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Abstract

The maximum entropy bootstrap for time series is a technique that creates a large number of

replicates, as elements of an ensemble, for inference purposes, which satisfies the ergodic and

the central limit theorems. As an alternative to the use of traditional techniques, this work

proposes generalized maximum entropy for the estimation of parameters in all the replicated

models. An empirical application and a simulated example illustrate the advantages of this

two-stage maximum entropy approach for time series regression modeling, where maximum

entropy is used both in data replication and in parameter estimation.
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1 Introduction

The maximum entropy bootstrap for time series (Vinod, 2004, 2006), with the correspond-

ing meboot package in R (Vinod and López-de-Lacalle, 2009), has become popular in the

last decade. It is a powerful technique that allows statistical formulations free of restrictive

and unnecessary assumptions, by avoiding all structural changes and unit root type testing,

and all the usual shape-destroying transformations like detrending or differencing to achieve

stationarity. The technique creates a large number of replicates, as elements of an ensemble,

which retain the shape of the original time series, as well as the time dependence structure of

the autocorrelation and the partial autocorrelation functions. However, traditional functions

from R for parameter estimation (e.g., the lm and dynlm functions, both currently using the

QR decomposition) that are usually used to obtain estimates for a predefined parameter of

interest may compromise inference analysis in ill-conditioned models (i.e., models affected

by collinearity2) due to the instability of the estimates. Since ill-conditioning affects the pre-

cision of the estimates (inflating the variance and possibly affecting its signs) and the meboot

provides a large number of replicates allowing to compute confidence intervals, this means

that wider confidence intervals for the parameters (e.g., using the percentile method) may be

obtained if ill-conditioned models are generated, and the null hypothesis of the correspond-

ing parameter is equal to zero is not rejected more frequently. Thus, a stable estimation

procedure should be considered as an alternative to the use of traditional techniques.

The generalized maximum entropy (GME) estimator proposed by Golan et al. (1996),

as the name itself indicates, is a generalization of the maximum entropy (ME) principle

established by Jaynes (1957a,b), based on Shannon (1948) entropy, and it can be seen

as a particular case of the generalized cross entropy (GCE) estimator. These and other

information-theoretic estimation techniques were recently embedded into a new area of re-

search entitled info-metrics, a research area at the intersection of statistics, computer science

and decision theory (Golan, 2018). The advantages of generalized maximum/cross entropy

estimation in regression analysis are well-known: it represents a stable estimation procedure

2See Belsley et al. (2004, pp. 85–98) for an important discussion regarding this notion of collinearity.
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when the design matrix is ill-conditioned (collinearity problems), when the number of un-

known parameters to be estimated exceeds the number of observations (under-determined

models), and when only samples of small size are available (micronumerosity problems).

Some of these advantages are particularly attractive in time series regression analysis and

this is the main reason to propose a two-stage maximum entropy approach in this work,

where the second stage consists of the estimation of parameters in all the replicated models

obtained by meboot (considered here as the first stage).

The remaining of the paper is organized as follows: in Section 2, the techniques are briefly

presented. An empirical application and a simulated example are discussed in Section 3.

Some conclusions and topics for future research are given in Section 4.

2 Some background on the techniques

2.1 Maximum entropy bootstrap

The maximum entropy bootstrap for dependent time series was firstly proposed by Vinod

(2004). Later, Vinod (2006) simplifies the algorithm, extends it to panel data, and discusses

underlying assumptions and properties. Its implementation in R (meboot package) was

carried out by Vinod and López-de-Lacalle (2009). Following Vinod (2006), pp. 959–963,

the meboot algorithm for a random replicate of a time series xt, t = 1, 2, . . . , T , is briefly

presented next for reader’s convenience.

1. Some plausible limits (lower and upper) for the time series are established by extrap-

olation and specified as xt ∈ [xLO, xUP ]. Usually, a trimmed mean of consecutive

distances is used for this purpose: (1) absolute distances between consecutive data

points, dt = |xt − xt−1|, t = 2, 3, . . . , T , are computed; (2) the absolute value of a n%

trimmed mean of these dt distances, denoted by dtrm,n, is obtained; (3) finally, xLO will

be the minimum value of the time series minus dtrm,n, and xUP will be the maximum

value of the time series plus dtrm,n. Additionally, a (T ×2) sorting matrix S1 is created,
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with the index set T ′ = {1, 2, . . . , T} in the first column and the time series xt in the

second column.

2. The original data is sorted in increasing order to create order statistics, x(t), and

the ordering index vector is stored. This is accomplished by ordering matrix S1 in

increasing order with respect to the values in its second column, while carrying along

the values in its first column. This yields the order statistics, x(t), in the second column

and a vector Irev of sorted T ′ in the first column. Next, are defined z0 = xLO, zT = xUP ,

zt = 0.5(x(t) + x(t+1)), t = 1, 2, . . . , T − 1, and half-open intervals, It = (zt−1, zt], of

points around each x(t) from which the elements of the ensemble are selected. There

are T intervals, each one containing an x(t) with probability 1/T . Some notes:

� meboot ensures the mass-preserving constraint by giving an equal probability to

each half-open interval, It, of being included in the resample;

� let f be the density function of xt. The mean-preserving constraint on order 1

moments of f is
∑T

t=1 xt =
∑T

t=1 x(t) =
∑T

t=1mt, where mt represents the mean

of f within the interval It. To satisfy this constraint, meboot requires that the

mean mt in the interval It is equal to a weighted sum of the order statistic x(t),

namely

f(x) =
1

z1 − z0
, x ∈ I1,

m1 = 0.75x(1) + 0.25x(2);
(1)

f(x) =
1

zk − zk−1
, x ∈ (zk−1, zk],

mk = 0.25x(k−1) + 0.50x(k) + 0.25x(k+1), k = 2, 3, . . . , T − 1;
(2)

f(x) =
1

zT − zT−1
, x ∈ IT ,

mT = 0.25x(T−1) + 0.75x(T ).
(3)

Thus, from x(t), the intervals It and the means mt are computed.

3. T uniform pseudorandom numbers, ps, in the interval [0, 1] are created, and is identified

the range Rt = (t/T, (t+ 1)/T ], t = 0, 1, . . . , T − 1, wherein each ps falls.

4



4. Each Rt is matched with It. If ps ∈ R0 or if ps ∈ RT−1, then (1) or (3) are used,

respectively. Otherwise, linear interpolation is used to obtain a set of T values, {xj,t,me},

as the jth resample. As mentioned by Vinod (2006), p. 961, these are the usual

quantiles from the inverse cumulative distribution function of the ME density.

5. A (T × 2) sorting matrix S2 is created. The T values of the set {xj,t,me} for the jth

resample obtained in the previous step are sorted in increasing order of magnitude, as

{xj,(t),me}, and inserted in the first column of S2. The sorted vector Irev of step 2 is

inserted in the second column of S2.

6. Matrix S2 is sorted with respect to its second column. The jointly sorted values of the

first column of S2, denoted by {xj,t}, represent the ME resample.

7. Steps 2 to 6 are repeated for a large number of times, j = 1, 2, . . . , J (in this study are

considered J = 1000 replications).

Additional details and advantages of the algorithm, including the ones over the traditional

bootstrap, can be found in Vinod (2006) and Vinod and López-de-Lacalle (2009).

2.2 Generalized maximum/cross entropy estimation

Considering a linear regression model defined as

y = Xβ + e, (4)

where y denotes a (N × 1) vector of noisy observations, β is a (K × 1) vector of unknown

parameters to be estimated, X is a known (N ×K) design matrix of explanatory variables,

and e is the (N × 1) vector of random errors, Golan et al. (1996) proposed its reformulation

as

y = XZp+ V w, (5)
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where

β = Zp =


z′1 0 · · · 0

0 z′2 · · · 0
...

...
. . .

...

0 0 · · · z′K




p1

p2
...

pK

 , (6)

with Z a (K ×KM) matrix of support spaces (closed and bounded intervals in which each

parameter is restricted to belong) and p a (KM × 1) vector of unknown probabilities to be

estimated, and

e = V w =


v′1 0 · · · 0

0 v′2 · · · 0
...

...
. . .

...

0 0 · · · v′N




w1

w2

...

wN

 , (7)

with V a (N ×NJ) matrix of support spaces (closed and bounded intervals in which each

error is restricted to belong) and w a (NJ × 1) vector of unknown probabilities to be

estimated. In this reformulation, each βk, k = 1, 2, . . . , K, and each en, n = 1, 2, . . . , N , are

viewed as expected values of discrete random variables zk and vn, respectively, with M ≥ 2

and J ≥ 2 possible outcomes, within the lower and upper bounds of the corresponding

support spaces.

Thus, considering the linear regression model expressed in (4), the generalized cross

entropy (GCE) estimator is given by

argmin
p,w

{
p′ ln

(
p

q1

)
+w′ ln

(
w

q2

)}
, (8)

subject to the model (data consistency) constraints,

y = XZp+ V w, (9)

the additivity constraints for p,

1K = (IK ⊗ 1′M)p, (10)

and the additivity constraints for w,

1N = (IN ⊗ 1′J)w, (11)
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where q1 and q2 are vectors with prior information concerning the parameters and the errors

of the model, respectively, and⊗ represents the Kronecker product. As mentioned previously,

the GCE estimator is identical to the generalized3 maximum entropy (GME) estimator when

the prior information is expressed as a uniform distribution (vectors q1 and q2). However,

the GME estimator can be simply established by stipulating the objective function as

argmax
p,w

{−p′ lnp−w′ lnw} , (12)

with the same above restrictions (9) – (11). Both estimators generate the optimal probability

vectors p̂ and ŵ from the previous numerical optimization problems, which can be used

to form point estimates of the unknown parameters and the unknown errors, through the

reparameterizations defined previously, (6) and (7). The uniqueness of the GCE and GME

solutions is demonstrated in Golan et al. (1996), pp. 89–92. For simplicity, this work will

just illustrate the use of the GME estimator (i.e., the GCE estimator with uniform priors).

Some concerns regarding the GCE/GME estimation are usually related to the specifica-

tion of the support spaces, which remains an unsettled issue in terms of a formal statistical

procedure. Further research on this topic is needed. Some discussions and guidelines for

these choices are provided, for example, in Golan et al. (1996), pp. 137–142, Preckel (2001),

Caputo and Paris (2008) and Golan (2018), pp. 262–264 and pp. 380–382. However, mainly

motivated by empirical and simulation works, and although there are exceptions in specific

scenarios, for practitioners’ convenience some general principles are provided next: (1) the

number of support points should be equal or greater to two, but it is usually between three

and seven because there is likely no significant improvement in the estimation with more

points; (2) the supports should be symmetric about zero; (3) the supports should be defined

with equally spaced points between the lower and upper bounds; (4) for the error compo-

nent are usually considered three points in supports and the bounds are usually defined by

the three-sigma rule, considering the standard deviation of the noisy observations (observed

3The “generalized” derives from the fact that the maximum entropy principle is usually presented as

argmax
p

{−p′ lnp}, also subject to the corresponding model and additivity constraints; see Jaynes (1957a,b).
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dependent variable), i.e., [−3σ̂y, 0, 3σ̂y]; (5) the bounds and the center of the parameters’

supports are problem specific and should be chosen with care. Usually the center is de-

fined at zero if no prior information exists (even about the relevance of the corresponding

variable). In a non-consensual way, usually the bounds are defined based on theoretical

constraints, data from previous works, confidence intervals with high confidence levels from

other estimation techniques. A sensitivity analysis can also be accomplished to evaluate the

impact on the estimates by using different supports, or similar to traditional algorithms that

provide results for a set of regularization parameters (e.g., from the least absolute shrinkage

and selection operator family), an “optimal” support can be identified by the solution that

corresponds, for example, to the minimum mean squared error (or any other loss function of

interest) obtained by cross-validation.

Additional details on maximum entropy estimation, properties, asymptotic theory, simu-

lation studies and examples can be found in Golan et al. (1996), Mittelhammer et al. (2013),

Henderson et al. (2015), Golan (2018) and Macedo (2020).

2.3 Code for maximum entropy bootstrap with GME estimation

Given the theoretical discussion of the GME estimator in Section 2.2, some general steps to

implement the estimator are briefly summarized next.

1. The number of observations, N , and variables, K, are stored.

2. The supports for the parameters, z′k, k = 1, 2, . . . , K, are established, including the

number of points, M , in each support, and matrix Z is created.

3. The supports for the errors, v′n, n = 1, 2, . . . , N , are established, including the number

of points, J , in each support, and matrix V is created.

4. Depending on the programming language or software used: p and w are initialized

(usually both as uniform priors); objective function (12), and restrictions (9)–(11) are

implemented in the numerical optimization structure; and vector p̂ is obtained.
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5. The estimated parameters are computed as β̂ = Zp̂.

To illustrate the previous steps, suppose a simple linear regression model with only five

observations, {(2.8, 6.4), (2.5, 7.7), (3.9, 0.4), (3.1, 4.5), (3.5, 2.9)}, and consider the support

spaces as [−1000, 1000] and [−2, 2], respectively for all the parameters and all the errors,

with M = 5 and J = 3. Thus, with symmetric supports centered on zero and equally spaced

points, the GME estimator is given by

argmax
p,w

{−p′ lnp−w′ lnw} , (13)

subject to the model constraints,



2.8

2.5

3.9

3.1

3.5


=



1 6.4

1 7.7

1 0.4

1 4.5

1 2.9


×

 −1000 −500 0 500 1000 0 0 0 0 0

0 0 0 0 0 −1000 −500 0 500 1000

×

×



p11

p12

p13

p14

p15

p21

p22

p23

p24

p25



+


−2 0 2 0 0 0 . . . 0 0 0

0 0 0 −2 0 2 . . . 0 0 0
. . .

0 0 0 0 0 0 . . . −2 0 2

×



w11

w12

w13

w21

w22

w23

...

w51

w52

w53



, (14)
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the additivity constraints for p,

 1

1

 =

 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

×



p11

p12

p13

p14

p15

p21

p22

p23

p24

p25



, (15)

and the additivity constraints for w,



1

1

1

1

1


=


1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0
. . .

0 0 0 0 0 0 . . . 1 1 1

×



w11

w12

w13

w21

w22

w23

...

w51

w52

w53



. (16)

Using, for example, the fmincon nonlinear programming solver from MATLAB (see de-

tails below) in the previous step 4, the result4 is

4The vector p̂ is rounded here to four decimals, but the product Zp̂ is computed with the maximum

available precision in MATLAB.
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 β̂1

β̂2

 =

 −1000 −500 0 500 1000 0 0 0 0 0

0 0 0 0 0 −1000 −500 0 500 1000

×



0.1984

0.1992

0.2000

0.2008

0.2016

0.2001

0.2000

0.2000

0.2000

0.1999


≈

 4.0022

−0.1923

 . (17)

Both procedures can be implemented in R or Python, two very attractive languages for

statistics. However, using resources already available in R (Vinod and López-de-Lacalle,

2009) and MATLAB (Macedo, 2017), the maximum entropy bootstrap with GME estima-

tion can be computed straightforwardly in MATLAB. The matrix with the J replications

from meboot in R are imported, and a simple loop syntax in MATLAB is implemented to

obtain the estimates of parameters for each replicated model, using the matrix structure of

the GME estimator discussed previously and available in Macedo (2017). Then, confidence

intervals (e.g., percentile method) are easily computed, along with some possible specific

statistics. Given the large number of possible theoretical configurations in time series regres-

sion modeling (including different variables, lags, etc.), only a very general code structure

to be implemented in MATLAB is provided next.5 Additional details are available upon

request to the author.

5The code is provided with absolutely no warranty. Its users assume all the responsibility when using it.
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Code Structure: Maximum entropy bootstrap with GME estimation.

/* The package writexl in R and the function readmatrix in MATLAB may be useful to

exchange data. */

Input: matrix with replications of the original time series from meboot in R.

Data: dimension of the series; number of replications/models; number of parameters to estimate;

matrix of zeros (e.g., with name estimates) to collect the estimates for each of the models.

for r = 1 to number of replications/models

(Inside this loop should exist the)

- theoretical configuration of the time series regression model to use the data from the matrix

in inputs, using Y for the response and X for the design matrix;

- number of rows (n) and columns (k) of the design matrix (e.g., [n, k] = size(X););

- matrix structure of the GME estimator; lines 71-117 (from intg to b1 ) in Macedo (2017);

- supports for the parameters in intg accordingly to the theoretical configuration;

- matrix estimates to be updated at each iteration.

end

Output: compute confidence intervals (e.g., percentile method) and possible specific statistics

from the matrix estimates using, for example, the prctile function in MATLAB.

/* Other changes can be made; e.g., (1) the number of points in the supports,

which are 5 and 3, by default, in lines 74 (m = 5) and 86 (j = 3); (2) the

strategy to define the supports for the error component. */
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3 Empirical application and simulated examples

In this section, the empirical application used by Vinod and López-de-Lacalle (2009) is

replicated for comparison purposes. Additionally, simulated examples with samples of small

size and with different values of condition number6 are presented to highlight the advantages

of GME, when compared to the use of the lm and dynlm functions in R, in the estimation

of all the models’ parameters generated by the maximum entropy bootstrap.

3.1 Empirical application

The example used by Vinod and López-de-Lacalle (2009) is described by

ct = β1 + β2 ct−1 + β3 dt−1 + et, (18)

where c represents the logarithm of the United States (US) consumption, d represents the

logarithm of the disposable income, and t is the time period, which is from 1948 to 1998.

The data is available in the R package as “USconsum”. Since the purpose is to discuss a

Keynesian consumption function on the basis of the hypothesis of permanent income, the

hypothesis test of interest is

H0 : β3 = 0 vs. H1 : β3 6= 0. (19)

Table 1 presents the results provided by maximum entropy bootstrap (meboot) with

dynlm function, considering 1000 replications of the original series, and by maximum entropy

bootstrap with GME estimation (gmeboot). The GME estimator is performed with two

different wide supports for all the parameters, considering minimal prior information about

the problem: [−100, 100] in gmeboot100; and [−1000, 1000] in gmeboot1000. The supports are

defined symmetric about zero, with five equally spaced points between the lower and upper

bounds. For each error support (symmetric about zero, with three equally spaced points) is

used the three-sigma rule, considering the standard deviation of the noisy observations; see

6Ratio of the largest with the smallest singular value of the design matrix; cond(X).
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Golan (2018), p. 380. The highest density regions (HDR) were adopted here to compute

the confidence intervals (Hyndman, 1996). The estimate in Table 1 represents the median

of the 1000 estimates obtained for β3. All values are rounded to three decimals.7

Table 1: Results for meboot and gmeboot.

meboot gmeboot100 gmeboot1000

Estimate 0.126 0.128 0.126

CI99%(β3) (−0.156, 0.471) (−0.111, 0.486) (−0.114, 0.486)

CI95%(β3) (−0.073, 0.340) (−0.052, 0.355) (−0.053, 0.352)

CI90%(β3) (−0.041, 0.297) (−0.028, 0.313) (−0.030, 0.312)

The results are similar between gmeboot (maximum entropy bootstrap using GME esti-

mation) and meboot (using dynlm function from R that currently uses QR decomposition).

The condition numbers of the 1000 design matrices, cond(Xi), i = 1, 2, . . . , 1000, are approx-

imately between 33 and 185, with a median of 80, which denotes (relatively) well-conditioned

models. The null hypothesis in (19) is not rejected for significance levels less than or equal

to 10%, supporting Friedman’s permanent income hypothesis.

Figure 1 presents the HDR for the sampling distribution of the estimates of β3 (with

meboot on the left and gmeboot1000 on the right).

3.2 Simulated examples

Ill-conditioned models (collinearity problems) may occur from the replications of maximum

entropy bootstrap. To illustrate the performance of the GME in the estimation of parameters

in these empirical scenarios, a time series regression model is defined as

yt = β1 + β2 x1t + β3 x2t + β4 x3t + et, (20)

7The R packages meboot (Vinod and López-de-Lacalle, 2009) and hdrcde (Hyndman et al., 2018) are used

in this work. A general code structure to compute gmeboot is available above in Section 2.3.
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Figure 1: HDR for the sampling distribution of the estimates of β3.

with t = 1, 2, . . . , T . The model is constructed as follows: x1 ∼ U(5, 25) and x2 ∼ U(5, 25),

both ordered; x3 = x2/2 + N(0, σ2); et ∼ N(0, 1); coefficients are defined as β1 = 0.10,

β2 = 0.95, β3 = 0.25 and β4 = 0.60; finally, yt is obtained accordingly to (20). The

above strategy with a specific choice of structure and distributions represents a choice for

simplicity over generality; it still remains valid to illustrate many other possible theoretical

configurations. The design matrix is constructed in such a way that, decreasing the variance

of the normal distribution used in the construction of x3, the condition number increases (as

expected) and the problem becomes increasingly ill-conditioned.8 Three different sizes for

time series are considered, namely T = 20, 50, 100. The mean squared error loss (MSEL),

where SEL(β̂) = (‖β − β̂‖2)2, is the measure used to evaluate the performance of the

estimators in 1000 trials.

Tables 2, 3 and 4 present the MSEL values from lm and dynlm functions in R (both

currently using QR decomposition; the results are equal), and the results from GME, where

the estimator is performed with two different supports for all the parameters: [−10, 10] in

GME10 and [−100, 100] in GME100. As before, all these supports are centered on zero with

8The traditional singular value decomposition to define a design matrix with a specific condition number

is avoided here, given the usual characteristics of sample data in time series analysis.
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five equally spaced points between the lower and upper bounds, and for each error support

(centered on zero with three equally spaced points) is used the three-sigma rule, considering

the standard deviation of the noisy observations, i.e., [−3σ̂y, 0, 3σ̂y]; see Golan (2018), p. 380.

For a specific choice of σ2 in the construction of x3, the median (minimum and maximum)

of the 1000 values of condition number is given by med (min and max) cond(X). The values

of cond(X) are rounded to the nearest integer and the values of MSEL are rounded to three

decimals.

Table 2: MSEL from lm/dynlm and GME (T = 20).

lm/dynlm GME10 GME100

med cond(X) ≈ 82 0.909 0.125 0.760

(min cond(X) ≈ 53; max cond(X) ≈ 351)

med cond(X) ≈ 3005 856.754 0.228 0.917

(min cond(X) ≈ 1748; max cond(X) ≈ 5546)

med cond(X) ≈ 15033 20778.694 0.232 0.877

(min cond(X) ≈ 8770; max cond(X) ≈ 30359)

Table 3: MSEL from lm/dynlm and GME (T = 50).

lm/dynlm GME10 GME100

med cond(X) ≈ 79 0.329 0.097 0.315

(min cond(X) ≈ 57; max cond(X) ≈ 237)

med cond(X) ≈ 2798 251.265 0.240 0.830

(min cond(X) ≈ 1889; max cond(X) ≈ 4666)

med cond(X) ≈ 13966 7328.837 0.237 0.476

(min cond(X) ≈ 10303; max cond(X) ≈ 20722)

As expected, the MSEL from lm/dynlm increases with the increase of cond(X), but de-

creases with the increase of T . On the other hand, the results from GME reveal a remarkable
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Table 4: MSEL from lm/dynlm and GME (T = 100).

lm/dynlm GME10 GME100

med cond(X) ≈ 82 0.179 0.084 0.175

(min cond(X) ≈ 60; max cond(X) ≈ 163)

med cond(X) ≈ 2736 121.211 0.237 0.998

(min cond(X) ≈ 2185; max cond(X) ≈ 3621)

med cond(X) ≈ 13714 3242.319 0.237 0.363

(min cond(X) ≈ 10835; max cond(X) ≈ 18114)

stability of the estimates with the increase of cond(X). It is worth noting that regardless

the supports considered, reflecting the existence of different levels of prior information about

the problem, the GME estimator always has a similar performance or outperforms the QR

decomposition currently used in lm and dynlm functions. These results clearly highlight the

advantages of GME to estimate the parameters of all the models obtained from the replica-

tions of maximum entropy bootstrap, whether or not the models obtained are ill-conditioned.

Of course, and as mentioned before, the use of the GME estimator has also its difficulties,

namely in the choice of the supports for the parameters that is always problem specific and

should be carefully chosen in real problems (Golan, 2018). In this simulation, different

supports appear to have a negligible impact on the estimates. In real-world scenarios, if

prior knowledge does not exist, since increasing the amplitude decreases the impact of the

supports, different wider bounds should be considered, and a sensitivity analysis on the

estimates should be implemented. The guidelines provided in Section 2.2 may be helpful in

solving these possible difficulties.

4 Conclusions

The discussion provided in this work intends to improve inference analysis from maximum

entropy bootstrap for time series proposed by Vinod (2004, 2006). Although only the GME
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estimator is illustrated here, other information-theoretic methods can be implemented; e.g.,

W-GME from Wu (2009). Additionally, and although other methods can be used to estimate

the parameters in the models obtained from the replications of maximum entropy bootstrap

(e.g., from the least absolute shrinkage and selection operator family), the purpose of this

work is to suggest and illustrate the application of a unique approach, where maximum en-

tropy is used both in data replication and in parameter estimation. Illustrative applications

were provided that suggest the GME estimator is competitive with traditional functions from

R for parameter estimation in cases where data were reasonably well-conditioned, and exhib-

ited superiority in ill-conditioned scenarios. While promising, the illustrative performance

of the two-stage maximum entropy approach is clearly case-specific, and further research on

maximum entropy bootstrap with information-theoretic methods for parameter estimation

should include the performance in models with different theoretical configurations, possibly

including outliers and other error structures.
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