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Abstract

In this paper, we consider the beta prime regression model recently proposed by

Bourguignon et al. (2018), which is tailored to situations where the response is continuous

and restricted to the positive real line with skewed and long tails and the regression struc-

ture involves regressors and unknown parameters. We consider two different strategies of bias

correction of the maximum-likelihood estimators for the parameters that index the model. In

particular, we discuss bias-corrected estimators for the mean and the dispersion parameters

of the model. Furthermore, as an alternative to the two analytically bias-corrected estimators

discussed, we consider a bias correction mechanism based on the parametric bootstrap. The

numerical results show that the bias correction scheme yields nearly unbiased estimates. An

example with real data is presented and discussed.

Keywords: Beta prime distribution; Bias correction; Bootstrap; Dispersion covariates;

Maximum-likelihood.

1 Introduction

The beta prime (BP) distribution (known as inverted beta distribution or beta distribution of

the second kind as well) is a two-parameter distribution on the positive real line, which can be

interpreted as the distribution of the odds ratio of a variable distributed according to the beta dis-

tribution, i.e., if X has a beta distribution with parameters α and β, then Y = X/(1 − X) has a

BP distribution with α > 0 and β > 0 both shape parameters. We are adopting the parameteriza-

tion for the BP distribution in terms of the mean and precision parameters which was proposed by

Bourguignon et al. (2018). An advantage of using this parameterization is that we can introduce

regression structures for each mean and precision parameters and the interpretation of the regres-

sion coefficients is straightforward in terms of them as in generalized linear models. Thus, the BP

random variable Y (Bourguignon et al. (2018)) is defined as follows: Let Y be a random variable

with probability density function (pdf) given by

f(y;µ, φ) =
yµ(φ+1)−1(1 + y)−[µ(φ+1)+φ+2]

B(µ(1 + φ), φ+ 2)
, y > 0, (1)

where µ > 0 and φ > 0 are mean and precision parameters, respectively, B(µ(1 + φ), φ + 2) =
Γ(µ(1+φ))Γ(φ+2)/Γ(µ(1+φ)+φ+2) is the beta function and Γ(µ(1+φ)) =

∫
∞

0
ωµ(1+φ)−1e−ωdω
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is the gamma function. From now on, we use the notation Y ∼ BP(µ, φ) to indicate that Y is a

random variable following a BP distribution. The mean and variance of Y are

E[Y ] = µ and Var[Y ] =
µ(1 + µ)

φ
.

Some features of the BP model are (Bourguignon et al., 2018): first, the variance function of

the BP model assumes a quadratic form similar to the gamma distribution. However, the variance

function of the proposed model is larger than the variance function of gamma distribution, which

may be more appropriate in certain practical situations; second, the BP hazard rate function can

have an upside-down bathtub or increasing depending on the parameter values. The most classical

two-parameter distributions such as Weibull and gamma distributions have monotone hazard rate

functions; third, the skewness and kurtosis of the BP distribution can be much larger than those of

the gamma and inverse gaussian distributions; fourth, there are some stochastic representation of

the BP random variable.

In the literature there are only a few works dealing with the BP distribution. McDonald (1987)

discussed its properties and obtained the maximum likelihood (ML) estimates of the model param-

eters. Bias-corrected versions of the MLEs of the parameters that index the BP distribution were

obtained by Stosić and Cordeiro (2009). It is worth mention that all the works related above have

considered the usual parameterization of the BP distribution. Considering the parameterization

we adopted, Bourguignon et al. (2018) used the the ML method for estimating the parameters that

index the BP regression model. However, as can be seen in Table 2 in Bourguignon et al. (2018),

in small-sized samples, the ML estimators of these parameters (especially for precision structure)

may be extremely biased. So, it is important consider alternative estimators with smaller biases

when the number of observations are small.

Investigates how the maximum likelihood estimator behaves in small-sized sample, in par-

ticular bias analysis, is an important research area. In regular parametric statistical models the

maximum likelihood estimator bias is generally of the order O(n−1) for large sample size n and

are, in practice, usually ignored since that the asymptotic standard error is of order O(n−1/2).
When dealing with small-sized sample, however, bias can be a problematic issue, thus it can not

be neglected. So, it is important to obtain bias correction in these cases. Bias reduction was

studied by several authors. In uniparametric models, Bartlett (1953) obtained an expression for

the O(n−1) bias from the maximum likelihood estimator. Assuming independent, but not nec-

essarily identically distributed observations, Cox and Snell (1968) obtained a general expression

for the O(n−1) bias of the maximum likelihood estimator in multiparametric models. This result

has become widely used in the literature to obtain general expressions for the O(n−1) bias and

to propose bias-corrected estimators in various parametric models. For instance, Lemonte et al.

(2007), Cysneiros et al. (2010), Simas et al. (2011), Barreto-Souza and Vasconcellos (2011) and

Melo et al. (2018).

Usually, the approach to obtain bias-corrected versions of the MLEs uses the second order bias.

In this procedure the adjustment is made after the MLEs were computed. Additionally, an alterna-

tive approach was proposed by Firth (1993), who suggested that a bias reduction method by modi-

fying the score function previous to obtain the parameter estimates. This method is called the pre-

ventive method and has been studied in parametric models where maximum likelihood estimates
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can be unstable (infinite or belonging to the parametric space boundary) such as Bull et al. (2002),

Sartori (2006), Kosmidis and Firth (2009), Kosmidis and Firth (2011) and Kosmidis (2014). An-

other possible way to perform bias correction is through bootstrap resampling, which requires no

explicit derivation of the bias function. In this context, the main goal of this paper is to derive

a closed-form expression for the second order biases of the ML estimators in the BP regression

model which can be used to define bias corrected ML estimators to order O(n−1).
This paper is organized as follows: this introductory section. In Section 2, the BP regression

model is introduced and some of its basic properties are outlined. In Section 3, we obtain the

second order biases of the MLEs of the means of the responses and precision parameters of the

model. Section 4 discusses the numerical results. In Section 5, we consider an empirical example.

Finally, Section 6 concludes the paper.

2 Beta prime regression model

Consider n independent random variables Y1, . . . , Yn where each Yi, i = 1, . . . , n has BP

distribution with pdf given by (1) with mean µi and precision parameter φi. Bourguignon et al.

(2018) proposed the BP regression model which is defined by (1) and by two functional relations

g1(µi) = η1i = x
⊤

i β and g2(φi) = η2i = z
⊤

i ν, (2)

where g1 : R → R
+ and g2 : R → R

+ are strictly monotone, positive and at least twice dif-

ferentiable link functions, η1i and η2i are the linear predictors, β = (β1, . . . , βp)
⊤ (β ∈ R

p)
and ν = (ν1, . . . , νq)

⊤ (ν ∈ R
q, q < n − p) are unknown parameter vectors to be estimated,

and xi = (xi1, . . . , xip)
⊤ and zi = (zi1, . . . , ziq)

⊤ are observations on p and q known regressors,

for i = 1, . . . , n. Additionally, we assume that the covariate matrices X = (x1, . . . ,xn)
⊤ and

Z = (z1, . . . , zn)
⊤ have rank p and q, respectively. Besides the interpretation of the regression

coefficients being in terms of the mean and precision parameters, another advantage of the model

proposed by (1) and (2) is that it is suitable for modeling asymmetric data, being an alternative to

the generalized linear models when dealing with asymmetric dataset.

The log-likelihood function for (β,ν) given the observed values y1, . . . , yn is

ℓ(β,ν) =

n∑

i=1

ℓ(µi, φi), (3)

being

ℓ(µi, φi) = [µi(1 + φi)− 1] log(yi)− [µi(1 + φi) + φi + 2] log(1 + yi)

− log[Γ(µi(1 + φi))]− log[Γ(φi + 2)] + log[Γ(µi(1 + φi) + φi + 2)];

µi = g−1
1 (η1i) and φi = g−1

2 (η2i) are functions of β and ν, respectively, as defined in (2). A

method for obtaining the parameters estimates of the BP model defined by (1) and (2) is described

in details in Bourguignon et al. (2018). They consider the gamlss function for this purpose.
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We assume that the log-likelihood function (3) satisfies the usual regularity conditions of large

sample likelihood theory (see Cox and Hinkley, 1983). Thus, when n is large and under some

regular conditions we have that

(
β̂

ν̂

)
a
∼ Np+q

((
β

ν

)
,K(β̂, ν̂)−1

)
,

where
a
∼ means “approximately distributed” and K(β̂, ν̂)−1 is the inverse of Fisher’s information

matrix evaluated at β̂ and ν̂, which can be approximated by J(β̂, ν̂)−1, where −J denotes the

(p+ q)× (p+ q) Hessian matrix evaluated at (β̂⊤, ν̂⊤)⊤. Fisher’s information matrix K(β,ν) is

presented in Appendix A.

3 Bias correction of the MLEs

Let θ = (β⊤,ν⊤)⊤ be the unknown parameter vector of the BP regression model. We now

obtain an expression for the second order biases of the MLEs of the components of θ using Cox

and Snell’s (Cox and Snell (1968)) general formula. In order to obtain this expression, we first

introduce some notation. The lower subscripts r, s, t, u, . . . and the upper subscripts R, S, T, U, . . .
denote, respectively, the components of β and ν vectors. Therefore, the partional derivatives of

the log-likelihood (3) with respect to the components of β and ν are presented as Ur = ∂ℓ/∂βr ,
UrS = ∂2ℓ/∂βr∂νS , UrST = ∂3ℓ/∂βr∂νS∂νT , etc. The moments of the log-likelihood derivatives

are represented by κrs = E(Urs), κr,s = E(UrUs), κr,ST = E(UrUST ), etc, where all κ′s regard to

a total covering the whole sample and are, in general, of order O(n−1). The moments derivatives

are defined by κ
(t)
rs = ∂κrs/∂βt, κ

(T )
rs = ∂κrs/∂νT , etc. Finally, we denote the elements of the

inverse of Fisher’s information matrix K(β,ν)−1 = K(θ)−1, which are O(n−1), as κr,s = −κrs,
κr,S = −κrS, κR,s = −κRs and κR,S = −κRS .

From the general Cox and Snell’s (1968) formula we can obtain the O(n−1) bias of the MLE

for the ath component of the parameter vector θ̂ = (θ̂1, . . . , θ̂p,

θ̂p+1, . . . , θ̂p+q)
⊤ = (β̂⊤, ν̂⊤)⊤ as:

B
θ̂
(θa) =

∑

r,s,u

κ
ar
κ
su

{
κ
(u)
rs −

1

2
κrsu

}
+
∑

R,s,u

κ
aR

κ
su

{
κ
(u)
Rs −

1

2
κRsu

}

+
∑

r,S,u

κ
ar
κ
Su

{
κ
(u)
rS −

1

2
κrSu

}
+
∑

r,s,U

κ
ar
κ
sU

{
κ
(U)
rs −

1

2
κrsU

}

+
∑

R,S,u

κ
aR

κ
Su

{
κ
(u)
RS −

1

2
κRSu

}
+
∑

R,s,U

κ
aR

κ
sU

{
κ
(U)
Rs −

1

2
κRsU

}

+
∑

r,S,U

κ
ar
κ
SU

{
κ
(U)
rS −

1

2
κrSU

}
+
∑

R,S,U

κ
aR

κ
SU

{
κ
(U)
RS −

1

2
κRSU

}
. (4)

From (5), we can observe that β and ν are not orthogonal, hence all terms in (4) must be

considered. In order to save space, all cumulants needed to obtain (4) are given in Appendix B.
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After a long algebra presented in details in Appendix B we achieve to the expressions for the

second order biases of β̂ and ν̂, given in matrix form respectively by

B
β̂
(β) = KββX⊤ [M1Pββ + (M2 +M3)Pβν +M5Pνν ]

+ KβνZ⊤ [M2Pββ + (M4 +M5)Pβν +M6Pνν ]

and

Bν̂(ν) = KβνX⊤ [M1Pββ + (M2 +M3)Pβν +M5Pνν ]

+ KννZ⊤ [M2Pββ + (M4 +M5)Pβν +M6Pνν ] ,

where Kββ, Kβν and Kνν represent matrices which components are respectively the (r, s)th,

(r, S)th and (R, S)th elements of the inverse of Fisher’s information matrix, M1 to M6 are pre-

sented in Appendix B, Pββ, Pβν and Pνν are vectors with the same n × 1 dimension and which

elements are the diagonal elements of XKββX⊤, XKβνZ⊤ and ZKννZ⊤, respectively.

We now assume the 2n× 1 vector δ1 defined as

δ1 =

(
M1Pββ + (M2 +M3)Pβν +M5Pνν

M2Pββ + (M4 +M5)Pβν +M6Pνν

)
,

and consider Kβ∗ = (Kββ Kβν) and Kν∗ = (Kνβ Kνν), the p× (p + q) upper and q × (p + q)
lower blocks of the matrix K(β,ν)−1, respectively. Thus, we can express the second-order biases

of β̂ and ν̂ as

B
β̂
(β) = Kβ∗

X
⊤δ1 and Bν̂(ν) = Kν∗

X
⊤δ1.

From the expressions above, we can obtain in matrix form the second order bias of the MLE of the

joint vector θ = (β⊤,ν⊤)⊤ expressed as

B
θ̂
(θ) = (X⊤K̃X)−1

X
⊤δ1.

Now, we define the bias-corrected estimator as

θ̃ = θ̂ − B
θ̂
(θ̂),

where B
θ̂
(θ̂) is bias of the θ̂ with the unknown parameters replaced by their MLEs. Consid-

ering the assumptions assumed in Section 2, we have that the asymptotic distribution of θ is

Np+q(θ,J(θ)
−1), where J(θ) = J(β,ν)−1

A second approach to correct the second order bias of the MLE of θ = (β⊤,ν⊤)⊤ is consider-

ing the “preventive” method proposed by Firth (1993). This method basically consists of modify

the original score function in order to remove the O(n−1) bias. The modified score function is

given by

U∗(θ) = U(θ)−K(θ)B
θ̂
(θ),

being K(θ) the information matrix and B
θ̂
(θ) the O(n−1) bias. Considering the BP regression

model and replacing the expression obtained for B
θ̂
(θ), the modified score function has the fol-

lowing form:

U∗(θ) = U(θ)− X
⊤δ1.
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The second order bias corrected MLEs θ̌ is the solution of U∗(θ) = 0. Also, θ̌ is asymptotically

normal distributed as Np+q(θ,J(θ)
−1), with J(θ) as given previously.

Another way to bias-correcting the MLEs of the regression parameters is by the bootstrap tech-

nique (see, for example, Efron and Tibshirani, 1993). In this paper, in order to reduce the com-

putational burden, we shall adopt the warp-speed bootstrap method of (Giacomini et al., 2013) for

evaluating the proposed resampling scheme. The warp-speed bootstrap method follows the steps

described below. Instead of computing the MLEs for each Monte Carlo sample r = 1, 2, . . . , m
(with m being the total number of Monte Carlo replications) on the basis of B bootstrap sam-

ples, just one resample (i.e. B = 1) is generated from the assumed model with the parameters

replaced by estimates of maximum likelihood computed using the original sample for each Monte

Carlo sample and, hence, estimates of maximum likelihood, say θ̂∗, is computed for that sample.

Therefore, the bootstrap bias estimates θ̂ is

B
θ̂
(θ̂∗) = θ̂∗ − θ̂.

By using the bootstrap bias estimate presented above, we arrive at the following bias-corrected, to

order O(n−1), estimator:

θ̃b = 2θ̂ − θ̂∗.

For a good discussion to the bootstrap method, see Efron and Tibshirani (1993, Chapter 16).

Finally, it is worth mentioning that the idea behind the warp-speed bootstrap method is that taking

just one bootstrap draw for each simulated sample is sufficient to provide a useful approximation

to the bias of estimator. Applying this insight to Monte Carlo evaluation of bootstrap-based bias

yields evaluation methods that work with M = 1 (Giacomini et al., 2013). Due to the resulting

dramatic computational savings, (Giacomini et al., 2013) called their method as “Warp-Speed”

Monte Carlo method. Therefore, the bootstrap-based bias on the basis of warp-speed bootstrap

method become a viable alternative to inferential improvements in small samples when there are

impeditive or too costly analytical difficulties.

4 Numerical results

We now present a Monte Carlo simulation study to investigate and compare the performance of

the MLEs along with their corrected versions proposed in this article in small and moderate-sized

samples. We use a BP regression models with dispersion covariates and a log link. We consider

the model

log(µi) = β0 +

p∑

ℓ=1

βℓxiℓ and log(φi) = ν0 +

q∑

ℓ=1

νℓxiℓ, i = 1, 2, . . . , n,

where the true values of the parameters were taken as 1. The covariates values are taken as random

draws from the U(0, 1) distribution and their values were held constant throughout the simula-

tions. We consider different values for the number of regression parameters (p and q) and the

sample size (n = 30, 40 and 60). The number of Monte Carlo replicates was 10.000 and all the
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simulations were performed using the R language (R Core Team, 2017). In each Monte Carlo

replica, we computed the MLEs of the parameters, their corrected versions from the corrective

method (Cox and Snell, 1968), preventive method (Firth, 1993), and the parametric version of the

bootstrap method (Giacomini et al., 2013). In order to analyze the results, we computed, for each

sample size and for each estimator, the mean of estimates, bias, variance and mean square error

(MSE). The results are presented in Tables 1, 2 and 3 for p = q = 1, p = q = 2, and p = q = 3,

respectively.

Tables 1-3 summarize the simulation results for the β ′s and ν ′s varying the sample size n and

the number of regression parameters (p and q). As can be seen in Tables 1-3, for most part of

the parameters the estimated biases, in absolute value, of the original MLEs were larger than the

others. In general, for the β ′s, the biases of preventive estimators were smaller than those of the

corrective estimators and bootstrap estimators. For the ν ′s, the biases of the bootstrap estimators

were, in general, smaller than those of the corrective estimators and the preventive estimators.

These performances are independent of the number of parameters to be estimated. For instance,

in absolute value, when p = q = 1 and n = 30 the bias of the parameter β0 were 0.0048 (MLE),

0.0009 (Cox-Snell), 0.0000 (Firth) and 0.0013 (p-boot) and the bias of the parameter ν0 were

0.1044 (MLE), 0.0148 (Cox-Snell), 0.0083 (Firth) and 0.0064 (p-boot); see Table 1. However, for

all parameters, in most cases the MSE of the corrective estimators were the smallest and the MSE

of the bootstrap estimators were the largest, followed by the MSE of the preventive estimators.

When we increase the sample size for the β ′s, the bootstrap estimators tends to shows the smallest

bias, although they have the largest MSE. For instance, for p = q = 3 and n = 30 we have that the

bias, in absolute value, for β1 were 0.0026 (MLE), 0.0024 (Cox-Snell), 0.0016 (Firth) and 0.0031
(p-boot), while when n = 60 they were 0.0018 (MLE), 0.0016 (Cox-Snell), 0.0015 (Firth) and

0.0014 (p-boot); see Table 3. Comparing the results presented in each Table, we can observe that

as the sample size increases, in general, the bias of the estimators reduces, as expected.

The previous findings are confirmed by the box plots shown in Fig. 1, which were obtained

for sample size n = 30. In summary, the bias of the MLEs, especially for the ν ′s parameters, are

larger than the bias of the corrected estimators. Box plots for different values of n, p, and q (not

shown) exhibited a similar pattern. Therefore, we recommend the use of method (Cox-Snell, Firth

or parametric bootstrap) to reduce bias in small and moderate sample size.

5 An application

In order to illustrate the proposed methodology, in this section, we apply the estimation meth-

ods considered in the previous section to a real situation. We consider the real dataset used in

Bonnail et al. (2016). The main purpose is to assess sediment quality using the freshwater clam

Corbiculafluminea to determine its adequacy as a biomonitoring tool in relation to theoretical risk

indexes and regulatory thresholds. The study contains 27 observations (small-sized sample), which

measured, among other characteristics, the dry weight tissue of the clams (dry, in g), wet weight

tissue (wet, in g), and the concentrations of caesium (cs) in the soft tissue. Such minerals were

considered in 100 micrograms per liter (100µg/L).

We adopted a BP model to fit the dry weight tissue of the clams; that is, we consider that
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Figure 1: Box plots from 10.000 simulated estimates of β0, β1, β2, ν0, ν1 and ν2 for n = 30.
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Table 1: Simulation results for p = q = 1.
n = 30 n = 40 n = 60

Estimates MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot

β̂0 0.9952 0.9991 1.0000 0.9987 0.9952 0.9993 1.0000 0.9992 0.9965 0.9997 1.0001 0.9979

Bias −0.0048 −0.0009 −0.0000 −0.0013 −0.0048 −0.0007 0.0000 −0.0008 −0.0035 −0.0003 0.0001 −0.0021

variance 0.0296 0.0297 0.0298 0.0540 0.0195 0.0196 0.0196 0.0363 0.0124 0.0124 0.0125 0.0237

MSE 0.0296 0.0297 0.0298 0.0540 0.0195 0.0196 0.0196 0.0363 0.0124 0.0124 0.0125 0.0237

β̂1 0.9955 1.0005 1.0019 1.0010 0.9988 1.0004 1.0007 1.0005 1.0004 1.0007 1.0007 1.0033

Bias −0.0045 0.0005 0.0019 0.0010 −0.0012 0.0004 0.0007 0.0005 0.0004 0.0007 0.0007 0.0033

variance 0.0827 0.0824 0.0824 0.1509 0.0569 0.0568 0.0567 0.1070 0.0339 0.0339 0.0340 0.0660

MSE 0.0827 0.0824 0.0825 0.1509 0.0569 0.0568 0.0567 0.1070 0.0339 0.0339 0.0340 0.0660

ν̂0 1.1044 1.0148 1.0083 1.0064 1.0872 1.0116 1.0094 1.0079 1.0624 1.0068 1.0045 1.0111

Bias 0.1044 0.0148 0.0083 0.0064 0.0872 0.0116 0.0094 0.0079 0.0624 0.0068 0.0045 0.0111

variance 0.6015 0.5083 0.6278 1.0849 0.3770 0.3412 0.3728 0.6987 0.2529 0.2372 0.2676 0.4702

MSE 0.6124 0.5085 0.6278 1.0849 0.3847 0.3413 0.3729 0.6988 0.2568 0.2373 0.2676 0.4703

ν̂1 1.1215 1.0102 0.9939 1.0016 1.0699 1.0013 0.9913 0.9915 1.0320 0.9965 0.9941 0.9778

Bias 0.1215 0.0102 −0.0061 0.0016 0.0699 0.0013 −0.0087 −0.0085 0.0320 −0.0035 −0.0059 −0.0222

variance 1.7683 1.4470 1.8151 3.0861 0.9782 0.8591 0.9475 1.7650 0.6134 0.5640 0.6468 1.1392

MSE 1.7831 1.4471 1.8152 3.0861 0.9831 0.8591 0.9475 1.7651 0.6144 0.5640 0.6468 1.1397

Table 2: Simulation results for p = q = 2.
n = 30 n = 40 n = 60

Estimates MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot

β̂0 0.9934 0.9966 0.9992 0.9981 0.9934 0.9976 0.9991 0.9999 0.9958 1.0003 1.0013 1.0006

Bias −0.0066 −0.0034 −0.0008 −0.0019 −0.0066 −0.0024 −0.0009 −0.0001 −0.0042 0.0003 0.0013 0.0006

variance 0.0273 0.0274 0.0286 0.0480 0.0205 0.0205 0.0206 0.0378 0.0130 0.0130 0.0130 0.0245

MSE 0.0274 0.0274 0.0286 0.0480 0.0206 0.0205 0.0206 0.0378 0.0130 0.0130 0.0130 0.0245

β̂1 0.9970 0.9995 0.9994 0.9989 1.0018 1.0023 1.0025 0.9995 1.0019 1.0020 1.0018 0.9992

Bias −0.0030 −0.0005 −0.0006 −0.0011 0.0018 0.0023 0.0025 −0.0005 0.0019 0.0020 0.0018 −0.0008

variance 0.0494 0.0493 0.0508 0.0872 0.0356 0.0355 0.0356 0.0660 0.0225 0.0225 0.0225 0.0435

MSE 0.0494 0.0493 0.0508 0.0872 0.0356 0.0355 0.0356 0.0660 0.0225 0.0225 0.0225 0.0435

β̂2 1.0040 1.0047 1.0044 1.0017 1.0027 1.0017 1.0013 1.0006 0.9999 0.9967 0.9963 0.9971

Bias 0.0040 0.0047 0.0044 0.0017 0.0027 0.0017 0.0013 0.0006 −0.0001 −0.0033 −0.0037 −0.0029

variance 0.0410 0.0409 0.0420 0.0721 0.0340 0.0339 0.0341 0.0618 0.0290 0.0290 0.0293 0.0549

MSE 0.0410 0.0409 0.0420 0.0721 0.0340 0.0339 0.0341 0.0618 0.0290 0.0290 0.0293 0.0549

ν̂0 1.1367 1.0232 1.0213 1.0123 1.0753 1.0068 1.0112 0.9864 1.0602 1.0088 1.0100 0.9980

Bias 0.1367 0.0232 0.0213 0.0123 0.0753 0.0068 0.0112 −0.0136 0.0602 0.0088 0.0100 −0.0020

variance 0.6454 0.5492 0.7384 1.1125 0.6011 0.5218 0.7964 1.0588 0.3988 0.3587 0.4839 0.7352

MSE 0.6641 0.5498 0.7388 1.1127 0.6068 0.5219 0.7966 1.0590 0.4025 0.3588 0.4840 0.7352

ν̂1 1.1884 1.0039 0.9675 1.0051 1.1069 1.0147 0.9922 1.0119 1.0253 0.9927 0.9881 1.0021

Bias 0.1884 0.0039 −0.0325 0.0051 0.1069 0.0147 −0.0078 0.0119 0.0253 −0.0073 −0.0119 0.0021

variance 1.5315 1.2260 2.1793 2.5333 0.8943 0.7649 0.9137 1.5950 0.5878 0.5286 0.6083 1.0811

MSE 1.5670 1.2260 2.1804 2.5333 0.9058 0.7652 0.9137 1.5952 0.5885 0.5286 0.6085 1.0811

ν̂2 1.0311 1.0220 1.0017 0.9895 1.0974 1.0113 0.9926 1.0143 1.0901 1.0082 0.9948 1.0039

Bias 0.0311 0.0220 0.0017 −0.0105 0.0974 0.0113 −0.0074 0.0143 0.0901 0.0082 −0.0052 0.0039

variance 1.3491 1.0920 1.5705 2.2549 1.0802 0.9325 1.3096 1.8828 0.7401 0.6612 0.8356 1.3574

MSE 1.3500 1.0925 1.5705 2.2550 1.0897 0.9326 1.3097 1.8830 0.7482 0.6613 0.8356 1.3574

dryi ∼ BP(µi, φi) with systematic components given by

log(µi) = β0 + β1weti + β2csi

log(φi) = ν0 + ν1weti, i = 1, . . . , 27.

An R implementation for obtaining MLEs along with their corrected versions proposed in this
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Table 3: Simulation results for p = q = 3.
n = 30 n = 40 n = 60

Estimates MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot MLE Cox-Snell Firth p-boot

β̂0 0.9959 0.9989 1.0028 0.9973 0.9985 1.0002 1.0017 1.0011 0.9973 1.0011 1.0023 0.9994

Bias −0.0041 −0.0011 0.0028 −0.0027 −0.0015 0.0002 0.0017 0.0011 −0.0027 0.0011 0.0023 −0.0006

variance 0.0249 0.0249 0.0267 0.0418 0.0301 0.0301 0.0324 0.0531 0.0111 0.0111 0.0112 0.0204

MSE 0.0249 0.0249 0.0267 0.0418 0.0301 0.0301 0.0324 0.0531 0.0111 0.0111 0.0112 0.0204

β̂1 1.0026 1.0024 1.0016 1.0031 0.9983 0.9996 1.0002 0.9975 1.0018 1.0016 1.0015 1.0014

Bias 0.0026 0.0024 0.0016 0.0031 −0.0017 −0.0004 0.0002 −0.0025 0.0018 0.0016 0.0015 0.0014

variance 0.0354 0.0354 0.0372 0.0598 0.0249 0.0249 0.0261 0.0443 0.0135 0.0135 0.0138 0.0249

MSE 0.0354 0.0354 0.0372 0.0598 0.0249 0.0249 0.0261 0.0443 0.0136 0.0135 0.0138 0.0249

β̂2 1.0019 1.0027 1.0018 1.0047 0.9995 0.9998 0.9995 0.9993 0.9993 0.9975 0.9972 0.9994

Bias 0.0019 0.0027 0.0018 0.0047 −0.0005 −0.0002 −0.0005 −0.0007 −0.0007 −0.0025 −0.0028 −0.0006

variance 0.0309 0.0309 0.0327 0.0528 0.0235 0.0234 0.0245 0.0413 0.0167 0.0167 0.0171 0.0307

MSE 0.0309 0.0309 0.0327 0.0528 0.0235 0.0234 0.0245 0.0413 0.0167 0.0167 0.0171 0.0307

β̂3 0.9937 0.9943 0.9942 0.9947 0.9978 0.9987 0.9983 0.9997 0.9997 0.9980 0.9974 0.9990

Bias −0.0063 −0.0057 −0.0058 −0.0053 −0.0022 −0.0013 −0.0017 −0.0003 −0.0003 −0.0020 −0.0026 −0.0010

variance 0.0397 0.0397 0.0419 0.0659 0.0309 0.0309 0.0336 0.0556 0.0190 0.0190 0.0192 0.0347

MSE 0.0398 0.0397 0.0420 0.0659 0.0309 0.0309 0.0336 0.0556 0.0190 0.0190 0.0192 0.0347

ν̂0 1.1515 1.0091 1.0325 1.0023 1.0786 1.0051 1.0316 0.9976 1.0479 1.0049 1.0138 0.9899

Bias 0.1515 0.0091 0.0325 0.0023 0.0786 0.0051 0.0316 −0.0024 0.0479 0.0049 0.0138 −0.0101

variance 0.5818 0.4711 1.6123 0.9480 0.4827 0.4123 0.8403 0.8484 0.3339 0.3001 0.6093 0.5945

MSE 0.6048 0.4712 1.6134 0.9480 0.4889 0.4123 0.8413 0.8484 0.3362 0.3001 0.6095 0.5946

ν̂1 1.1387 0.9982 0.9634 0.9994 1.1418 0.9729 0.9457 0.9954 1.0161 0.9977 0.9981 1.0051

Bias 0.1387 −0.0018 −0.0366 −0.0006 0.1418 −0.0271 −0.0543 −0.0046 0.0161 −0.0023 −0.0019 0.0051

variance 1.2110 0.9163 2.4586 1.8249 0.7643 0.6403 1.3250 1.3258 0.4878 0.4270 0.5802 0.8715

MSE 1.2303 0.9164 2.4599 1.8249 0.7844 0.6411 1.3280 1.3259 0.4881 0.4270 0.5802 0.8715

ν̂2 1.0566 1.0589 1.0382 1.0115 1.0808 0.9918 0.9678 1.0014 1.0969 1.0066 0.9867 1.0172

Bias 0.0566 0.0589 0.0382 0.0115 0.0808 −0.0082 −0.0322 0.0014 0.0969 0.0066 −0.0133 0.0172

variance 1.1501 0.8767 1.5965 1.7398 0.8195 0.6709 1.3184 1.3820 0.5622 0.4854 0.8178 0.9851

MSE 1.1533 0.8802 1.5979 1.7400 0.8260 0.6710 1.3195 1.3820 0.5716 0.4855 0.8180 0.9854

ν̂3 1.1683 1.0215 0.9504 1.0233 1.0929 1.0866 1.0413 1.0185 1.0920 1.0114 0.9911 0.9990

Bias 0.1683 0.0215 −0.0496 0.0233 0.0929 0.0866 0.0413 0.0185 0.0920 0.0114 −0.0089 −0.0010

variance 1.0738 0.8799 2.3169 1.7278 0.9323 0.7420 2.0245 1.4912 0.4791 0.4213 0.5501 0.8672

MSE 1.1021 0.8803 2.3194 1.7283 0.9409 0.7495 2.0262 1.4916 0.4876 0.4214 0.5502 0.8672

article related to the data used is available at GitHub BiasBPR1 repository.

Table 4 presents the maximum likelihood estimates along with their corrected versions and the

corresponding estimates of asymptotic standard errors in parentheses. Note that for the parameters

that model the precision, ν̂0 and ν̂1, the maximum likelihood estimates are smaller than the bias

corrected ones, while for the parameters that model the mean, β̂0, β̂1 and β̂2, the estimates are quite

close.

In the Table 5, we present the relative changes (RCs). The RCs are calculated from RC(θ̂) =

|(θ̂ − θ̂o)/θ̂o| × 100%, where θ̂ denotes the MLE of θ and θ̂o denotes the bias-corrected MLE of

θ. From Table 5, the bias-corrected MLEs for ν0 and ν1 present similar results. In contrast to the

Cox-Snell and p-boot bias-corrected estimators, the preventive method (Firth) gives estimates that

dramatically change for β1 and β2. For example, the second-order bias is 36.585% of the total

amount of the MLE of β2. Thus, this real example illustrates that bias corrections can have a great

1https://github.com/sesiommedeiros/BiasBPR
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Table 4: Estimated values of the parameters with estimated asymptotic standard errors in paren-

thesis.
Estimates MLE Cox-Snell Firth p-boot

β̂0 −1.5550 −1.5550 −1.5596 −1.5526

(0.0224) (0.0252) (0.0257) (0.0254)

β̂1 −0.0221 −0.0221 −0.0193 −0.0231

(0.0105) (0.0118) (0.0121) (0.0120)

β̂2 −0.0182 −0.0183 −0.0287 −0.0203

(0.1243) (0.1393) (0.1418) (0.1406)

ν̂0 1.4536 1.5362 1.5881 1.5950

(0.9059) (0.9060) (0.9060) (0.9060)

ν̂1 5.1014 4.9186 4.8675 4.8728

(0.5896) (0.5897) (0.5897) (0.5897)

effect on the conclusions.

Table 5: Relative changes for each parameter.

Estimator RC(β̂0) RC(β̂1) RC(β̂2) RC(ν̂0) RC(ν̂1)

Cox-Snell 0.0000 0.0000 0.5464 5.3769 3.7165

Firth 0.2950 14.508 36.585 8.4692 4.8053

p-boot 0.1546 4.3290 10.345 8.8652 4.6914

6 Concluding remarks

In this paper, we have examined a wide range of estimators for the unknown parameter vector of

the BP regression model. In particular, we have derived a closed-form expression, in matrix form,

for the second order biases of the ML estimators of the parameters that index the BP regression

model proposed by Bourguignon et al. (2018). For this, we use the expressions obtained through

Cox and Snell’s (Cox and Snell, 1968) formulae and Firth’s (Firth, 1993) estimating equation. We

also considered a bias correction based on parametric bootstrap. The numerical evidence here

presented shows that our proposed estimators has good finite-sample behavior, even when the

sample size is small. For the mean structure, we observe that the MLE presents a very small

bias (even in small samples). In this case, it is not necessary to use the bias-corrected estimators.

However, for the precision structure, we observe that the MLE can become considerably biased

and, therefore, we strongly recommend its bias correction. This behavior was also observed in the

application to the real data set presented, therefore, we strongly recommend that practitioners use

these corrected estimators when modeling data using the BP regression model. Finally, we have

applied our proposed estimators to a real data.
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Appendix A

In this Appendix, we presente the Fisher’s information matrix for the BP regression model,

which is expressed in matrix form as

K(β,ν) =

(
X

⊤KββX X
⊤KβνZ

Z
⊤KνβX Z

⊤KννZ

)
, (5)

where

Kββ = diag

{
(1 + φi)

2ai

(
∂µi

∂η1i

)2
}
, Kνν = diag

{
bi

(
∂φi

∂η2i

)2
}
,

Kβν = K⊤

νβ = diag

{
(1 + φi)[aiµi − ψ(1)(µi(1 + φi) + φi + 2)]

∂µi

∂η1i

∂φi

∂η2i

}
,

with ai = ψ(1)(µi(1 + φi)) − ψ(1)(µi(1 + φi) + φi + 2) and bi = µ2
iψ

(1)(µi(1 + φi)) − (1 +
µi)

2ψ(1)(µi(1 + φi) + φi + 2) + ψ(1)(φ1 + 2).

We can rewrite the Fisher’s information matrix given in (5). For this, let K̃ be a 2n×2nmatrix

and X be a 2n× (p + q) matrix defined, respectively, as

K̃ =

(
Kββ Kβν

Kνβ Kνν

)
.

and

X =

(
X 0

0 Z

)
.

Thus, we have that

K(β,ν) = X
⊤K̃X.
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Appendix B

In this Appendix, we present the cumulants and derivatives needed to obtain the second order

bias of β̂ and ν̂. In addiction, we describe in details how to obtain B(β̂) and B(ν̂) from Eq. (4).

In order to present the cumulants in a summarized form, consider the following quantities:

ai = ψ(1)(µi(1 + φi))− ψ(1)(µi(1 + φi) + φi + 2),

bi = µ2
iψ

(1)(µi(1 + φi))− (1 + µi)
2ψ(1)(µi(1 + φi) + φi + 2) + ψ(1)(φ1 + 2),

ci = ψ(2)(µi(1 + φi))− ψ(2)(µi(1 + φi) + φi + 2),

di = (1 + µi)
2ψ(2)(µi(1 + φi) + φi + 2)− µ2

iψ
(2)(µi(1 + φi)),

ei = (1 + µi)
3ψ(2)(µi(1 + φi) + φi + 2)− µ3

iψ
(2)(µi(1 + φi))− ψ(2)(φi + 2).

So, the cumulants needed here are presented as follow:

κrs = −

n∑

i=1

(1 + φi)
2ai

(
∂µi

∂η1i

)2

xirxis,

κrS = −

n∑

i=1

(1 + φi)[aiµi − ψ(1)(µi(1 + φi) + φi + 2)]
∂µi

∂η1i

∂φi

∂η2i
xirziS,

κRS = −
n∑

i=1

bi

(
∂φi

∂η2i

)2

ziRziS,

κrsu = −

n∑

i=1

(1 + φi)
2

{
(1 + φi)ci

(
∂µi

∂η1i

)3

+ 3ai
∂µi

∂η1i

∂2µi

∂η21i

}
xirxisxiu,

κrsU = −

n∑

i=1

(1 + φi)
{
2ai + (1 + φi)ciµi − (1 + φi)ψ

(2)(µi(1 + φi) + φi + 2)
}( ∂µi

∂η1i

)2
∂φi

∂η2i
xirxisziU

+
n∑

i=1

(1 + φi)
{
ψ(1)(µi(1 + φi) + φi + 2)− aiµi

} ∂2µi

∂η21i

∂φi

∂η2i
xirxisziU ,

κrSU =

n∑

i=1

{ψ(1)(µi(1 + φi) + φi + 2)− aiµi}

[
(1 + φi)

∂µi

∂η1i

∂2φi

∂η22i
+ 2

(
∂φi

∂η2i

)2
∂µi

∂η1i

]
xirziSziU

+

n∑

i=1

(1 + φi)di
∂µi

∂η1i

(
∂φi

∂η2i

)2

xirziSziU ,

κRSU =
n∑

i=1

{
ei

(
∂φi

∂η2i

)3

− 3bi
∂2φi

∂η22i

∂φi

∂η2i

}
ziRziSziU .
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Taking the derivative of the cumulants with respect to the model parameters, we have

κ(u)rs = −
n∑

i=1

(1 + φi)
2

{
(1 + φi)ci

(
∂µi

∂η1i

)3

+ 2ai
∂µi

∂η1i

∂2µi

∂η21i

}
xirxisxiu,

κ(U)
rs = −

n∑

i=1

{
(1 + φi)

2[ciµi − ψ(2)(µi(1 + φi) + φi + 2)] + 2(1 + φi)ai
}( ∂µi

∂η1i

)2
∂φi

∂η2i
xirxisziU ,

κ
(u)
RS =

n∑

i=1

{
di(1 + φi) + 2ψ(1)(µi(1 + φi) + φi + 2)− 2aiµi

} ∂µi

∂η1i

(
∂φi

∂η2i

)2

ziRziSxiu,

κ
(U)
RS =

n∑

i=1

{
ei

(
∂φi

∂η2i

)3

− 2bi
∂φi

∂η2i

∂2φi

∂η22i

}
ziRziSziU ,

κ
(u)
rS = −

n∑

i=1

(1 + φi)
{
(1 + φi)µici + ai − (1 + φi)ψ

(2)(µi(1 + φi) + φi + 2)
}( ∂µi

∂η1i

)2
∂φi

∂η2i
xirxiuziS

−

n∑

i=1

(1 + φi)
{
aiµi − ψ(1)(µi(1 + φi) + φi + 2)

} ∂2µi

∂η21i

∂φi

∂η2i
xirxiuziS,

κ
(U)
rS =

n∑

i=1

{
(1 + φi)di − aiµi + ψ(1)(µi(1 + φi) + φi + 2)

} ∂µi

∂η1i

(
∂φi

∂η2i

)2

xirziSziU

+

n∑

i=1

(1 + φi)
{
ψ(1)(µi(1 + φi) + φi + 2)− aiµi

} ∂µi

∂η1i

∂2φi

∂η22i
xirziSziU .
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Consider now the following diagonal matrices:

M1 = diag

(
−
(1 + φi)

2

2

[
(1 + φi)ci

(
∂µi

∂η1i

)3

+ ai
∂µi

∂η1i

∂2µi

∂η21i

])
,

M2 = diag

(
(1 + φi)

2

[
−aiµi + ψ(1)(µi(1 + φi) + φi + 2)

] ∂2µi

∂η21i

∂φi

∂η2i

−
(1 + φi)

2

2

[
ciµi − ψ(2)(µi(1 + φi) + φi + 2)

]( ∂µi

∂η1i

)2
∂φi

∂η2i

)
,

M3 = diag

(
−
(1 + φi)

2

{
[
2ai + (1 + φi)ciµi − (1 + φi)ψ

(2)(µi(1 + φi) + φi + 2)
]( ∂µi

∂η1i

)2
∂φi

∂η2i

+

[
ψ(1)(µi(1 + φi) + φi + 2)− aiµi]

∂2µi

∂η21i

∂φi

∂η2i

})
,

M4 = diag

(
1

2

{
[(1 + φi)di + 2ψ(1)(µi(1 + φi) + φi + 2)− 2aiµi]

∂µi

∂η1i

(
∂φi

∂η2i

)2

− (1 + φi) [ψ
(1)(µi(1 + φi) + φi + 2)− aiµi]

∂µi

∂η1i

∂2φi

∂η22i

})
,

M5 = diag

(
(1 + φi)

2

[
di

(
∂φi

∂η2i

)2
∂µi

∂η1i
+ ψ(1)(µi(1 + φi) + φi + 2)− aiµi

]
∂µi

∂η1i

∂2φi

∂η22i

)
,

M6 = diag

(
1

2

[
ei

(
∂φi

∂η2i

)3

− bi
∂φi

∂η2i

∂2φi

∂η22i

])
.

Considering the matrices defined above, we have that mij represent the ith element of Mj . So, we
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have

κ(u)rs −
1

2
κrsu =

n∑

i=1

m1ixirxisxiu,

κ
(u)
Rs −

1

2
κRsu =

n∑

i=1

m2ixisxiuziR,

κ
(u)
rS −

1

2
κrSu =

n∑

i=1

m2ixirxiuziS,

κ(U)
rs −

1

2
κrsU =

n∑

i=1

m3ixirxisziU ,

κ
(u)
RS −

1

2
κRSu =

n∑

i=1

m4ixiuziRziS ,

κ
(U)
Rs −

1

2
κRsU =

n∑

i=1

m5ixisziUziR,

κ
(U)
rS −

1

2
κrSU =

n∑

i=1

m5ixirziSziU ,

κ
(U)
RS −

1

2
κRSU =

n∑

i=1

m6iziRziSziU ,

We now obtain the terms from (4), presenting in detail the algebra to obtain the first term of this

expression. To calculate the other terms, we follow the same logic.

∑

r,s,u

κarκsu
{
κ(u)rs −

1

2
κrsu

}
=

∑

r,s,u

(
κarκsu

n∑

i=1

m1ixirxisxiu

)

=

n∑

i=1

m1i

(
∑

r

xirκ
ar

)(
∑

s,u

xirκ
suxiu

)

=

n∑

i=1

m1i

(
∑

r

xirκ
ar

)
δ⊤

i (Xκ
ββX⊤)δi

= δ⊤

a

n∑

i=1

κaβX⊤δim1iδ
⊤

i (Xκ
ββX⊤)δi

= δ⊤

a κ
aβX⊤M1Pββ,

being κaβ the matrix κββ if a = 1, . . . , p and κνβ if a = p+ 1, . . . , q, δa (δi) an n× 1 vector with

a one in the ath (ith) position. Also, the vector Pββ is presented in Section 3. Likewise, we have

the remaining quantities expressed by

17



∑

R,s,u

κaRκsu
{
κ
(u)
Rs −

1

2
κRsu

}
= δ⊤

a κ
aνZ⊤M2Pββ,

∑

r,S,u

κarκSu
{
κ
(u)
rS −

1

2
κrSu

}
= δ⊤

a κ
aβX⊤M2Pβν ,

∑

r,s,U

κarκsU
{
κ(U)
rs −

1

2
κrsU

}
= δ⊤

a κ
aβX⊤M3Pβν ,

∑

R,S,u

κaRκSu
{
κ
(u)
RS −

1

2
κRSu

}
= δ⊤

a κ
aνZ⊤M4Pβν ,

∑

R,s,U

κaRκsU
{
κ
(U)
Rs −

1

2
κRsU

}
= δ⊤

a κ
aνZ⊤M5Pβν ,

∑

r,S,U

κarκSU
{
κ
(U)
rS −

1

2
κrSU

}
= δ⊤

a κ
aβX⊤M5Pνν ,

∑

R,S,U

κaRκSU
{
κ
(U)
RS −

1

2
κRSU

}
= δ⊤

a κ
aνZ⊤M6Pνν ,

where κaν is the matrix κβν if a = 1, . . . , p and κνν if a = p + 1, . . . , q and the vectors Pβν and

Pνν were presented in Section 3.
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