
BOUNDARY-FREE KERNEL-SMOOTHED GOODNESS-OF-FIT
TESTS FOR DATA ON GENERAL INTERVAL

A PREPRINT

Rizky Reza Fauzi∗
Graduate School of Mathematics

Kyushu University
744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken, JAPAN

fauzi.rizky.853@s.kyushu-u.ac.jp

Yoshihiko Maesono
Faculty of Sciemce and Engineering

Chuo University
1-13-27 Kasuga, Bunkyo-ku, Tokyo-to, JAPAN

maesono@math.chuo-u.ac.jp

May 29, 2020

ABSTRACT

We propose kernel-type smoothed Kolmogorov-Smirnov and Cramér-von Mises tests for data on
general interval, using bijective transformations. Though not as severe as in the kernel density
estimation, utilizing naive kernel method directly to those particular tests will result in boundary
problem as well. This happens mostly because the value of the naive kernel distribution function
estimator is still larger than 0 (or less than 1) when it is evaluated at the boundary points. This
situation can increase the errors of the tests especially the second-type error. In this article, we use
bijective transformations to eliminate the boundary problem. Some simulation results illustrating the
estimator and the tests’ performances will be presented in the last part of this article.

Keywords Bijective function · Cramér-von Mises test · Distribution function · Goodness-of-fit test · Kernel smoothing ·
Kolmogorov-Smirnov test · Transformation

1 Introduction

Many statistical methods depend on an assumption that the data under consideration are drawn from a certain distribution,
or at least from a distribution that is approximately similar to that particular distribution. For example, test of normality
for residuals are needed after fitting a linear regression in order to satisfy the normality assumption of the model.
Distributional assumption is important because, in most cases, it dictates the methods that can be used to estimate the
unknown parameters and also determines the procedures that staticticians may apply. There are some goodness-of-fit
tests available to determine whether a sample comes from the assumed distribution. Those popular tests include the
Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CvM) test, Anderson-Darling test, and Durbin-Watson test. In this
article, we will be focusing ourselves to the KS and CvM tests.

Let X1, X2, ..., Xn be independently and identically distributed random variables supported on Ω ⊆ R with an
absolutely continuous distribution function FX and a density fX . The classical nonparametric estimator of FX has
been the empirical distribution function defined by

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ∈ R, (1)

where I(A) denotes the indicator function of a set A. It is obvious that Fn is a step function of height 1
n at each

observed sample point Xi = xi. When considered as a pointwise estimator of FX(x), Fn(x) is an unbiased and
strongly consistent estimator with V ar[Fn(x)] = n−1FX(x)[1− FX(x)].

In this setting, the Kolmogorov-Smirnov statistic utilizes the empirical distribution function Fn to test the null hypothesis
H0 : FX = F
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againsts the alternative hypothesis

H1 : FX 6= F,

where F is the assumed distribution function. The test statistic is defined as

KSn = sup
x∈R
|Fn(x)− F (x)|. (2)

If under a significance level α the value of KSn is larger than a certain value from Kolmogorov distribution table, we
will reject H0. Likewise, under the same circumstance, the statistic of the Cramér-von Mises test is defined as

CvMn = n

∫ ∞
−∞

[Fn(x)− F (x)]2dF (x), (3)

and we reject the null hypothesis when the value of CvMn is larger than a certain value from Cramér-von Mises table.

Several discussions regarding those goodness-of-fit tests have been around for decades. The recent articles include
the distribution of KS and CvM tests for exponential populations (Evans et al. 2017), revision of two-sample KS test
(Finner and Gontscharuk 2018), KS test for mixed distributions (Zierk et al. 2020), KS test for bayesian ensembles
of phylogenies (Antoneli et al. 2018), CvM distance for neighbourhood-of-model validation (Baringhaus and Henze
2016), rank-based CvM test (Curry et al. 2019), and model selection using CvM distance in a fixed design regression
(Chen et al. 2018).

Though the standard KS and CvM tests work really well, but it does not mean they bear no problem. The lack of
smoothness of Fn causes too much sensitivity near the center of distribution, especially when n is small. Hence, it
is not unusual to find the supremum value of |Fn(x)− F (x)| is attained when x is near the center of distribution, or
the value of CvMn gets larger because [Fn(x) − F (x)]2 is large when the data is highly concentrated in one area.
Furthermore, given the information that FX is absolutely continuous, it seems to be more appropriate to use a smooth
and continuous estimator of FX rather than the empirical distribution function Fn for testing the goodness-of-fit.

The other maneuver that can be used for estimating the cummulative distribution function nonparametrically is the
kernel method. Let K(x) be a symmetric continuous nonnegative kernel function with

∫∞
−∞K(x)dx = 1, and h > 0

be the bandwidth satisfying h → 0 and nh → ∞ when n → ∞. Hence, Nadaraya (1964) defined the naive kernel
distribution function estimator as

F̂X(x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
, x ∈ R, (4)

where W (v) =
∫ v
−∞K(w)dw. It is easy to prove that this kernel distribution function estimator is continuous, and

satisfies all the properties of a distribution function.

Several properties of F̂X are well known. The bias and the variance are

Bias[F̂X(x)] =
h2

2
f ′X(x)

∫ ∞
−∞

v2K(v)dv + o(h2), (5)

V ar[F̂X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
r1fX(x) + o

(
h

n

)
, (6)

where r1 =
∫∞
−∞ vK(v)W (v)dv. The almost sure uniform convergence of F̂X to FX was proved by Nadaraya (1964),

Winter (1973), and Yamato (1973), while Yukich (1989) extended this result to higher dimensions. Watson and
Leadbetter (1964) proved the asymptotic normality of F̂X(x). Moreover, several authors showed that the asymptotic
performance of F̂X(x) is better than that of Fn(x), see Azzalini (1981), Reiss (1981), Falk (1983), Singh et al. (1983),
Hill (1985), Swanepoel (1988), Shirahata and Chu (1992), and Abdous (1993).

It is natural if one uses the naive kernel distribution function estimator in place of the empirical distribution function to
smooth the KS and CvM statistics out. By doing that, we may expect to eliminate the over-sensitivity that standard KS
and CvM statistics have. Therefore, the formulas become

K̂S = sup
x∈R
|F̂X(x)− F (x)| (7)

and

ĈvM = n

∫ ∞
−∞

[F̂ (x)− F (x)]2dF (x). (8)
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Omelka et al. (2009) proved that under the null hypothesis, the distribution of the statistics converge to the same
distributions as the standard KS and CvM.

Though both tests are versatile in most settings, but when the support of the data is strictly smaller than the entire real
line, the naive kernel distribution function estimator suffers the so called boundary problem. This problem happens
because the estimator still puts some weights outside the support Ω. Even though in some cases (e.g. fX(0) = 0

when 0 is the boundary point) the boundary effects of F̂X(x) is not as severe as in the kernel density estimator, but the
problem still occurs. It is because the value of F̂X(x) is still larger than 0 (or less than 1) at the boundary points. This
phenomena cause large value of |F̂X(x)− F (x)| in the boundary regions, and then K̂S and ĈvM tend to be larger
than they are supposed to be, leading to the rejection of H0 even though H0 is right. To make things worse, section 4
will illustrate how this problem enlarges type-2 error by accepting the null hypothesis when it is wrong.

Some articles have suggested methods to solve the boundary bias problem in the density estimation, such as data
reflection by Schuster (1985); simple nonnegative boundary correction by Jones and Foster (1996); boundary kernels by
Müller (1991), Müller (1993), and Müller and Wang (1994); generating pseudo data by Cowling and Hall (1996); and
hybrid method by Hall and Wehrly (1991). Even though only few literature discusses how to extend previous ideas for
solving the problem in the distribution function estimation, but it is reasonable to assume those methods are applicable
for such case.

In this article we will try another idea to remove the boundary effects, which is utilizing bijective mappings. How we
remove the boundary effects from the naive kernel distribution function estimator will be discussed in section 2, and
how to modify the goodness-of-fit tests with those idea will be explained in section 3. Some numerical studies are
discussed in section 4, and the proofs of our theorems can be found in the appendices.

2 Boundary-free kernel distribution function estimator

In this section, we will explain how to use bijective transformations to solve the boundary problem in kernel distribution
function estimation. It is obvious that if we can find an appropiate function g that maps R to Ω bijectively, we will
not put any weight outside the support. Hence, instead of using X1, X2, ..., Xn, we will apply the kernel method
for g−1(X1), g−1(X2), ..., g−1(Xn). To make sure our idea is mathematically applicable, we need to impose some
conditions before moving on to our main focus. The conditions we took are:

C1. the kernel function K(v) is nonnegative, continuous, and symmetric at v = 0

C2. the integral
∫∞
−∞ v2K(v)dv is finite and

∫∞
−∞K(v)dv = 1

C3. the bandwidth h > 0 satisfies h→ 0 and nh→∞ when n→∞
C4. the increasing function g transforms R onto Ω

C5. the density fX and the function g are twice differentiable

The conditions C1-C3 are standard conditions for kernel method. Albeit it is sufficient for g to be a bijective function,
but the increasing property in C4 makes the proofs of our theorems simpler. The last condition is needed to derive the
biases and the variances formula.

Under those conditions, we define the boundary-free kernel distribution function estimator as

F̃X(x) =
1

n

n∑
i=1

W

(
g−1(x)− g−1(Xi)

h

)
, x ∈ Ω (9)

where h > 0 is the bandwidth and g is an appropriate bijective function. As we can see, F̃X(x) is basically just a
result of simple subsitution of g−1(x) and g−1(Xi) to the formula of F̂X(x). Though it looks simple, but the argument
behind this idea is due to the change-of-variable property of distribution function, which cannot always be done to
another probability-related functions. Its bias and variance are given in the following theorem.

Theorem 2.1 Under the conditions C1-C5, the bias and the variance of F̃X(x) are

Bias[F̃X(x)] =
h2

2
c1(x)

∫ ∞
−∞

v2K(v)dv + o(h2), (10)

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
g′(g−1(x))fX(x)r1 + o

(
h

n

)
, (11)
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where

c1(x) = g′′(g−1(x))fX(x) + [g′(g−1(x))]2f ′X(x). (12)

Remark 2.2 It is easy to prove that r1 is a positive number. Then, since g is an increasing function, the variance of our
proposed estimator will be smaller than V ar[F̂X(x)] when g′(g−1(x)) ≥ 1. On the other hand, though it is difficult to
conclude in general case, if we carefully take the mapping g, the bias of our proposed method is much faster to converge
to 0 than Bias[F̂X(x)]. For example, when Ω = R+ and we choose g(x) = ex, in the boundary region when x→ 0

the bias will converge to 0 faster and V ar[F̃X(x)] < V ar[F̂X(x)].

Similar to most of kernel type estimators, our proposed estimator attains asymptotic normality, as stated in the following
theorem.

Theorem 2.3 Under the condition C1-C5, the limiting distribution

F̃X(x)− FX(x)√
V ar[F̃X(x)]

→D N(0, 1) (13)

holds.

Furthermore, we also establish strong consistency of the proposed method.

Theorem 2.4 Under the condition C1-C5, the consistency

sup
x∈Ω
|F̃X(x)− FX(x)| →a.s. 0 (14)

holds.

Even though it is not exactly related to our main topic of goodness-of-fit tests, but it is worth to add that from F̃X we
can derive another kernel-type estimator. It is clear that the density function fX is equal to F ′X , then we can define a
boundary-free kernel density estimator as f̃X = d

dx F̃X , which is

f̃X(x) =
1

nhg′(g−1(x))

n∑
i=1

K

(
g−1(x)− g−1(Xi)

h

)
, x ∈ Ω. (15)

As F̃X eliminates boundary bias problem, this new estimator f̃X does the same thing and can be a good competitor for
another boundary bias reduction kernel density estimators. The bias and the variance of its are as follow.

Theorem 2.5 Under the condition C1-C5, also if g′′′ exists and f ′′X is continuous, then the bias and the variance of
f̃X(x) are

Bias[f̃X(x)] =
h2c2(x)

2g′(g−1(x))

∫ ∞
−∞

v2K(v)dv + o(h2) (16)

V ar[f̃X(x)] =
fX(x)

nhg′(g−1(x))

∫ ∞
−∞

K2(v)dv + o

(
1

nh

)
, (17)

where

c2(x) = g′′′(g−1(x))fX(x) + 3g′′(g−1(x))g′(g−1(x))f ′X(x) + [g′(g−1(x))]3f ′′X(x). (18)

3 Boundary-free kernel-smoothed KS and CvM tests

As we discussed before, the problem of the standard KS and CvM statistics is in the over-sensitivity near the center of
distribution, because of the lack of smoothness of the empirical distribution function. Since the area around the center
of distribution has the highest probability density, most of the realizations of the sample are there. As a result, Fn(x)
jumps a lot in those area, and it causes some unstability of estimation especially when n is small. Conversely, though
smoothing KSn and CvMn out using kernel distribution function can eliminate the oversensitivity near the center, the
value of K̂S and ĈvM become larger than it should be when the data we are dealing with is supported on an interval
smaller than the entire real line. This phenomenon is caused by the boundary problem.

4
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Therefore, the clear solution to overcome the problems of standard and naive kernel goodness-of-fit tests together is to
keep the smoothness of F̂X and to get rid of the boundary problem simulateously. One of the idea is by utilizing the
boundary-free kernel distribution function estimator in section 2. Therefore, we propose boundary-free kernel-smoothed
Kolmogorov-Smirnov statistic as

K̃S = sup
x∈R
|F̃X(x)− F (x)| (19)

and boundary-free kernel-smoothed Cramér-von Mises statistic as

C̃vM = n

∫ ∞
−∞

[F̃X(x)− F (x)]2dF (x), (20)

where F̃X is our proposed estimator with a suitable function g.

Remark 3.1 Although the supremum and the integral are evaluated througout the entire real line, but we can just
compute them over Ω, as on the outside of the support we have FX(x) = F̃X(x).

Although the formulas seem similar, one might expect both proposed tests are totally different with the standard KS and
CvM tests. However, these two following theorems explain that the standard ones and our proposed methods turn out to
be equivalent in the sense of distribution.

Theorem 3.2 Let FX and F be distribution functions on set Ω. If KSn and K̃S are the standard and the proposed
Kolmogorov-Smirnov statistics, respectively, then under the null hypothesis FX = F ,

|KSn − K̃S| →p 0. (21)

Theorem 3.3 Let FX and F be distribution functions on set Ω. If CvMn and C̃vM are the standard and the proposed
Cramér-von Mises statistics, respectively, then under the null hypothesis FX = F ,

|CvMn − C̃vM | →p 0. (22)

Those equivalencies allow us to use the same distribution tables of the standard goodness-of-fit tests for our new
statistics. It means, with the same significance level α, the critical values are same.

4 Numerical studies

We will show the results of our numerical studies in this section. The studies consist of two parts, the simulations of the
proposed estimators F̃X and f̃X , and then the results of the new goodness-of-fit tests K̃S and C̃vM .

4.1 boundary-free kernel DF and PDF estimations results

For the simulation to show the performances of the new distribution function estimator, we calculated the average
integrated squared error (AISE) and repeated them 1000 times for each case. We compared the naive kernel distribution
function estimator F̂X and our proposed estimator F̃X . In the case of the proposed method, we chose two mappings g−1

for each case. When Ω = R+, we used the logarithm function log(x) and a composite of two functions Φ−1 ◦ γ, where
γ(x) = 1 − ex. However, if Ω = [0, 1], we utilized probit and logit functions. With size 50, the generated samples
were drawn from gamma Gamma(2, 2), weibull Weibull(2, 2), standard log-normal log .N(0, 1), absolute-normal
abs.N(0, 1), standard uniform U(0, 1), and beta distributions with three different sets of parameters (Beta(1, 3),
Beta(2, 2), and Beta(3, 1)). The kernel function we used here is the Gaussian Kernel and the bandwidths were chosen
by cross-validation technique. We actually did the same simulation study using the Epanechnikov Kernel, but the results
are quite similar. Graphs of some chosen cases are shown as well in Figure 1.

As we can see in Table 1, our proposed estimator outperformed the naive kernel distribution function. Though the
differences are not so big in the cases of gamma, weibull, and the log-normal distributions, but the gaps are glaring in
the absolute-normal case or when the support of the distributions is the unit interval. The cause of this phenomena
might be seen in Figure 1.

Albeit the shapes of F̃log and F̃Φ−1◦γ are more similar to the theoretical distribution in Figure 1(a), but we have to admit
that the shape of F̂X is not so much different with the rests. However in Figure 1(b), (c), and (d), it is obvious that the

5
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Table 1: AISE (×105) comparison of DF estimators

Distributions F̂X F̃log F̃Φ−1◦γ F̃probit F̃logit

Gamma(2, 2) 2469 2253 2181 - -
Weibull(2, 2) 2224 1003 1350 - -
log .N(0, 1) 1784 1264 1254 - -
abs.N(0, 1) 2517 544 727 - -
U(0, 1) 5074 - - 246 248
Beta(1, 3) 7810 - - 170 172
Beta(2, 2) 6746 - - 185 188
Beta(3, 1) 7801 - - 154 156

(a) X ∼ Gamma(2, 2) (b) X ∼ abs.N(0, 1)

(c) X ∼ U(0, 1) (d) X ∼ Beta(2, 2)

Figure 1: Graphs comparisons of FX(x), F̂X(x), and F̃X(x) for several distributions, with sample size n = 50.

naive kernel distribution function is too far-off the mark, particularly in the case of Ω = [0, 1]. As the absolute-normal,
uniform, and beta distributions have quite high probability density near the boundary point x = 0 (also x = 1 for unit
interval case), the naive kernel estimator spreads this "high density information" around the boundary regions. However,
since F̂X cannot detect the boundaries, it puts this "high density information" outside the support as well. This is not
happening too severely in the case of Figure 1(a) because the probability density near x = 0 is fairly low. Hence,
although the value of F̂X(x) might be still positive when x ≈ 0−, but it is not so far from 0 and vanishes quickly

Remark 4.1 Figure 1(c) and (d) also gave a red-alert if we try to use the naive kernel distribution function in place
of empirical distribution for goodness-of-fit tests. As the shapes of F̂X in Figure 1(c) and (d) resemble the normal
distribution function a lot, if we test H0 : X ∼ N(µ, σ2), we will find the tests may not reject the null hypothesis. This
shall cause the increment of type-2 error.

Remark 4.2 It is worth to note that in Table 1, even though F̃probit performed better, but its differences are too little to
claim that it outperformed F̃logit. From here we can conclude that probit and logit functions work pretty much the same
for F̃X .

6
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Table 2: AISE (×105) comparison of density estimators

Distributions f̂X f̃log f̃Φ−1◦γ f̃probit f̃logit

Gamma(2, 2) 925 744 624 - -
Weibull(2, 2) 6616 3799 3986 - -
log .N(0, 1) 7416 3569 2638 - -
abs.N(0, 1) 48005 34496 14563 - -
U(0, 1) 36945 - - 14235 21325
Beta(1, 3) 109991 - - 18199 28179
Beta(2, 2) 52525 - - 5514 6052
Beta(3, 1) 109999 - - 17353 28935

(a) X ∼ Gamma(2, 2) (b) X ∼ abs.N(0, 1)

(c) X ∼ U(0, 1) (d) X ∼ Beta(2, 2)

Figure 2: Graphs comparisons of fX(x), f̂X(x), and f̃X(x) for several distributions, with sample size n = 50.

Since we introduced f̂X as a new boundary-free kernel density estimator, we also provide some illustrations of its
performances in this subsection. Under the same settings as in the simulation study of the distribution function case, we
can see the results of its simulation in Table 2 and Figure 2.

From AISE point of view, once again our proposed estimator outperformed the naive kernel one, and huge gaps
happened as well when the support of the distribution is the unit interval. We may take some interests in Figure 2(b),
(c), and (d), as the graphs of F̂X are too different with the theoretical ones, and more similar to the gaussian bell shapes
instead. This situation resonates with our claim in Remark 4.1.

4.2 boundary-free kernel-type KS and CvM tests simulations

We provide the results of our simulation studies regarding the new Kolmogorov-Smirnov and Cramér-von Mises tests
in this part. As a measure of comparison, we calculated the percentage of rejecting several null hypothesis when the
samples were drawn from certain distributions. When the actual distribution and the null hypothesis are same, we
expect the percentage should be close to 100α% (significance level in percent). However, if the real distribution does
not match the H0, we hope to see the percentage is as large as possible. To illustrate how the behaviours of the statistics
change, we generated a sequential numbers of sample sizes, started from 10 until 100, with 1000 repetitions for each
case. We chose level of significance α = 0.01, and we compared the standard KS and CvM tests with our proposed
tests.

7
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(a) H0 : Gamma(2, 2) (b) H0 : Weibull(2, 2)

(c) H0 : log .N(0, 1) (d) H0 : abs.N(0, 1)

Figure 3: Simulated percentage (%) of rejecting null hypothesis when the samples were drawn from Weibull(2, 2).

From Figure 3, we see that the modified KS and CvM tests outperformed the standard ones, especially the proposed
KS test with logarithm as the bijective transformation. From Figure 3(a), (c), and (d), KS test with log function has
the highest percentage of rejecting H0 even when the sample sizes were still 10. However, even though the new CvM
test with logarithmic function was always the second highest in the beginning, C̃vM log was also the first one that
reached 100%. On the other hand, based on Figure 3(b) we can say all statistical tests (standard and proposed) were
having similar stable behaviours, as their numbers were still in the interval 0.5%− 2%. However at this time, C̃vM log

performed slightly better than the others, because its numbers in general were the closest to 1%.

Similar things happened when we drew the samples from the standard log-normal distribution, which our proposed
methods outperformed the standard ones. However this time, the modified KS test with g−1 = log always gave the best
results. Yet, we may take some notes from Figure 4. First, although when n = 10 all the percentages were far from 1%
in Figure 4(c), but after n = 20 every tests went stable inside 0.5%− 2% interval. Second, as seen in Figure 4(d), it
seems difficult to reject H0 : abs.N(0, 1) when the actual distribution is log .N(0, 1), even K̃Slog could only reach
100% rejection after n = 80. While, on the other hand, it was quite easy to reject H0 : Gamma(2, 2) as most of the
tests already reached 100% rejection when n = 20 (similar to Figure 3(a)).

Something more extreme happened in Figure 5, as all of the tests could reach 100% rejection rate since n = 30, even
since n = 10 in Figure 5(d). Though seems strange, the cause of this phenomenon is obvious. The shape of the
distribution function of Beta(1, 3) is so different with other three distributions in this study, especially with Beta(3, 1).
Hence, even with small sample size, the tests could reject the false null hypothesis. However, we still are able to claim
that our proposed tests worked better than the standard goodness-of-fit tests, because before all the tests reached 100%
point, the standard KS and CvM tests had the lowest percentages.

From this numerical studies, we can conclude that both the standard and the proposed KS and CvM tests will give the
same result when the sample size is large. However, if the sample size is small, our proposed methods will give better
and more reliable results.

5 Conclusion

This article has proposed new boundary-free kernel-smoothed Kolmogorov-Smirnov and Cramér-von Mises tests when
the data is supported on a proper subset of the real line. First we constructed a new boundary-free estimator of the
distribution function using bijective transformations (we also intriduced a new boundary-free density estimator). After

8
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(a) H0 : Gamma(2, 2) (b) H0 : Weibull(2, 2)

(c) H0 : log .N(0, 1) (d) H0 : abs.N(0, 1)

Figure 4: Simulated percentage (%) of rejecting null hypothesis when the samples were drawn from log .N(0, 1).

(a) H0 : U(0, 1) (b) H0 : Beta(1, 3)

(c) H0 : Beta(2, 2) (d) H0 : Beta(3, 1)

Figure 5: Simulated percentage (%) of rejecting null hypothesis when the samples were drawn from Beta(1, 3).

9
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deriving the formulas of the bias and the variance of the estimator, we defined the new goodness-of-fit tests. The
properties of our proposed methods have been discovered and discussed. Moreover, the results of the numerical studies
reveal superior performances of the proposed methods.
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101–106

Winter, B. B. 1973. Strong uniform consistency of integrals of density estimators. Canadian Journal of Statistics 1:
247–253. doi: 10.2307/3315003

Yamato, H. 1973. Uniform convergence of an estimator of a distribution function. Bulletin of Mathematical Statistics
15: 69–78

Yukich, J. E. 1989. A note on limit theorems for perturbed empirical processes. Stochastic Process and Applications 33:
163–173. doi: 10.1016/0304-4149(89)90073-2

Zierk, J. et al. 2020. Reference interval estimation from mixed distributions using truncation points and the Kolmogorov-
Smirnov distance (kosmic). Scientific Reports 10: 1704. doi: 10.1038/s41598-020-58749-2

Appendix

proof of theorem 2.1

Utilizing the usual reasoning of i.i.d. random variables and the transformation property of expectation, with Y =
g−1(X1), we have

E[F̃X(x)] =

∫ ∞
−∞

W

(
g−1(x)− y

h

)
fY (y)dy

=
1

h

∫ ∞
−∞

FY (y)K

(
g−1(x)− y

h

)
dy

=

∫ ∞
−∞

FY (g−1(x)− hv)K(v)dv

=

∫ ∞
−∞

[
FY (g−1(x))− hvfY (g−1(x)) +

h2

2
v2f ′Y (g−1(x)) + o(h2)

]
K(v)dv

= FX(x) +
h2

2
c1(x)

∫ ∞
−∞

v2K(v)dv + o(h2),

and we obtained the Bias[F̃X(x)]. For the variance of F̃X(x), we first calculate

E

[
W 2

(
g−1(x)− g−1(X1)

h

)]
=

2

h

∫ ∞
−∞

FY (y)W

(
g−1(x)− y

h

)
K

(
g−1(x)− y

h

)
dy

= 2

∫ ∞
−∞

[FY (g−1(x))− hvfY (g−1(x)) + o(h)]W (v)K(v)dv

= FX(x)− 2hg′(g−1(x))fX(x)r1 + o(h),

and we got the variance.
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proof of theorem 2.3

For some δ > 0, using Hölder and Cramér cr inequalities, we have

E

[∣∣∣∣W (
g−1(x)− g−1(X1)

h

)
− E

{
W

(
g−1(x)− g−1(X1)

h

)}∣∣∣∣2+δ
]

≤ 22+δE

[∣∣∣∣W (
g−1(x)− g−1(X1)

h

)∣∣∣∣2+δ
]
.

But, since 0 ≤W (v) ≤ 1 for any v ∈ R, then

E

[∣∣∣∣W (
g−1(x)− g−1(X1)

h

)
− E

{
W

(
g−1(x)− g−1(X1)

h

)}∣∣∣∣2+δ
]
≤ 22+δ <∞.

Also, because V ar
[
W
(
g−1(x)−g−1(X1)

h

)]
= O(1), we get

E

[∣∣∣W (
g−1(x)−g−1(X1)

h

)
− E

{
W
(
g−1(x)−g−1(X1)

h

)}∣∣∣2+δ
]

nδ/2
[
V ar

{
W
(
g−1(x)−g−1(X1)

h

)}]1+δ/2
→ 0

when n→∞. Hence, by Loeve (1963), and with the fact F̃X(x)→p FX(x), we can conclude its asymptotic normality.

proof of theorem 2.4

Let FY and F̂Y be the distribution function and the naive kernel distribution function estimator, respectively, of
Y1, Y2, ..., Yn, where Yi = g−1(Xi). Since F̂Y is a naive kernel distribution function, then Nadaraya (1964) guarantees
that supy∈R |F̂Y (y)− FY (y)| →a.s. 0, which implies that

sup
x∈Ω
|F̂Y (g−1(x))− FY (g−1(x))| →a.s. 0.

However, because FY (g−1(x)) = FX(x), and it is clear that F̂Y (g−1(x)) = F̃X(x), then this theorem is proven.

proof of theorem 2.5

Using the similar reasoning as in the proof of Theorem 2.1, we have

E[f̂X(x)] =
1

hg′(g−1(x))

∫ ∞
−∞

K

(
g−1(x)− y

h

)
fY (y)dy

=
1

g′(g−1(x))

∫ ∞
−∞

fY (g−1(x)− hv)K(v)dv

=
fY (g−1(x))

g′(g−1(x))
+
h2f ′′Y (g−1(x))

2g′(g−1(x))

∫ ∞
−∞

v2K(v)dv + o(h2),

and we obtained the bias formula. For the variance, first we have to calculate

1

hg′(g−1(x))
E

[
K2

(
g−1(x)− Y

h

)]
=

1

g′(g−1(x))

∫ ∞
−∞

fY (g−1(x)− hv)K2(v)dv

= fX(x)

∫ ∞
−∞

K2(v)dv + o(1),

and the rests are easily done.
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proof of theorem 3.2

First, we need to consider the following inequality

|KSn − K̃S| =

∣∣∣∣sup
v∈Ω
|Fn(v)− F (v)| − sup

z∈Ω
|F̃X(z)− F (z)|

∣∣∣∣
≤ sup

x∈Ω

∣∣∣|Fn(x)− F (x)| − |F̃X(x)− F (x)|
∣∣∣

≤ sup
x∈Ω
|Fn(x)− F (x)− F̃X(x) + F (x)|

= sup
x∈Ω
|F̃X(x)− Fn(x)|.

Now, let Fn,Y and F̂Y be the empirical distribution function and the naive kernel distribution function estimator,
respectively, of Y1, Y2, ..., Yn, where Yi = g−1(Xi). Hence, Omelka et al. (2009) guarantees that supy∈R |F̂Y (y)−
Fn,Y (y)| = op(n

−1/2), which further implies that

sup
x∈Ω
|F̂Y (g−1(x))− Fn,Y (g−1(x))| →p 0

with rate n−1/2. But, F̂Y (g−1(x)) = F̃X(x) and Fn,Y (g−1(x)) = Fn(x), and the equivalency is proven.

proof of theorem 3.3

In this proof, we assume the bandwidth h = o(n−1/4). Let us define

∆n = n

∫ ∞
−∞

[F̃X(x)− F (x)]2dF (x)− n
∫ ∞
−∞

[Fn(x)− F (x)]2dF (x).

Then, we have

∆n = n

∫ ∞
−∞

[
F̃X(x)− F (x)− Fn(x) + F (x)

] [
F̃X(x)− F (x) + Fn(x)− F (x)

]
dF (x)

= n

∫ ∞
−∞

1

n

n∑
i=1

[W ∗i (x)− I∗i (x)]
1

n

n∑
j=1

[
W ∗j (x) + I∗j (x)

]
dF (x),

where

W ∗i (x) = W

(
g−1(x)− g−1(Xi)

h

)
− F (x) and I∗i (x) = I(Xi ≤ x)− F (x).

Note that if i 6= j, Wi(·) and Wj(·), also I∗i (·) and I∗j (·), are independent.

It follows from the Chauchy-Schwarz Inequality that

E(|∆n|) ≤ n
∫ ∞
−∞

√√√√√√E

{ 1

n

n∑
i=1

(W ∗i (x)− I∗i (x))

}2
E


 1

n

n∑
j=1

(W ∗j (x) + I∗j (x))


2
dF (x).

Let us define the bias

bn(x) = E

[
W

(
g−1(x)− g−1(Xi)

h

)]
− F (x) = O(h2).

Hence, it follows from the independence that

E

{ 1

n

n∑
i=1

(W ∗i (x)− I∗i (x))

}2
 = E

{ 1

n

n∑
i=1

(W ∗i (x)− bn(x)− I∗i (x))

}2
+ b2n(x)

=
1

n
E[{W ∗1 (x)− bn(x) + I∗1 (x)}2] + b2n(x).
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Furthermore, we have

E[{W ∗1 (x)− bn(x)− I∗1 (x)}2] = E[{W ∗1 (x)− I∗1 (x)}2]− 2bn(x)E[W ∗1 (x)− I∗1 (x)] + b2n(x)

= E[{W ∗1 (x)}2 − 2W ∗1 (x)I∗1 (x)− {I∗1 (x)}2]− b2n(x).

It follows from the mean squared error of F̃X(x) that

E[{W ∗1 (x)}2] = F (x)[1− F (x)]− 2hr1g
′(g−1(x))fX(x) +O(h2).

From the definition, we have

E[W ∗1 (x)I∗1 (x)] = E

[
W

(
g−1(x)− g−1(X1)

h

)
I(X1 ≤ x)− F (x)W

(
g−1(x)− g−1(X1)

h

)
−F (x)I(X1 ≤ x) + F 2(x)

]
= E

[
W

(
g−1(x)− g−1(X1)

h

)
I(X1 ≤ x)

]
− F 2(x)− bn(x)F (x).

For the first term we have

E

[
W

(
g−1(x)− Y

h

)
I(Y ≤ g−1(x))

]
=

∫ g−1(x)

−∞
W

(
g−1(x)− y

h

)
fY (y)dy

= W (0)FY (g−1(x)) +

∫ ∞
0

FY (g−1(x)− hv)K(v)dv

= W (0)F (x) + F (x)

∫ ∞
0

K(v)dv +O(h).

Since K(·) is symmetric around the origin, we have W (0) = 1/2. Thus, we get

E[W ∗1 (x)I∗1 (x)] = F (x)[1− F (x)] +O(h).

Next we will evaluate E
[
{n−1

∑n
i=1(W ∗i (x) + I∗i (x))}2

]
. Using the bias term bn(x), we have

E

{ 1

n

n∑
i=1

(W ∗i (x) + I∗i (x))

}2
 = E

{ 1

n

n∑
i=1

(W ∗i (x)− bn(x) + I∗i (x))

}2
+ b2n(x)

=
1

n
E[{W ∗1 (x)− bn(x) + I∗1 (x)}2] + b2n.

Based on previous calculations, we get

E

{ 1

n

n∑
i=1

(W ∗i (x) + I∗i (x))

}2
 = O

(
1

n
+ h4

)
.

Therefore, if h = o(n−1/4), we have E(|∆n|) = o(1). Using the Markov Inequality, we can show that ∆n →p 0, and
then two statistics are equivalent under H0.
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