 2.409 5.008 2.510 1.490 0.992
MR-ALA 2.560 4.234 3.620 0.380 1.766
QR-ALA 1.759 4.996 3.826 0.174 1.004

(100, 20) MR-LA 3.500 4.732 9.034 4.966 1.268
MR-ALA 2.919 3.996 12.762 1.238 2.004
QR-ALA 2.056 4.946 13.358 0.642 1.054

(200, 20) MR-LA 2.477 5.566 8.206 5.794 0.434
MR-ALA 2.031 4.666 13.682 0.318 1.334
QR-ALA 1.239 5.732 13.468 0.532 0.268

4.2 Application

In this section, to illustrate the usefulness of the proposed procedure, we apply the
proposed method in the dataset fat, which contains many physical measurements of 252
males can be found in R package ”UsingR”. Body.fat is the response variable. The fol-
lowing X-variables are used as covariates: neck (circumference), chest (circumference),
abdomen (circumference), hip (circumference), thigh (circumference), knee (circumfer-
ence), ankle (circumference), bicep (circumference), forearm (circumference) and wrist
(circumference). We transform covariates into compositional data. As the suggestion of
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Shanmugam (2018), Y = log
(
body.fat/(100−body.fat)

)
. There are 251 observations after

removing suspicious observations. Here, the ten-fold cross-validation method is used to
select the tuning parameter. To evaluate the performance of MR-ALA and QR-ALA, we
divide the data set into a test set and a training set, 9 copies as the training set, and 1
copy as the test set at random. We repeat 100 simulations and use NMSE to compare two
methods. NMSE is defined by

NMSE =

∑
(Yi − Ŷi)

2

∑
(Yj − Y )2

.

where Y is the mean of the response variable, Ŷi is the predictive value of the test data
set using the model obtained from the training set.

As Table 4, NMSE of QR-ALA is less than MR-ALA whether it is the raw data or
transformed compositional data, which QR-ALA is better than that MR-ALA since there
are outliers in the dataset fat. It is surprised that the performances of the two methods
with compositional data are better than the corresponding models with original data,
which implies this transform may be necessary and meaningful in application.

Table 4: NMSE for dataset fat

MR-ALA QR-ALA

Original data 0.426 0.376
Compositional data 0.424 0.353

5 Discussion

In this paper, we study quantile regression with compositional data, and propose pe-
nalized quantile regression with the adaptive-LASSO penalty function. Due to linear
programming, the proposed of the algorithm works not well when dimension p is much
larger than sample size n. This problem may be achieved by ADMM Yu and Lin (2017)
proposed. We will study it in our future research.
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