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The supplementary material contains (i) the proofs of Proposition 3.1, Theorem 3.1, Theorem 4.1, Theorem 4.2, and
Theorem 4.3; (ii) the detailed information on the parameter values of the simulation log linear models used in Section
5.1.1; (iii) the simulation results of the simulation scenario [I] (conditional independence) and [II] (linear relationship)
mentioned in Section 5.1.1; and (iv) the detailed information on the parameter values of the quadratic latent variable

regression models and the discrete marginal distributions used in Section 5.2.

S1 Proof of Proposition 3.1

Proof. From Eq. (3.10), we have the following identities,

2 0_2

_ Vi 1 2 _ wu 1 2

Oypey = Oy — = Oy ~Pvu)- Oywweu = Oww — = Oyww — Pwu
O uu O uu

_ O-VMO-WM

Oyweu = Oypw — .
O-MM
Therefore, we have
_ Tvweu _ __ Pvw = pPvuPwu
Pvweu =

‘/O-vv'u \/O-Ww’u \/1 _p%/U \/1 _p€VU



ZHENG WEI AND DAEYOUNG KIM

S2 Proof of Theorem 3.1

(I). If Y and Z are conditionally independent given X, then p jx; = pjipw; for all i, j, and k.

Then the numerator of p‘C,W, y €quals

I J K J K
Z Z Z Vi~ Z ViPjii [Wk - Z Wk’pk’li) Pijk
ijk j=1 k=1 j=1 k=1
I J K J K
= Z Z Vi~ Z ViPjli [Wk - Z Wk/pk’li) PjkiiP+ i
i=1 j=1 k=1 j=1 k=1
I J K J K
= Z Z Z Vi~ Z ViPjli Pj|i[ Z Wi Pku)Pku
i=1 j=1 k=1 j=1 k=1
1 J J K K
= Z Z {Vj Z ViPj z)l’jz Z [ Z kaPk'z)th
i=1 j=1 j=1 k=1 k=1
L (J J J K
= Z (Z ViDPjli — Z Pl Z Vj’pj’li) {Z WiPki — Z Phli Z Wk’pk’li] p
i=1 \j=1 =1 =1 = k=1 k=1
1 JJ J] " K
= ( ViDji — Z ViPy |z} [Z WiPii — Z Wk'pk’lt] =0
i=1 \j=1 j=1 k=1
By same argument, we can show nglU:u,‘ =0foreachi=1,...,1I O

(II). Because the law of total variance, we have
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Var(E([ v =E([ W ]) - zemiw - Ew))| U))

—

= Var([ W E([ X,])—zlzz;;(U—E(U)))—

(Var(

= Z:YZ‘X - E(ZVWIU)

—_—

~E(| ¥ ))-zusiw - By v))

Therefore, Zyz.x = E (Zyw) if and only if
Var(E([ wl-E( W] -Zu=aw- E(U))| )) =0,

which in turn is equivalent to

Vv -
E(| v ||v)-E(vwr) -zezdw - By = B
for some 2 X 1 constant vector B almost surely. Thus, the results applies by setting f =
2122521 and

a=E(| y |)+B-ZuZnEQ).
(III). Let Y be a binary variable with two categories {y;, y»} and the corresponding p.m.tE'

P(Y = y) = p.;. and P(Y = y,) = p.,., and denote V = Fy(¥). Then, the range of the

marginal distribution of Yis Dy = {0, ¥, 1}, where ¥ = p,.. =1 — v, and we have

EV) = pl+pp.=plao+(=pi)=(pie. = D+ pree = pho. + pre. = E(V).

Var(V) = (pioo — EV)?pree + (1 = E(V)Y’pyee = phoupiee + PRoupi..

Pl--Pg--(Pz-- +Ppiee) = Pl--Pg--

Similarly, we have Var(V) = p?, .D2--. To show this proposition, it will be enough to show
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that the correlation satisfying pyy, = —pyw, which is equivalent to show

E(VW) - E(V)E(W) _ E(VW) - E(V)E(W)

VVar(V) vV Var(V)

(S2.1)

Eq. (S2.1) is equivalent to show

K K K K
Di-- kZI WPk + kzl wipa — E(V)E(W) DP2e+ kzl WiPag + kZI wipie — E(V)E(W)

\[P1+P3.. NI

which in turn is equivalent to

K K K K
Diee 1;1 Wik + 12‘1 wipa — E(V)E(W) Do 1;1 Wik + g‘l wipik — E(V)E(W)

= - — (S52.2)
P2~ Pie-
To show Eq. (S2.2), it will be enough to show
K K
(Pi.. + p2es) Z Wwipik + (Pres + p3..) Z wipa — E(V)E(W) =0, (52.3)

k=1 k=1

which is true because

K K
(pi.. + pa-r) Z Wipix + (P1e+ + P3..) Z wipa — E(V)E(W)
k=1 k=1

K K
= E(V) ) wipi + E(V) Y wipai = E(V)E(W) = E(V)E(W) = E(V)E(W) = 0.
k=1 k=1

This implies the proposition holds. m|
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(IV). From the definition of py;.x, it is straightforward to see that if the order of X is
permuted randomly, all the sums in the numerator and denominator of pyz.x will not

change. O

S3 Proof of Theorem 4.1

Proof. We denote the relative frequencies of the observed marginal two-way J X K con-

tingency table by
Pyz={pu-1j=1.....0k=1,....K}.
Define py, to be the (/K) X 1-dimensional estimator for p,, where
Pyz = (P11es Pares- ooy Pries oo »ﬁJK')T'

Then the expectation and the covariance matrix of p,, are E[p,,] = py, and Cov (py,) =
(diag(pyz) — pYZp§Z) /n. Note that np j. and np ;. where (j, k) # (j', k") follows a trino-
mial distribution with parameters (pj., pjx+, 1 — pjxs — pyw+) and Cov(np ., npyp.) =

—npjxpyr-. Therefore, we have

\/ﬁ(pYZ ~ Pyz) B’ Nk (0, (diag(l’yz) - Pyzp§z)) ;
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where N,(u,X) denotes the d-dimensional multivariate normal distribution with mean u
and covariance matrix X.

As the proposed pairwise correlation of (Y, Z), pyz, is a function of p,,, denote it
as pyz = hyz(py,). We now calculate the gradient for the function hy;. Let T(py,) =

K
ViWiPjke — Myl be the numerator of pyz, and denote
-1

M~

j=1k

J K
B(py) = | D (i = m)°pje- J D 0k = 1) e
j=1 k=1

to be the denominator of py;,.

Given s = 1,...,Jand t = 1,...,K, we have (i) 0v;/0py. = 1 for j > s and

0v;j/Opgy. = 0 for j < s; (i1) Owi/Opy. = 1 for k > t and Owy/Opy. = 0 for k <

J K
(iii) O, /Opye = vy + 3, pjo- and A, /Opye = w; + 3, pei.. By (i)-(iii), we have
k=t

J=s
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Ops- ey Dste Ops-
=1 K

_1 K
OV jWiD jice OV Wip jie OV Wi Psie OVsWiPske
_ PP N0 N B N TP N TP (3.4
; ' = Op s ) Opsre o Ops-

s—1 K t—1 K
= 0+ Z Vjpjk' + WiPDske + (szt + Z(VS + Wk)Psk')

j=1 k=t k=1 k=t

J K K J
* Z WP ji + Z Z ((Vj + Wk)ij-) — My (Wz + Z P-k-} - (Vs + Z Pj--]#w
; ' k=t

Jj=s

To calculate %, the following equalities will be useful :

00,

J J
Gzl(vj—uv)zpj.. ﬁ(zlvﬁpj.. —,ug)
J= U=

apst’ apst' B apst'
J

J J

0v; Opje.
E 2v-—Jp-.. + E vi—1 —2u, vy + E Do
j=1 japst’ ! ]apst' j=s !

J=1

J J
Z 2vipje. + v% - 2u, [vs + ij..],
J=s j=s

K
P 3kZl(Wk — )’ Pege K K
Tww  _ k= =) 2wipere + W =21, Wi+ Y pere|.
Opgi Ops:e kz_:‘ e ’ ( t ; ‘
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By the above two identities, we have

0B(p) T |8 Y
8p tYZ — ww |:Z vjpj'° + V? —_ 2/1\/ [vs —+ Z pj..] (83-5)

st® — j=s

o K =
+ - 2Wkp'k' + W2 - Zluw [W + p'k']
2 T ; t t ;‘
Since we have
T (py,) 53(17 )
Oprpry) e P02~ oy 017 ($3.6)
0P B(m) ’ '

T (pyz) 9B(pyz) : : . .
where =522 and = £ are given in Eq. (S3.4) and (S3.5), respectively, the gradient for

the function Ay, is

T
Vhyz(pyz) = [—pyz, T PYZs s #pyz] . (S3.7)

Thus, by the delta-method,

D .
Vn(pyz - pyz) = Ny (0, VhYZ(pyz)T (dlag(Pyz) - Pyzl’fz) VhYZ(pyz))~

S4 Proof of Theorem 4.2

Proof. We denote the relative frequencies of the observed three-way J x K X I contingency

table by

P={pulj=1....Jk=1. . Ki=1...1}
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Define p to be the (JKI) x 1-dimensional estimator for p where

A

A N A N A T
P =PutPauts-- s Pots Prats -+ Dikt)

Then the expectation and the covariance matrix of p are E[p] = p and Cov (p) = (diag(p) - ppT) /n,

and thus

Vi (p-p) 3 Noxs (0, (diag(p) - PPT))-

The proposed partial correlation of Y and Z given X, py.x, is a function of p and we
denote pyz.x = hyz.x(p). We now calculate the gradient for the function hyz.x. Denote

Tyz.x(p) to be the numerator of pyz.y, and

I K J K
Tyz.x(p) = Z Z (Vj - Z Vj’pj’li} [Wk - Z Wk'pk’li] Djki
; ' k=1

i=1 j k=1 j=1

J K
j jkli — [Z Vj'pj’li] ( Wk'pk'li]] Deei
=1 k=1 j=1 k=1
K I (]
Z ViWkPjke — Z [Z Vjpjli] (Z Wkpk|i] Deei-

j=1 k=1 i=1 \ j=1 k=1

J
=1

M- 1M
A/—\_M\
M=

E
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We denote By;.x(p) to be the denominator of py.x,

I J I K
Byz.x(p) \ Z Z (Vj - Z Vj’Pj/lz) Pjeis Z Z (Wk - Z Wk'Pk/lz) Deki

i=1 k=1

= \zjlvfpj ZI:(Zv,pﬂ,)z pesi EK:W§p-k-—2(ZK:wkpku] 2

k=1

Givens=1,...,J,t=1,...,K,and r = 1,...,1, we have (i) dv;/dpy, = 1 for j > s and

0v;/Opgr = 0 for j < s; (1) Owy/Ops, = 1 for k > t and 0wy /dpy, = 0 for k < ¢; (iii)

Dijis forj>s,i#r Diiis fork>ti#r
Pjti ; ; Deki .
pjli_V./[#, forj>s,i=r pk\[—Wk[T, fork>ti=r
ovipji _ g OWiphi o ork
- 4y PN for j=s,i=r> = +w— R fork=ti=r
apstr Pijli J 2_.’ J apsl‘r Dki k ..
_V‘/[])’ZJ I., forj<svi:r _Wkpzl‘i., f0rk<l,i:r
0, for j<s,i#r 0, fork <t,i#r
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By (1)-(ii1) above, we have

OTyz-x(p) SR OViWiD jk L9 . -
— = — - vipji || ) WPui | Pe-i
T 30 Ve e v | DIV DINCEE
j=1 k= i= i= =
J K J K J K
ov; owy op i
= Wi D jk + ViDjk + ViWg
PPN DI el DI W

1 P J K L (J o (&
- Zvjpjli Zwkpk\i Pei— Z Zvjpjli v Zwkpkli Peei
1 (9 str —1 =1 i=1 i=1 6pstr k=1
i J ! J
J K J K J K
= DD Wi+ ) D Vil + Vi = (Z v,-pﬂr] (Z wkpldr) (S4.8)
j=s k=1 j=1 k=t j=1 k=1
s— p p J p K
- Vj ; + Dgr T Vs - 2 + Z (pjlr Vj é ) (Z Wkpklr]p r
=1 r o j=s+1 r/ 1 k=1
l J K
- Z Z Pji (Z Wkpku) Deei
i#r L j=s k=1
\ < Pk - P Pk
r *°r tr
- (Z V./‘ler] Wik Pyr Wy 3 + (P/qr — Wi ) Deer
=1 k=1 r Peer k=t+1 r
1 (J K
B Z [Z V/Pm] Z Diii | P+i
i#r \ j=1 k=t
To calculate aBYf—'tX(p), the following equality will be useful :

5 U I (J 2
ViDies — Vipii oo
(,21 iPi ;1 (gﬁ Jp]l) P ) v,

J J
= = Opje-
Tppoy = — = Wi—Lpi+ > VV—1454.9)
aps" ]Z:; japstrp] ]Z:; ! 0 str
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I J J p I, 2 e
0[S (522 ) - 3 (S (2229
i=1 Jj=1 j=1 str i=1 \ j=1 str
J J J
- S, +vs_Zz[zv,.pﬂ,](zv,pm)p |
J=s i#r j=1 Jj=s

J s—1 J
pj'r Deer = Dser Pj'r
-2 E ViDir (—V~ )+psr+vs—+ (p~|r—V-—) peer
[jzl i ][ P2, p? -4 m e,

J=1

1

Ko K 2
92 WiDeke = 2| X wipui| peei
k=1 k=1

i=1

wweu

Opsir
K K K
= D 2wipue +w = D2 [Z wkpk|,-] [Z wkpku]p. y (S4.10)
k=t i£r k=1 k=t
C (P Por =P | N P
-2 [Z Wkpklr)[ (_Wk ) V) + Pir + Wtrz—tr + Z (pklr - sz_r)) ooy
k=1 k=1 Peer Peer k=1 Peer
K 2
- (Z Wkpklr) .
k=1
By the above two identities, we have
OByz. T yww VO v
OBrzx(p) - _ o+ o e (S4.11)

opsr 240w 2T "
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where o’

veu

and ¢7,,., are given in Eq. (S4.9) and (S4.10), respectively. As we have

OTyz+x(p) OByz+x(p)
dprzxp) o Brzex(py) — 5o Trzex(p)

apstr B BYZ'X(p)2

, (S4.12)

OTyz+x(p) OByz+x(p) . . . .
where === and —;—= are given in Eq. (S4.8) and (S4.T1), respectively, the gradient

for the function hyz.x(p) is

T
Vhyz.x(p) = = [#ﬁnpyz.x’ ﬁi”pyzox, ooy ﬁpyz.x] . (S413)

Thus, by the delta method, we obtain

‘/f_l(ﬁYz-X — Pyz+x) £> Ny (O, Vhyz-X(P)T (diag(p) - PPT) VhYz-X(P))-

S5 Proof of Theorem 4.3

Proof. We denote the relative frequencies of the observed three-way J X K X I contingency
table by P = {pui|j=1,....J.k=1,....K.i=1,....1}. Define p to be the (JKI) X 1-

. . . A A A A A A T
dimensional estimator for p where p = (P11, Pai1s--+» Pii1> P121s - - - Pki) -

As shown in the proof of Theorem 4.2, we have

\/E(IA’ —p) 2) Nykr (0, (dlag(P) _ppT))
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After simple calculations, we obtain an alternative formula for the estimator given in

Eq. (4.23):
2 2 VWD jui — (Z Vjpjli)(z Wkpkli)
R j=1k=1 =1 k=1
Pyzix=x; = .
I I 2 |k K 2
Z] ViPji ~ (Z 14 p/ll) Z WiDrii — (21 Wkpkli)
J= ,]: =1 k=

The proposed conditional correlation of Y and Z given X, pyzx=y,, 1S a function of
p and we denote pyzx=y, = hyzx=x(p). We now calculate the gradient for the function

hyzx=x,. Denote Tyzx-.,(p) to be the numerator of pyzyx-,,, and

J K J K
Tyzix=x(p) = Z Z VWD ki — [Z Vjpjli) [Z Wkpkli] -
=1 =1

j=1 k=1

We denote Byzx-,.(p) to be the denominator of pyzx-,.,

J J 2 |k K 2
Byzx-x,(p) = Z V?P jli — [Z v ijli] Z WiPri — (Z Wkpkli)
=1 P

J=1 J=1

Given s = 1,...,J,t = 1,...,K,and r = 1,...,1, and by (i)-(iii) in the proof of

Theorem 4.2, we have

OTyzx=x(P) Z Z OViWiDjui
apstr j=1 k=1 apstr apstr

(S5.14)

oS

j=1 k=1
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J K J K J K
Deer — Dstr ViWkD jkr
= ZZWkpjk|i+ZZv,p,k‘l+ vsw,(z—t)_ZZ(J J ) I(r = i)
j=s k=1 j=1 k=t Deey JES k#t p"r
[( s—1
Djei ps i Pjei .
- [Z [_Vj%] + pgi t Vs + Z [pjll V; ; ]) I(r=1)
L\ j=1 p..; Jj=s+1 ]
J K J
+ Z Pji) I(r # i)} (Z Wkpku] - [Z Vijli]
J=s k=1 =
M/ -1 Do K
X [ [—wk }+p,|l + W + Z (p;d, wkT))I(r = i)
1 P..; i k=t+1 i
K
+ Z pkli) I(l" * l)ji
k=t
where I(-) is the indicator function.
To calculate %M the following two equalities will be useful :
I J 2 I J
| X vipji— (Z Vjpjli) 5(2 Vjpj|i) J 5(2 Vjpjli)
o = j=1 j=1 _ V=l _9 Zv'p“ Jj=1
i OPsur OPsur =) gl OPsur
J J
op J d ( % Vjpjli) d ( % Vjpjli)
P I SV L LI 1 S | B A G Vs B M
Z el Z; japsz JZ:; el Opgir Opir
J
JA(j=s ;
= 22v1p1|,+1(r—z)(2 2Pl = > ) =P ] (S5.15)
j=s j=1 p"i

—Z[Zv]pﬂl] {JZI[ ]+ps|l+vb p“+il[p,|l - )Jl(r-z)



ZHENG WEI AND DAEYOUNG KIM

J
j=s

K K 2
(9(2 WiPkli — (Z Wkpkli) )
k=1 k=1

/ —
wwlu; —

Opsir
(k= 1) = pg
_ ZZWkpk|, +1(r = l)(z Pl =0 = p ") (S5.16)
k=t k=1 p..;
K t—1 p K
-2 [Z Wkpki) [ ( L = )+pt|l pw Z (pklz Wk D I(r=1)
k=1 k=1 p..; k=t+1

K
+ [Z pkli) I(r * l)
k=t

By the above two identities, we have

aBYZIX:)C,- (P) _ \/O-wwlu,- , \IO'WM ,
- Ty + 3 ——O iy (8517)
apstr 2 Vo-vvlui ! 2 m !

where o, and o7 -are given in Eq. (S5.15) and (S5.16), respectively. As we have

0Tyzix= Tyzix=x,(P) (P) 0Byz)x=x,(P)
0pyzix=x,(P) oo Brzix= w(p) — “orm yzix=x(P)

Opir Byzix=x, (P)2

, (S5.18)

OTyz)x=x;(P) d OByzix=x;(P)

where —7 == and —; == are given in Eq. (S5.14) and (S5.17), respectively, the gra-

dient for the function hyzx-,(p) is

Vhyzix=x,(p) = (55.19)

5],“]PYZ|X xi> apzanZlX Xis w05 3y PYZ|X=x;

> 61’11(1
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Thus, by the delta method, we obtain

A D .
\/E(me:xi - PYZ|X=x,~) — N; (0, VhYZ|X=x,-(p)T (dlag(p) - I’PT) VhYZ|X=x,-(p)) .

S6 Simulations

S6.1 Simulation Design

In this section, we provide detailed information on how the simulation study in Sec-
tion 5.1.1, of the paper was designed.

We utilized the homogeneous linear-by-linear association loglinear model given in
Eq. (5.25) to simulate the three-way contingency tables for conditional independence, lin-
ear pattern with different magnitude of association levels, and monotone nonlinear pattern,
respectively. To simulate tables with nonmonotone nonlinear pattern, we applied the ho-
mogeneous column effect loglinear models with quadratic terms in Eq. (5.26).

(I) For conditional independence scenario, we set S = 0 and used the values given in
Table for the parameters in the homogeneous linear-by-linear association loglinear

model of Eq. (5.25).
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Table S6.1: Parameters in the homogeneous linear-by-linear association loglinear model with conditional independence
in each table size.

Table size

IxKxI 3x3x2 S5x5x%x2
A 7.0644 8.4956
/l§ —1.9457 —2.5559
/lj* [AY, /13Y] =[-0.3719, -0.9729] [/lY,/lé’, /l}(,/lé’] =[-0.2321,-0.4474,-0.7219, -1.2779]
/lf [/lf, /lg] =[-0.3719,-0.9729] [/lZ,/lg, /lf, /lg] =[-0.2321,-0.4474,-0.7219, -1.2779]
/IJYZX [/lg, Aggf] =10.9729, 1.9457] [/lg,/lg,/lg,/lg] =10.7881,1.2779,1.7678,2.5559]
/lfzx ugg,zgg] =10.9729, 1.9457] ugg,ag,ag,ﬁg] =10.7881,1.2779, 1.7678, 2.5559]

(IT) For strong, moderate, and weak linear pattern scenarios, we employed the values

in Tables (S6.2), (S6.3), (S6.4)) for the parameter values in the homogeneous linear-by-

linear association loglinear model of Eq. (5.25), respectively.

Table S6.2: Parameters in the homogeneous linear-by-linear association loglinear model for strong linear pattern in each

table size.
33212337 3x3x2 5%5x%2
1 2.19503 22225
x 0.0594 202213
ar [V, ] =[<6.7331,—18.0214] [}, A1, AT, 7] = [~3.6486, —9.4986, —17.8784, —28.7676]
i [AZ, 27 = [<6.3978,—17.2230]  [A4, AZ, AZ, AZ] = [—4.1540,-9.8150, —18.3336, ~29.2190]
A [AVX, A7X] = [0.2819, 0.1408] [, 47X, 27X, 737 = [0.1081, —0.5004, —0.8620, ~0.9104]
XX [AZX, AZX] = [-0.3879, —0.4658]  [AZX, 12X, 42X 1ZX] = [0.5959,0.5089, 0.9146,0.3767]
B 43937 2.4069

Table S6.3: Parameters in the homogeneous linear-by-linear association loglinear model for moderate linear pattern in

each table size.

Ea:lﬁ(sf; 3x3%2 5%5x%2
1 32154 2.0376
o ~0.1002 Z0.1244
A [, 2] = [-2.0816,—5.4615] [}, AL, A], ] = [~1.0063, —2.6788, —4.2281,—6.6602]
X [AZ, 1] = [-2.3021,-6.0437]  [AZ, 2, A%, %] = [0.7338,-1.9922, -3 4758, =5.7510]
A [, ] = [<0.6283,-0.4706]  [ALX, AT, 11X, 7X] = [1.0111, 1.0965, 0.4547,0.3917]
A2 [AZX, AZX] = [0.4654,0.2857] [AZX 2% 42X AZX] = [<0.7310, —0.4222, —1.2901, —0.8818]

B

1.4254

0.5107
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Table S6.4: Parameters in the homogeneous linear-by-linear association loglinear model for weak linear pattern in each
table size.

Table size

IxKx]I 3x3x%x2 S5Xx5%x2
A 4.2398 2.1281
/l;( -0.4028 -0.2002
/lJY. (A7, /13Y] =[-0.2655,-0.9196] [/ly,/l3y,/11,/15y] = [-0.0020, 0.5666, —0.6436, —1.5774]
/lf [/lZ,/lg] = [-0.9059, —0.9856] [/IZ,/lg,/lf,/lf] =[-0.3078,-0.3312,—-0.8833, —1.1794]
/lfzx [/lZYZX, /lg] =10.2618,0.1693] [AZYZX,/lg, /l}g,/lé’zx] =[-1.0055,0.0015, —0.5140, —0.8016]
/lfzx (A5, /lg,f] =1[0.4507,-0.2031]  [A5), /lfg‘/lﬁ‘ /lg] =10.3379,0.0744, 0.5459, 0.6586]
B 0.2581 0.0956

(IIT) For monotone nonlinear pattern scenario, we chose the unit-spaced scores v; =
1,...,J for Y and the quadratic spaced scores w;, = 12,...,K? for Z, and used the pa-
rameter values in Tables for the homogeneous linear-by-linear association loglinear

model in Eq. (5.25).

Table S6.5: Parameters in the homogeneous linear-by-linear association loglinear model for monotone nonlinear pattern
in each table size.

Table size

IxKxI 3x3x%x2 S5x5x%x2
A 4.0401 3.8439
/l§ 0.1904 0.0899
/l}’ [ﬂ’ﬂﬂ%’] =[-2.9248,-7.6477] [/ly,/lé’,/lf,/le] =[-0.8954,-2.6147,-5.1746,—-8.3871]
/lf [/lz,/lf] =10.6519, —3.9253] [2%, /lf, /lf,/lg] =[1.4865, 1.6237,0.2866, —4.0266]
/lezX [/lé'zx,/lg] =10.2357,0.2763] [/lg,/lg,/lfzx,/lg] =10.0923,0.1322,0.1722,0.2299]
/lfzx [/IZ‘, /lg] =[-0.5134, -0.4899] ug;,ag, /1425( /15‘] =[-0.4287,-0.4606, —0.4035, —0.3777]
B 0.2961 0.0548

(IV) For nonmonotone nonlinear pattern scenario, we utilized the homogeneous col-
umn effect loglinear models with quadratic terms in Eq. (5.26) where the unit-spaced
scores v; = 1,...,J were used for Y, and wy and 7, are the parameters with constraints

w; =1y = 0. We used the parameter values given in Tables (S6.6) to simulate the contin-
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gency table with the clear nonmonotone nonlinear pattern.

Table S6.6: Parameters in the homogeneous column effect loglinear models with quadratic terms for nonmonotone
nonlinear pattern in each table size.

Table size
IxKxI 3x3x%x2 S5X5x%x2
P 3.391 -11.2290
/lf 0.3537 0.5700
/le [/ly,/lg] =1[4.9931,0.0327] [AY,A;’,AI,/ISY] =[15.3898, 18.7921, 15.3223,0.2368]
/lf [/lZ,/lg] =[84.4988, 16.1853] [4%, /lg,/lf,/lf] =[44.2209,41.3418,40.9474,35.4598]
/lj'zx [/lzyf,/lg] =[-0.3514,0.1605] [/lg‘,/lg,/lg, /15Y§(] =[-0.7441,-0.5798, -0.6370, —0.2152]
/lfzx [/lg,/lg‘] =[-0.6089, —0.2275] [/lg, /lff,/lfé‘, /lg] =[-0.3351,-0.2711,-0.6193, 0.1345]
Wy [wy, w3] = [-112.7854,—-19.3217] [w,, w3, wy, ws] = [-36.5816,-33.0860, —32.6211, —26.0243]
Mk [172,113] = [28.1720,4.8130] [72: 3.4, 5] = [6.0854,5.4973,5.4389, 4.3396]

S6.2 Simulation results for scenario [I] and [1I]

Figures (1| and [2| show the boxplots of the conditional/partial association measures for
3x3x2and 5 x5 X2 tables with n = (1000,5000) and conditional independence.
Note that Figures[I]and [2]include the four conditional measures and the three partial mea-
sures, respectively. First, we observe that in both 3 X 3 X2 and 5 X 5 X 2 tables, each of
all conditional/partial association measures symmetrically scatters around zero, and as the
sample size n increases, the biases and variabilities of all four measures decrease. Second,
the subcopula regression-based conditional/partial correlation perform similar to the con-
ditional/partial Spearman correlation, regardless of the sizes of the table and the sample
size. Third, for 3 X 3 X 2 table the conditional Gamma measure shows larger variabilities
than the other three conditional measures, and for 5 X 5 X 2 table, the conditional/partial

tau measures have smaller variabilities than the other conditional/partial measures. These



phenomena become pronounced as n decreases.
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Figure 1: Conditional independence - Boxplots of the conditional association measures (ordered as subcopula regression
based correlation, Spearman correlation, Gamma and Tau) for 3x3%2 and 5x5x%2 tables (from top to bottom panel) with

Conditional association measures

n=(1000,5000) (from left column to right column).
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Figure 2: Conditional independence - Boxplots of the partial association measures (ordered as subcopula regression
based correlation, Spearman correlation and Tau) for 3 X 3 X 2 and 5 X 5 X 2 tables (from top panel to bottom panel) with
n = (1000, 5000) (from left column to right column).
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Figures [3| - |8| give the boxplots of the association measures (subcopula regression
based correlation, Spearman correlation, Gamma and Tau measures) for 3 X 3 X 2 and
5x5x2 tables with n=(1000,5000) and linear patterns. Note that Figures [3]and 4] show the
results for a weak linear association, Figures E] and E] for the results for a moderate linear
association, and Figures [7] and [§] for the results for a strong linear pattern. Figures 3] [5
include the boxplots for the four conditional measures at each level of X, and FiguresH] [6]
for the three partial measures.

First, we observe that the biases and variabilities of all association measures decrease
as n increases and/or the degree of linear association increases, regardless of the size of
contingency table (the values of (J, K)). Second, the subcopula regression-based corre-
lation and the Spearman correlation perform similarly irrespective of the magnitude of
linear association, the sample size and the size of contingency table. Third, for 3x3x 2 ta-
ble with weak/moderate/strong linear pattern, the conditional Gamma measure tends to be
much larger than the other three conditional measures and the conditional/partial tau mea-
sure tends to be smaller than the conditional/partial subcopula regression-based correlation
and the conditional/partial Spearman correlation. For 5 X 5 X 2 table, the performances
of the association measures are different, depending on the magnitude of association. For
the weak linear pattern, the conditional/partial tau measure is smaller than the other con-
ditional/partial measures. For the moderate/strong linear patterns, the conditional/partial

tau measure appears to be smaller than the other conditional/partial measures, and the
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conditional Gamma measure tends to be much larger than the subcopula regression-based

conditional correlation and the conditional Spearman correlation.
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Figure 3: Weak linear pattern - Boxplots of the conditional association measures (subcopula regression based correla-
tion, Spearman correlation, Gamma and Tau) for 3 X 3 X 2 and 5 X 5 X 2 tables (from top panel to bottom panel) with
N = (1000, 5000) (from left column to right column).
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Figure 4: Weak linear pattern - Boxplots of the partial association measures (subcopula regression based correlation,
Spearman correlation and Tau) for 3 X 3 X 2 and 5 x 5 X 2 tables (from top panel to bottom panel) with N = (1000, 5000)
(from left column to right column).
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Figure 5: Moderate linear pattern - Boxplots of the conditional association measures (subcopula regression based cor-
relation, Spearman correlation, Gamma and Tau) for 3 X 3 X2 and 5 X 5 X 2 tables (from top panel to bottom panel) with
N = (1000, 5000) (from left column to right column).
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Figure 6: Moderate linear pattern - Boxplots of the partial association measures (subcopula regression based correlation,
Spearman correlation and Tau) for 3 X3 X2 and 5 x 5 X 2 tables (from top panel to bottom panel) with N = (1000, 5000)
(from left column to right column).
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Figure 7: Strong linear pattern - Boxplots of the conditional association measures (subcopula regression based correla-
tion, Spearman correlation, Gamma and Tau) for 3 X 3 X 2 and 5 X 5 X 2 tables (from top panel to bottom panel) with
N = (1000, 5000) (from left column to right column).
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Figure 8: Strong linear pattern - Boxplots of the partial association measures (subcopula regression based correlation,
Spearman correlation and Tau) for 3 x 3 X2 and 5 x 5 X 2 tables (from top panel to bottom panel) with N = (1000, 5000)
(from left column to right column).
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S6.3 Simulation design for further investigation on the U-shaped associations

In this section, we provide detailed information on how the contingency tables with differ-
ent types of U-shaped associations were simulated in Section 5.2 of the paper.

To simulate the contingency tables for two ordinal variables Y and Z with differ-
ent types of U-shaped associations at each level of binary covariate X, we consider the
quadratic latent variable regression model based on the underlying continuous variables
Y* and Z* for Y and Z. That is, we generate n(= 10°) values of (Y*,Z*,X) from the
quadratic latent variable regression with a normal error distribution and discretize them to
construct a 5 X 5 X 2 contingency table for (Y, Z, X) of sample size n.

Specifically, we first employ the four quadratic latent variable regression models to
consider the relationships between Y* and Z* conditional on a value of X :

M 1 Z = =X7[(Y; = B1)" = Bol + & and ¥} ~ N(By. 1),
M, : ZF = X?[(Y; - B1)* —Bol + € and Y7 ~ N(Bi, 1),
M;: Y = -X[(ZF - B1)* = Bol + € and Z7 ~ N(By, 1),

M, : Y = X?[(ZF = B1)* — Bol + & and ZF ~ N(B, 1),

where i=1,...,n, B;=1, Bo= 10, X; (taking 1 or -1) ~ Bernoulli(0.5) and € ~ N(0,0.001).
For the model M;(M,), Z* increases (decreases) and then decreases (increases) as Y™ in-
creases, and under the model M3(M,), Y* increases (decreases) and then decreases (in-

creases) as Z* increases.
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Given n(= 10%) observations of (Y*,Z*, X) generated from a quadratic latent variable

regression model and conditional on a value of X, we discretize Y* and Z* using the quan-

tiles of the normal distribution based on suitable discrete marginal distributions for Y and

Z. We then construct three 5 X 5 X 2 contingency tables, each with one of three U-shaped

patterns: (a) smooth, (b) pointy and (c) flat patterns. Note that the discrete marginal dis-

tributions for Y and Z, given in Table [S6.7| are chosen to obtain the targeted U-shaped

pattern.

Table S6.7: List of discrete marginal distributions for ¥ and Z employed to simulate the contingency tables with targeted
relationships and U-shaped patterns.

Relations};is;aped pattern Smooth Pointy Flat

M, (0.008, 0.011, 0.962, 0.011, 0.008) | (0.076, 0.063, 0.722, 0.063, 0.076) | (0.096, 0.003, 0.801, 0.003, 0.097)
(0.003, 0.003, 0.013, 0.024, 0.957) | (0.152,0.127,0.218, 0.252, 0.252) | (0.028, 0.028, 0.055, 0.083, 0.807)

M, (0.008, 0.011, 0.962, 0.011, 0.008) | (0.076, 0.063, 0.722, 0.063, 0.076) | (0.097, 0.003, 0.801, 0.003, 0.097)
(0.957,0.024, 0.013, 0.003, 0.003) | (0.252,0.252,0.219, 0.126, 0.152) | (0.807, 0.083, 0.055, 0.028, 0.028)

M; (0.003, 0.003, 0.013, 0.024, 0.957) | (0.152,0.127, 0.218, 0.252, 0.252) | (0.028, 0.028, 0.055, 0.083, 0.807)
(0.008, 0.011, 0.962, 0.011, 0.008) | (0.076, 0.063, 0.722,0.063, 0.076) | (0.097, 0.003, 0.801, 0.003, 0.097)

M, (0.957,0.024, 0.013, 0.003, 0.003) | (0.252,0.252,0.218, 0.127, 0.152) | (0.807, 0.083, 0.055, 0.028, 0.028)
(0.008, 0.011, 0.962, 0.011, 0.008) | (0.076, 0.063, 0.722, 0.063, 0.076) | (0.096, 0.003, 0.801, 0.002, 0.097)
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