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ABSTRACT

It is generally recognised that choice of languages can have a significant effect
on the system development process, particularly in the early stages. In the
development of interactive systems, it is essential that all stakeholders can
participate in a meaningful way. In order to do this, they must be able to
understand representations of key concepts produced by the developers,
especially those relating to problems and requirements for the system. Some
stakeholders, such as clients and potential users of the system, may be
unfamiliar with the languages used by system developers. They may therefore
find it difficult to understand representations produced using such languages
well enough to give useful feedback to the developer.

In this paper we identify ease of understanding of representations as a key issue
for interactive system development and consider how the notion of ease of
understanding may be defined in this context. We then discuss an approach to
evaluating software specification languages in terms of properties which may
affect the understandability of representations, and which may be amenable to
objective measurement. Our intention is that results from this work will help to
classify existing languages in terms of ease of understanding, provide a rational
basis for predicting understandability in proposed new languages, and help
developers to use current languages in more imaginative ways so that they can
produce representations that are easier to understand.

“The untrained eye only sees what it expects to see, and it doesn’t expect much.”
John Rothenstein (Director of the Tate Gallery 1938 - 1964), interviewed on
Woman’s Hour 1961 (reported in “Mr. Tate's Gallery”, BBC2, July 1997).




1. INTRODUCTION
i.1 Problem Context

It is generally accepted that the use of different languages for representation has
an impact on the effectiveness with which a variety of tasks can be performed
(Stenning & Oberlander 1995). This is true especially in software system
development, where the effect of the choice of language on successful system
development has long been recognised (Green 1989 and 1991, Johnson,
McCarthy & Wright 1995, McCluskey et al 1995, Modugno, Green & Myers
1994, Roast 1997). However, the relationship between languages,
representations and the quality of the system development process is not fully
understood. Little is currently known about what languages are likely to be
most suitable for use in which contexts. The choice of languages for particular
projects often reflects the experience or preferences of the development team
more than an objective consideration of possible alternatives (McCluskey et al
1995).

In the case of interactive system development, representations of the problem
and the intended system are constructed on the basis of information and
validation from clients and users. Representations are used initially to prompt
clients and users to contribute information about the problem and the intended
system,; they are also used subsequently to support the clients in checking that
the developer has understood and specified the client’s requirements. In this
paper, we address the second of these contexts, where a specification has been
constructed and is in the process of being validated by clients and users. For
the purpose of validation, it is essential that all those involved, including clients
and users who may be untrained in the use of languages used in software
development, have access to a representation that they can readily understand. It
is important that the representations used during development are easy to
understand so that untrained clients and users are not forced to put effort into
deciphering them, rather than concentrating on their content. This problem is
described most eloquently in (Green 1989): "When a train of thought is broken
again and again by the need to find something out the hard way, it is difficult to
piece thoughts together into inspirations; it is difficult enough even to finish a
simple train of thought without making a mistake, simply because of having to
get the information in some tedious and error-prone way." Therefore ease of
understanding of representations is a necessary (though not sufficient) condition
for successful interactive system development.

In many interactive system development projects, the need for user
understanding of representations is addressed by building a skeleton prototype
to offer options which can then be refined in line with the user’s requirements.
A prototype facilitates communication between developers and clients or users,
allows users to relate what they are shown to their own experience of tasks, and
enables them to give meaningful feedback on the design ideas which are
embodied in the prototype.

There are, however, certain cases where the prototyping approach may not be
feasible or not, on its own, adequate. For large complex systems of any kind




“exploits the capabilities of the output medium and the human visual system",
rather than expressiveness: whether a language “can express the desired
information". In this paper, we assume that a language has appropriate coverage
(i.e. that it’s semantics are appropriate for representing the things which the
developer wants to represent). We are interested in what aspects of a language,
over and above an appropriate semantics, are likely to facilitate the production of
representations which may be easily understood by untrained users.

Ease of understanding of software systems representations is crucial for
successful development of interactive systems, but evaluating such
representations in themselves is fraught with problems. A representation written
in a particular language may be easy to understand for a variety of reasons: for
example, the developer may have many years of experience in producing this
type of representation, or the context of the representation may help the reader to
understand it. It is widely agreed that there are many ways that a particular
system or problem may be specified, some more elegant than others. The
difficulty of evaluating representations directly has been recognised by other
authors. These include Stenning and Oberlander (1995) who note problems
with an approach which emphasises "differences between token representations,
rather than the differences of expressive power of the systems the tokens are
drawn from". Scaife and Rogers (1996) also highlight the problem. In their
survey of the literature on how graphical representations affect performance they
note that it is difficult to draw general conclusions from the findings of specific
studies, and that "It is often hard to separate general claims about graphical
representations per se from factors that have to do with individual differences in
ability in the subject or understanding of the domain-specific genre of the
diagrams involved". It is precisely because of the problems of evaluating
representations, that we have chosen, in this paper, to focus on properties of the
languages themselves that support understanding. We are concerned, here, with
the essential properties of languages, rather than representations, which are the
products of the languages being used in different ways, by different people, in
different situations. '

The paper aims to address the question of how to evaluate languages in terms of
ease of understanding, in particular, whether it is possible to predict the extent
to which a language will be readily understandable by users who are new to it.
The detailed objectives of the paper are:

e to explore research in related areas;

e to articulate ease of understanding in terms of properties of languages,
focusing particularly on the context and restricted scope described above;

e to investigate the possibility of measurement of the properties identified.

Our intention is that results from this work will be used in three ways. First,
our findings will help to classify existing languages in terms of ease of
understanding, without the need to carry out a full experimental investigation of
each language. Second, they will provide a rational basis for predicting ease of
understanding in proposed new languages. Finally, they will help developers to
use current languages in more imaginative ways so that they can produce
representations that are more easily understandable by users who are unfamiliar
with languages for software specification.




1998) or ‘models’ (for example object models, dynamic models Rumbaugh et
al., 1991). A number of different diagrams (or models) may often be used in
combination. Such representations may eventually be carried forward to form
part of the ‘specification’ which defines the performance of the system to be
developed. The conventions according to which they are composed are typically
referred to as ‘techniques’ (Davis, 1993) or ‘languages’ (Fenton & Hill, 1993;
Jackson, 1995).

2.2 Use of Terms in Relevant Literature in Cognitive
Psychology

The software developer's 'diagrams’ or 'specifications' are examples of what
some research in cognitive psychology has referred to as 'external
representations'. There has recently been considerable debate in cognitive
psychology about the relationship between internal, or mental, representations,
and external representations (see, for example, Scaife & Rogers, 1996). The
way in which we represent the world ‘inside our heads’ is an important subject
of on-going research, and there are a number of different views on, for
example, the relationship between symbolic and distributed representations,
analogical and propositional representations, and the role of mental imagery
(Eysenck & Keane 1990). Since internal representations are not yet well-
understood, it is currently impossible to reach any general conclusions
regarding the links between internal and external representations, and the
support which particular forms of external representations provide for working
or reasoning with different kinds of internal representations. We agree with Cox
and Brna (1993) that the debate about internal representations is unlikely to
point directly to practical solutions at this stage. In this paper, we make no
claims about the relationship between internal and external representations.
Instead, as described in section 1, we focus mainly on the extraction of
information from external representations and the kind of low-level cognitive
processing which may precede the encoding of information into internal
representations. For the purposes of this paper, we ignore the more difficult and
less well-understood aspects of understanding, such as the way in which
information from external representations may be encoded into internal
representations, or the way in which reasoning about the relationship between
new and existing internal representations may take place. Where we

refer simply to 'representations', this should be taken as shorthand for
‘external representations'.

Within cognitive psychology, a distinction is commonly made between
graphical (or pictorial) representations and propositional (or linguistic, textual,
sentential) ones. As we have already said, many different representations are
used in providing a means for clients and users to check the requirements of a
software system. These range from representations such as rich pictures
(Patching, 1990) which can be characterised as broadly graphical, to formal
logic, which is basically propositional. There are also representations of
software systems which fall somewhere between the two extremes of graphical
and propositional: for example data flow diagrams have some graphical
elements, but also rely heavily on the use of propositional components. Thus
the representations of interest in this paper include both graphical and




which they suggested should influence the developer's choice of requirements
techniques and languages. These factors included the scope of a project, the
need for understanding by various parties, and the volatility of requirements.
More recently, Sommerville and Sawyer have listed some generic guidelines for
choosing representations and methods (Sommerville & Sawyer 1997) and the
RESPECT project has made some general recommendations as to the stages of
system development for which certain techniques and representations are most
appropriate (Maguire 1997). The RESPECT approach is data driven and based
on user-centred design. A range of different methods are suggested to capture
the required data in three main stages: user context analysis, feasibility and
prototyping, and user requirements synthesis and validation. Other projects
such as RESCUED (O'Neill, Johnson & Johnson, 1997) and the Evaluation
Framework for Representations in Requirements Engineering (Sutcliffe, Maiden
& Bright, 1997) are currently investigating the choice of representations at
various stages of the software development process, while the work of
Haywood and Dart (1996) and von Knethen et al. (1998) focuses on criteria for
languages to specify software requirements. Finally, Brun and Beaudouin-
Lafon have presented a taxonomy for the evaluation of formalisms intended
specifically for specifying interactive systems (Brun and Beaudouin-Lafon,
1995). Their taxonomy includes three types of criteria, relating to expressive
power, which they define as ‘the ability to support the description of the largest
possible set of characteristics of an interactive system’, generative capabilities,
defined as the ability to produce, for example, code, or interface functions, and
extensibility and usability. The definition of ease of understanding which we
adopt in this paper corresponds to one aspect of Brun and Beaudouin-Lafon’s
notion of usability.

Looking in more detail at the particular criteria or characteristics of languages
which different authors have identified as being relevant in determining the
suitability of a particular language for a particular project, we once again see that
there is considerable variation in approach. Criteria for specifying languages in the
STARTS guide (Department for Trade and Industry & National Computing Centre
[DTI & NCC], 1987) incorporate qualities such as rigour, suitability for agreement
with the end-user and assistance with structuring the requirements. Rigour
comprises four separate features: how precisely the syntax of the language is
defined, the extent to which it is underpinned by maths and logic, whether the
meaning of individual symbols is defined, and the extent to which the language
supports consistency checking of the requirements themselves. Suitability for end-
user agreement refers to ease of understanding of the language by an untrained
user, and assistance with structuring the requirements assesses the extent to which
the language supports hierarchical decomposition and separation of concerns in the
representation. The STARTS guide also regards the range of requirements covered
by the language as important, including functional, performance, interface, system
development and process requirements. Farbey (1993) covers criteria relating
directly to languages, such as readability, modifiability and lack of ambiguity, and
criteria relating to the language in use, such as the production of a well-presented
specification, the cost in time to produce the representation, and the amount of
support available. Davis (1993) also suggests a list of criteria pertaining to the
effectiveness of representations and the choice of languages. Davis’ list includes
criteria relating directly to specifying languages, such as that the language should
permit annotation and traceability, facilitate modification, and some that are
expressed in terms of the software requirements specification (SRS). These
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Speakers

Language World
Figure 1: Key elements of understanding

Figure 1 denotes the fact that language is typically used by speakers to express
their thoughts about the world. A person with a thought (such as ‘I'd like a cup of
coffee’) can only communicate that thought to another person, such as the waiter in
a café, through the use of some language - either verbal or visual (as in sign
language). We say that the waiter is able to understand such a request if he can
attach the intended meaning to it, or in other words, if he can know what thought
or desire it expressed.

According to this view, understanding relies on a shared system of thoughts and
meanings, one which all members of the linguistic community have (at least
roughly) in common. In the above example, both the waiter and the original
speaker would normally be familiar with the idea of a request and the fact that the
words ‘T’d like’ may be used to express one. They would normally also have
roughly the same idea about what kind of thing the words ‘a cup of coffee’ are
used to denote. Thus Blackburn talks about a ‘dog-legged’ theory of meaning in
which understanding between different members of a linguistic community is
possible because that community shares a set of conventions about the mappings
between words and things in the world, and also between words and thoughts.

For the purposes of our discussion, we may substitute the more general notion of
‘representations’ in place of ‘language’ in Figure 1. We may limit ourselves to the
domain of software systems as the part of the world in which we are particularly
interested, and think of our speakers as being software developers, clients, and
potential system users, in other words, the stakeholders in a system development
(see Figure 2).

‘4 stakeholders

representations software systems

Figure 2: Key elements of understanding in interactive system
development

Following on from the discussion above, we would say that understanding
between the stakeholders would have to rely on a shared system of thoughts and
meanings for representations; or in other words, a shared set of mappings between
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The initial distinction is between semasiographic and glottographic languages.
Semasiographic writing systems are means of visible communication which are
independent of any particular spoken language. Semasiographic systems can be
found in areas of public communication, such as road signs, cleaning
instructions for clothes and directions for storing frozen food. Although it is
not possible to read aloud a sign such as the one shown below, motorists,
regardless of nationality, can see clearly that the sign indicates a no through
road.

R,

WL

Figure 4: A semasiographic road sign

Well-developed semasiographic writing systems are often associated with
primitive peoples, but this is not always the case. Mathematics is a highly
sophisticated form of semasiography. As an example, we can consider the
mathematical representation 91000, which translates as ninety-one thousand in
English, and quatre-vingt-onze mille (four twenties and eleven thousand) in
French. All three representations (maths, English and French) have different
structures; there is repetition in the maths, but not in the other languages since
000 translates into one word in each. Mathematical symbolism is not tied to a
specific spoken language. It is a semasiographic language - that articulates
thought directly and independently rather than merely standing for its spoken
articulation.

In contrast to semasiographic, glottographic languages provide visible
representations of spoken-language utterances. Glottographic writing systems
are further divided into logographic (based on meaningful units) and
phonographic (based on units of sound). Examples of logographic language are
%, meaning 'per cent', and & meaning 'and'. It is clear that the logographic
symbol & bears no relation to the phonographic a, n, d , since it is not
meaningful to replace words such as land or candy with 1& or c&y. One of the
most common examples of a phonographic language (based on units of sound)
is the international phonetic alphabet.

According to this classification, we would say that languages for specifying
software systems are largely semasiographic, since their symbols relate directly
to concepts, not to units in a specific language. However, text items which
form part of a language (such as names of processes or data items) will be
classed according to the natural language in which they are expressed and are
most likely to be phonographic units.
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6. A VIEW OF THE PROBLEM FROM COGNITIVE
PSYCHOLOGY

The impact of different forms of representation on cognitive performance has
long been recognised. This phenomenon is described by Simon as follows:
‘Representations may be equivalent in the knowledge embedded in them without
being equivalent in the power and speed of the inference processes they enable.
They may be informationally equivalent without being computationally
equivalent.” (Simon 1995)

We have said in section 2 that we focus in this paper on what have been called
‘external representations’. External representations come in many different
forms including maps, photographs, tables of figures, shopping lists,
architects’ blueprints and designers’ doodles. As described in section 2, such
representations have often been divided broadly into two categories: graphical
and propositional. The distinctive characteristics of propositional and graphical
representations are characterised in a little more detail by Eysenck and Keane
(1990) as follows. Propositional representations are made up of discrete
symbols (words or letters, depending on the level of granularity which is
required), whereas in graphical representations, there are no obvious discrete
symbols (for example, in a picture of a face, there is no obvious way of
deciding what should be seen as a discrete symbol - should it be the
representation of the face as a whole? or of the eye? or of the pupil?). In
propositional representations, explicit symbols are used for everything which is
to be represented, whereas in graphical representations much, for example the
relation of ‘on-ness’ or ‘beside-ness’ is implicit. In propositional
representations, sentences are arranged according to a grammar, whereas
graphical representations usually follow no set grammar. Finally, propositional
representations are in some sense abstract with respect to the form of perception
(visual, auditory, tactile etc.) through which the information they portray could
be communicated, whereas graphical representations are tied more firmly to the
visual modality. Larkin and Simon (Larkin & Simon, 1987) also characterise
the difference between what they call ‘sentential’ and ‘diagrammatic’
representations, drawing particular attention to the contrast between sequential
nature of sentential representations and the indexing of information by location
in a plane in diagrammatic representations.

As we have already said, many different representations are used in providing a
means for clients and users to check the requirements of a software system.
These range from representations such as rich pictures (Patching, 1990) which
can be characterised as broadly graphical, to formal logic, which is basically
propositional. In rich pictures, the symbols used may be drawn from an infinite
set of possibilities, and it can be difficult to make a definite judgement about
where one symbol begins and another ends. Rich pictures rely heavily on visual
communication, and the location of symbols within the plane of the picture is
often used in a significant way. Information can remain implicit in many parts
of the representation. Finally, the grammar according to which rich pictures are
drawn is only weakly defined. For formal logic on the other hand, there is a
pre-defined set of symbols which may be used in writing a specification, all
information to be communicated by a specification must be included explicitly,
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arbitrary. The way in which analogy can be exploited in representations of
software systems is at first sight not clear: as Fred Brooks has famously pointed
out (Brooks, 1986), much of a software system is invisible, so direct visual
analogies are not possible. The representations used in software development
often aim to show, for example, the ordering of events, or the dependency of
different outcomes on a range of alternative inputs, none of which correspond to
obvious visible objects in the world around us - they are therefore what Larkin
and Simon termed ‘artificial diagrams’. Even in these cases, certain conventions
of representation are so ingrained within the culture, that particular arrangements
of symbols can immediately suggest what they represent, without the existence
of a simple analogy with a physical object. For example, Winn (1993) has
discovered that the simple vertical or horizontal alignment of symbols can affect
whether readers judge one symbol to represent the ‘cause’ of the other, or a
‘characteristic’ of the other. He also draws attention to hierarchies, flow
diagrams and tables as being forms of representation which are so familiar in
our culture as to convey meaning directly without relying on a mapping to an
actual physical object or arrangement.

As well as analogy or cultural familiarity of form, Winn also identifies the
prominence or perceptual discriminability of symbols within a representation as
being an important determinant of how easily meaning can be extracted.
Discriminability relies on preattentive perceptual processes and is not affected by
the reader’s characteristics or goals. The phenomenon of certain symbols
‘popping out’ of a visual display because of their contrasting colour, shape or
size has been demonstrated empirically and explained by Triesman’s ‘feature
integration theory’ (Triesman,1988). Winn (1993) suggests that the visual
distinctiveness of symbols determines the order in which readers process
components of a representation, their attention being drawn automatically to the
most prominent symbols first.

Finally, both Larkin and Simon (1987) and Winn (1993) have identified the
importance of spatial layout in facilitating the search for relevant information
within a representation. Preattentive processes may also play a role in the
reader’s identification of groups of symbols which are clustered together in the
same location. Thus the particular arrangement of individual symbols may lead
to the representation as a whole possessing certain ‘emergent properties” which
may themselves carry meaning.

The way in which different representations support particular kinds of reasoning
is more complicated and less well understood. Bauer and Johnson-Laird (1993)
showed that particular forms of diagrams can facilitate reasoning about double
disjunctions if they are laid out in such as way as to preserve important
topographical features of the problem (note that this relates to the point about
spatial layout above), and also assisted reasoners in keeping track of alternative
possible solutions to a problem by making those possibilities explicit. Cox and
Brna (1993) have looked at constraint-satisfaction problems and suggest that an
important factor here is the extent to which a representation is capable of
representing an appropriate amount of abstraction or indeterminacy. Finally,
Stenning and Oberlander (1995), investigating syllogistic reasoning, have
identified the important characteristic of representations in supporting reasoning
as ‘specificity’: the extent to which representations limit abstraction and thereby
aid processibility. Stenning and Oberlander claim that the advantage commonly
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The framework of cognitive dimensions (Green 1989, 1991) was developed
for the analytical evaluation of information structures and has been used
successfully in a number of cases, both by Green himself (Green, 1991; Green,
Petre & Eellamy, 1991; Modugno, Green, & Myers, 1994; Green &
Blackwell, 1996), and by other authors (Shum, 1991; Petre, 1995; Stacey,
1995; Roast, 1997; Yang et al.,1997). We have, ourselves, found cognitive
dimensions to be useful and effective in evaluating two different mechanisms
for structuring specifications written in Z (Britton, Jones & Lam, 1998).

Cognitive dimensions are intended to support the evaluation of any type of
information structure and can be applied to specification and programming
languages, musical scores or even telephone numbers (Modugno, Green &
Myers, 1994). The dimensions are not a set of criteria which may be satisfied to
various degrees by different information structures; rather they are aspects of
information structures which may be important and useful in specific situations.
Green’s work in this area has not, as yet, been theoretically validated; nor does
it address the question of objective measures of cognitive dimensions. The
framework does, however, provide a pragmatic approach to considering
information structures (in our case, specification languages). Cognitive
dimensions are tools for thinking about information structures, rather than
detailed guidelines; they provide a ready-made vocabulary which makes them
useful, both as a thinking tool and an index to the professional literature.

Ease of understanding is not, itself, part of Green’s framework, but several of
the cognitive dimensions helped us to identify ideas in the cognitive psychology
literature that are relevant to ease of understanding. This was helpful in our
research precisely because we wanted to break down the concept of ease of
understanding in order to get a grasp of how it may be supported by
specification languages. We found the dimensions to be especially helpful in
focusing on the activities that a reader has to carry out in the context which is the
subject of this paper (the validation of representations of software requirements)
and the properties of languages which may support these activities. The
dimensions of visibility and redundant recoding highlighted relevant work in the
cognitive psychology literature that helped us to formulate two properties that
may help readers to distinguish elements of a representation clearly:
discriminability of symbols and the extent to which a language allows
exploitation of human visual perception. The dimensions of closeness of
mapping and role expressiveness led to consideration of two of the tasks that a
reader has to perform: relating elements of the representation to elements in the
domain and inferring the purpose of individual components in a representation.
In order to provide support for these activities, we formulated the property of
motivation of symbols in a language. On the other hand, the dimensions of hard
mental operations and hidden dependencies relate to activities that we would not
wish to impose on a reader of a representation; this led us to thinking about
properties of languages which could help reduce the need for these activities,
such as the number of different symbols in a language, the extent to which a
language allows exploitation of human visual perception and the amount of
structure in the language. The property of structure also resulted from
consideration of the dimension of abstraction gradient and the associated task of
decomposing a representation into manageable chunks. Finally, the dimension
of consistency (where similar information is expressed in similar ways) lead
directly to the property of consistency of symbols in a language.
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actually makes them easier to reason with. To achieve a complete view of a
system, a range of languages has to be used in order to make explicit all the
different dependencies.

Visibility

The ability to view components of a representation easily and to distinguish
them from each other is valuable in providing the reader with confidence that he
or she will be able to understand the representation. First impressions can have
a significant effect on the way in which a reader (particularly one who is
unfamiliar with the language) approaches the tasks of searching the
representation, recognising relevant information and validating the content of the
representation. One important factor in such first impressions is the perceptual
discriminability of symbols within the representation, as discussed in section 6.
A textual representation which is presented in a single block is much more off-
putting than the same text split into separate sections according to the different
topics covered. Among mathematical languages, the schema boxes in Z help to
increase visibility by physically packaging together associated parts of the
representation. Graphical languages, such as entity-relationship or data flow

“diagrams, appear to offer the greatest potential for visibility, but frequently

produce diagrams which are a cluttered mish-mash of icons and symbols,
because not enough care has been taken to emphasise visibility of components
in the representation. One of the most useful aspects of the cognitive dimensions
approach to evaluation of languages is that it highlights the trade-offs that have
to be made between dimensions in different situations. Visibility of components
is often a casualty in cases where priority is given to ensuring that the
representation carries as much information as possible. This cognitive
dimension implies that, in cases where visibility is important in a representation,
a language should be used which has symbols that are simple to recognise and
easy to distinguish from each other. We discuss this further in section 8.

Redundant Recoding

A cognitive dimension which is related to visibility is that of redundant recoding:

the ability to express information in a representation in more than one way.
Examples of redundant recoding in text-based representations include headings,
font size, and use of upper and lower case. Colour or the shape of the
representation itself may be used in graphical or textual representations to
highlight separate parts of a system or to emphasise aspects of its functionality.
In certain languages redundant recoding is provided by indentation and layout.
Figure 6(a) and (b) below shows two versions of the same process description:
one using unformatted, lower case structured English and one using comment,
indentation and a mixture of upper and lower cases. In the second example the
decisions to be taken are conveyed by both the content and the layout of the
representation.
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provided by a language. According to Sengler (1983) reading representations of
any size involves the activities of decomposition (to split the representation into
manageable chunks) and abstraction (to identify the most important features) as
described in section 6. A language which scores highly on the cognitive
dimension of abstraction gradient is one which encourages developers to
produce representations for which the reader does not have to expend effort in
working out how to abstract the most important information from it. This again
relates to Stenning and Oberlander’s point about the importance of ‘specificity’,
or clarity in abstraction. One important way of imposing a particular view of
abstraction on the reader is by physically structuring a representation into visible
chunks. The amount of structure is an important property in a language; it is
discussed below in section 8.

Consistency

A consistent language is one where similar information is expressed in similar
ways. This not only simplifies representations produced using the language,
but means that untrained users can make reasonable guesses at symbols which
‘they have not seen before. One example of consistency in mathematics is the
use of the symbol < to mean "less than" and the symbol <, to mean "less than
or equal to". In section 8 we discuss how consistency of symbols can alleviate
problems of understanding in languages which have a large number of symbols.

Role Expressiveness

In languages which score well on the dimension of role expressiveness the
reader can readily infer the purpose of individual components in a
representation. Closeness of mapping between language and problem domain
provides support for role expressiveness, since the reader will recognise the
purposes of different components of the representation based on his or her own
experience of the problem domain. As already mentioned above, there is rarely
a direct mapping between symbols used in languages for software development
-and the domain elements they represent. This means that role expressiveness
depends largely on how names and labels are used in representations. In a data
flow diagram, for example, the name given to a process or data store is crucial
in conveying the purpose of that process or store to the reader. In a Z
specification the purpose of a schema is encapsulated in its name, so it is
important that care is taken to make sure this is meaningful.

Hard Mental Operations

Some languages require readers of representations to perform mental operations
that are extremely complex, especially for people who are unfamiliar with the
languages. Examples can be found in many of the symbols used in Z, and in the
aggregation and inheritance relationships used in object-oriented modelling.
Hard mental operations are a further barrier for readers of a representation who
are unfamiliar with the language in which it is written.
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8.1 The Role of Measurement

It is our view that an approach based on measurement helps us to understand
and elucidate the concept of understandability of languages. The process of
attempting to measure something is valuable in itself, in that it forces the would-
be measurer to articulate exactly what is being measured. In the words of Lord
Kelvin (1889) "When you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
measure it in numbers, your knowledge is of a meagre and unsatisfactory kind".
In the area of software specification, Farbey (1993) and Davis et al. (1993) have
attempted to measure aspects of the software requirements specification itself.
In (Davis 1988) languages used in software specification, including natural
language, are measured against a set of criteria, scored on a subjective scale of 0
to 10. In our own work on understanding in software specification languages,
we have, to date, already identified some direct and empirical ways of
measuring languages in terms of the six properties listed above. At the very
least, we can measure on a nominal scale, to ascertain whether or not a language
possesses a certain property. In certain cases, we can use an ordinal scale to

_compare languages, to indicate the relative degrees to which two or more

languages possess a particular property. While these basic measurements are
useful in themselves, rapid advances in metrics in a wide variety of areas lead us
to believe that there is considerable potential for more sophisticated
measurements of languages in the future, which will, in turn, lead to a deeper
knowledge of concepts such as ease of understanding.

8.2 Properties of Languages for Specifying Software
The Number of Different Symbols in the Language
One obvious property of languages which can be measured is the number of

symbols they contain. The number of pre-defined symbols in a language has an
impact on three of the cognitive dimensions described in section 7.1: redundant

‘recoding, consistency and hard mental operations. Green (1980) makes the point

that programming languages with a large number of symbols and features are more
difficult to learn and understand than languages with fewer features. If we apply
this to languages used in software specification, it follows that languages such as
storyboard or rich pictures, each with 2 symbols, are apparently going to be easier
for new users to understand than Jlanguages such as Z, which has 76 symbols
(Myers et al 1996). It is not surprising then that storyboards are widely used in the
development of, for example, interactive multimedia systems, where not only the
users, but also members of the development team, are likely to be unfamiliar with
software specification languages (Admiral Training 1995, Britton et al 1997).
Figure 7, below, shows the huge difference in the numbers of symbols found in
software specification languages.
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language, Z, has 76 different symbols (see Figure 7, above); of these, 28
symbols are consistent in that they have a direct connection in form and meaning
with at least one other symbol. The consistent symbols include = ("is equal to")
and>("is not equal to"), <I("domain restriction") and <("domain
subtraction"), €("subset") and <("proper subset"). However, 48 of the Z
symbols do not exhibit any consistency; there is no obvious way of grouping
them according to meaning and form. We would expect that this contributes to

the difficulties that new users have in understanding representations written in
Z. ‘

We should also be aware, however, that it may be difficult for users to
discriminate between symbols which are consistent, such as the examples in the
preceding paragraph. For example, a user who is not familiar with the Z,
language may recall that <Jand I>mean "domain restriction" and "range
restriction”, but may be unable to remember exactly which is which. In some
contexts there is a trade-off between the properties of clear consistency of
symbols and discriminability (see below). Links and trade-offs between
properties of languages are identified as future work in section 10.

‘The Discriminability of the Symbols in a Language

Discriminability, which is related to the cognitive dimensions of visibility and
redundant recoding, refers to the ease with which different symbols in a
language can be distinguished from each other; this depends on how physically
distinct each symbol is from others in the language. Discriminability has been
identified by research in cognitive psychology (see section 6), and by both
Green (1980) and Sampson (1985) as an indicator of how easy a language will
be for untrained users to understand. As an example, we can consider the Z

symbols + (meaning partial function) and P (meaning maplet). To someone
who is not familiar with Z, the two symbols look very similar, yet they have
completely different meanings. They are not easy to distinguish from each other
and so are a potential cause of confusion for readers trying to understand a
specification written in Z.

Discriminability of symbols is a problem with many mathematical languages. In
contrast, diagrammatic languages, such as entity-relationship and data flow
diagrams, generally have symbols, such as lines, arrows and boxes, that are
clearly distinguishable from each other. However, confusion may arise when
someone who is unfamiliar with the languages has to look at more than one type
of diagram. An untrained user may well find that the symbol for a process in a
data flow diagram is not easy to distinguish from the symbol for a data store or
the symbol for an entity in the E-R diagram (see Figure 8 below).
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Figure 9: Use of shading to distinguish symbols in a data flow
diagram ' '

- As we mentioned above, there is frequently a trade-off between a language in
which the symbols are easily discriminable and one in which the symbols show
a high degree of consistency. It is not possible to advocate a general rule as to
which of the two properties contributes more to the ease of understanding of a
language, but it is important that developers are aware of the issue when
choosing languages and constructing representations.

In section 9, below, we report on a study to measure discriminability in the Z
formal specification language.

The Degree of Motivation of the Symbols in the Language

The concept of motivated and arbitrary languages comes from the work of
Sampson (1985) (see section 5, above). Motivation is also identified as an
important characteristic by many authors in the discipline of cognitive
psychology (see section 6). A language may be considered to be motivated if
there exists a natural relationship between the elements of the language and
objects or ideas that they represent. The property of motivation of symbols is

30




Although it is not currently feasible to measure motivation directly, we can,
however, measure motivation of symbols in a language indirectly by means of
experiments, such as those used in choosing icons, where subjects are asked to
identify the images which map most closely onto concepts of interest. An
example of this is discussed in section 9, below. Motivation is an important
property of a language, since, by definition, it means that the symbols in the
language will be closely related to the concepts that they represent and therefore
that their meaning will be clear, even to untrained users. We would expect,
therefore, that a language with a large number of motivated symbols will '
produce representations that are easy for users to understand, even if the users
are unfamiliar with the language.

The Extent to which the Language allows Exploitation of Human
Visual Perception.

Cognitive dimensions relevant to this property of languages are redundant
recoding, hidden dependencies and visibility . This property is also related both
to Mackinlay’s (1986) notion of effectiveness: whether a language “exploits the

“capabilities of the output medium and the human visual system”, and to what

Scaife and Rogers (1996) term 'computational offloading'. Computational
offloading is the extent to which a representation of a problem can reduce the
amount of cognitive effort needed to solve the problem by providing the means
for direct perceptual recognition of important elements in it. In this paper we
refer to languages which allow exploitation of human visual perception as
‘perceptual’.

Perceptual representations are those in which we perceive meaning directly, for
example the use of colour in electricity cables, or diagrams in various contexts,
such as road signs. Most languages used to specify software contain both
perceptual and non-perceptual elements. Graphs are perceptual in that they are
diagrammatic, although they often contain (non-perceptual) labels for the
various nodes. Representations in languages which are not perceptual in

-themselves are frequently laid out to show certain aspects perceptually: the

placing of schemas in Z specifications, formatting of pseudo code and
introduction of ‘white space’ to aid comprehension are examples of this. Text-
based languages generally use perceptual devices to aid comprehension; these
may include section headings, paragraphs, variations in size and font, bullets,
emphasis and white space.

The question of how to exploit human visual perception is one which has long
concerned designers of representations in all fields. As long ago as 1935, Jan
Tschichold noted that *.... readers want what is important to be clearly laid out.
They will not read anything that is troublesome to read, but are pleased with
what looks clear and well arranged, for it will make their task of understanding
easier”, (cited in Williams 1994).

Perceptual and non-perceptual languages each have advantages and
disadvantages in software specification. Representations in languages which
are not in themselves perceptual, such as mathematical specification languages,
are generally able to hold much more information than representations which
rely heavily on perceptual features, but are frequently beyond the understandin g
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entities and data stores can be easily confused by readers who are new to the
language, and it can be difficult to distinguish between names of data flows,
such as ‘Order’, ‘Valid_Order’, ‘Part_Order, Incomplete_Order’.

Repetition means repeating some aspect of the design throughout the
representation to give the impression of coherence and organisation. In a set of
data flow diagrams this can be achieved by labelling each level in exactly the
same way. In individual diagrams, the same font should be repeated for names
of the same type of elements, such as processes. This can cause a problem,
however, if a process has a particularly long name and the process symbol needs
to be made larger, since it may wrongly appear to be particularly important.

The technique of alignment aims to ensure that nothing is placed randomly in a
representation. Each element should, where possible, have a strong visual
connection with something else in the representation and the overall structure
should appear to be a cohesive unit. In complex data flow diagrams space is
often at a premium, which means that components of the representation are
placed where there is room, rather than in a position which emphasises their
relationship to other elements in the representation. In Figure 9 (above) it would
‘be clearer if the three processes ‘Agree customer orders’, ‘Price order’ and
‘Dispatch goods’, were aligned to reflect the path of an order through the
system. They have had to be placed unaligned on the page to allow room for the
‘ORDERS’ data store. If we attempt to move the ‘ORDERS’ data store to the
other side of the diagram, aligned with the ‘PRODUCT_INFORMATION’ store,
we get crossed data flows, which are prohibited in a data flow diagram.

Proximity means that elements of a representation that are related to each other
should be grouped close together, as mentioned above. Again, in data flow
diagrams, lack of space means that this clustering is often impossible. A further
problem arises from the fact that external entities are only shown on the top level
diagram; this means that, even if an external entity is very closely related to a
lower level process, they would not appear on the same diagram.

One of the principal claims of data flow diagrams is that they are easy for users
to understand; data flow is, in fact, so widely considered as easy to understand
that it is still the first specification language taught to students on many system
development courses. From this brief assessment of the data flow language in
the light of the four techniques for making representations more perceptual we
can see that, in spite of its graphic components, data flow gives the developer
very little freedom to exploit human visual perception. Although, in theory, the
data flow language is flexible enough to produce perceptually rich
representations, in practice it is often difficult for developers to incorporate these
four techniques into their diagrams.

The Amount of Structure Inherent in the Language

As discussed in section 6, above, finding, decomposing and abstracting
information have been identified as key activities in reading a representation
(Larkin & Simon, 1987, Sengler, 1983). Finding information involves
searching the representation; this process will be easier for untrained users to
carry out if the language used encourages a clear structure in the representation.
Decomposition and abstraction are important because a reader can only cope
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relevant to ease of understanding, and then to find a way of measuring the
languages in terms of these properties. In the previous section we identified and
described six properties of specification languages that, in our view, may
contribute to the ease of understanding of representations. In this section we
describe a small-scale pilot study , which we have carried out to explore the
potential for empirical evaluation of the languages in terms of the properties
identified in section 8. The aims of the study are, first, to investigate whether
three of the properties (consistency, discriminability and motivation) can be
measured empirically in a reliable and repeatable way, and, second, to obtain
some first (empirical) indications as to whether our properties may plausibly be
predictors of ease of understanding of representations written in Z.

There are a number of approaches that we could take in an empirical study based
on our work. We could, for example, select a specific problem, apply different
specification languages to it and then analyse and compare the resulting
representations of the problem. However, as we have already said in the
introduction to this paper, we share the opinion of certain other authors
(Stenning & Oberlander, 1995; Scaife and Rogers, 1996) that evaluating
representations themselves is too problematic. There are too many unknown

“and uncontrollable variables associated with a representation for the results of

such an evaluation to be of real use. Our response to this is to focus on the
empirical evaluation of the languages themselves, concentrating, initially, on the
extent to which the properties are amenable to objective measurement. We
intend, in future, to carry out more empirical studies which will investigate
whether our properties really are good indicators of understandability of
representations, for example by applying the properties analytically to predict
understandability and then testing out our predictions in empirical studies.

For the purposes of this exploratory study, we have chosen the language Z as
an example of the kind of language whose properties we would hope to be able
to measure, and ultimately to use, in predicting the extent to which it will
support the construction of representations which are understandable for |
untrained users. Although the choice of Z has been made partly for pragmatic

.reasons (as students in our department are taught Z on a routine basis, we have

access to a large number of potential subjects), we argue that the choice can also
be justified on theoretical grounds. Z is generally agreed to be a very difficult
language for untrained users to understand. However, we can often learn more
from ‘failures’ or difficult cases than from cases in which everything goes well.
In Z, we may find many things which make a language difficult for untrained
users: we believe we may learn more by observing students’ problems with
trying to understand representations written in Z than we would from
considering representations in which understanding is simply intuitive.
Furthermore, although Z would usually not be the obvious choice for writing
software specifications which are to be checked by users, such checking of
formal specifications is sometimes required in the development of safety-critical
systems (see, for example, McCluskey et al., 1995; Johnson, McCarthy &
Wright, 1995).

We have focused, in our pilot study, on the properties of consistency,
discriminability and motivation, which relate to individual symbols in the
languages. The number of symbols in a language can be measured directly as
described above, and will not be discussed any further here. The previous
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Symbol presented with meaning Options
presented with
totals for each

1. If €means “is a member of”, which of | < = (3

the following symbols do you think 1 24

means ‘““is not a member of”? o

2. If ? represents “input”, which of the 77 !

following symbols do you think represents | 1 -9 13

“output”? v

3. If Nrepresents positive numbers Z R N+

including 0, which of the following S

symbols do you think represents positive | 8 5 1T

numbers not including 0?

4. If Smeans “subset”, which of the < | € 2.

following symbols do you think means 23 2

~“proper subset”?

Figure 12 : Numbers of students choosing symbols to represent
meanings relating to a given example (correct answers are
highlighted).

In questions 1 and 4, consistency apparently provided a strong cue for the
meaning of new symbols, as given the meaning for one symbol, most subjects
could correctly identify the symbol corresponding to a related meaning
(although it should be noted that some of the subjects may have encountered
these symbols during school maths programmes and may have been acting on
the basis of memory for their meaning, rather than relying purely on the visual
consistency of the symbols). '

In questions 2 and 3, the responses are much more divided. Our hypothesis
regarding question 2 is that use of the symbol —to represent the idea of
“output” is motivated and that for a large proportion of students, this was the
determining factor in this choice of symbol over and above any consideration of
consistency. This suggests that the effects of consistency may need to be
considered in conjunction with those of motivation, as well as discriminability.

In question 3, the relationship between the NandN* symbols was apparently
not strong enough to guide subjects to the correct symbol for the meaning
given. This suggests that attempts to exploit consistency must be treated with
caution: some relationships between symbols which may be obvious to the
designer of a language may not be apparent to all its intended users.

38




Options presented with numbers of guesses
B is defined | domain srange. .| domain member subset of override range not a proper
as subtrac- Subtr-- ] restrict- of restrict- member subset of
tion ‘action © | ion ion of
5 L 3
< subset of domain is defined range member not a domain override range [ proper
- restrict- as restrict- of member subtract- subtract- | subsetof
ion ion of ion ion : o
6 8
Py range domain subset of not a domain member override proper isdefined | range
- restrict- restrict- member subtract- of subset of | icast:| subtract-
ion ion of ion i ion
1 1 1 1 10
<] member | is defined proper not a domain | ‘domain range override range subset of
of as subset of member | subtractio |:-restrict- restrict- subtract-
of I - ion ion ion
2 5 6 1
& range domain subset of not a domain member override proper is defined range
restrict- restrict- member subtract- of - subset of as subtract-
ion ion of ion : ion
14
$ domain range domain member subset of override range not a proper
subtract- subtract- restrict- of restrict- member subset of
ion ion ion ion of
14
> subset of domain is defined range member not a domain override range proper
restrict- as restrict- of member subtract- subtract- subset of
ion ion of ion ion
6 5 2 1
e range domain subset of not a domain [-member | override proper is defined range
restrict- restrict- member subtract- of subset of as subtract-
ion ion of ion ) ion
S 14
< override | is defined |--domain - range member subset of range domain not a proper
as ‘subtra--* restrict- of subtract- restrict- member subset of
-Iction ion ) ion ion of
6 4 4
< subset of: domain 1s defined range member not a domain override range proper
Sl restrict- as restrict- of member subtract- subtract- subset of
B ion ion of ion ion
10 4

Figure 13(b) : Numbers of students choosing meanings for
symbols given in Z (correct answers are highlighted)

The aim of the questions in Figure 13 (a) was to see if subjects confused either
the meanings of perceptually similar symbols in Z, such as the arrows +

(partial function),=*(total function), » (maplet) and <> (relation), or the
meanings of perceptually dissimilar but conceptually related symbols such as ?
(input data) and ! (output data), and A (denoting an operation which will change

data) and = (denoting an operation which will not change data).

It can be seen from the first, third, fifth and last rows in Figure 13 (a) that
perceptually similar symbols were in fact confused; in each case, the subjects
either identified the correct meaning for the symbol given, or selected a meaning
that belongs to one of the other similar symbols. However, what is not clear at
this stage, is whether this is due to problems with the perceptual
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Meaning Options presented with numbers of guesses
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Figure 14 : Numbers of students choosing symbols in logic to
represent meanings given (correct answers are highlighted)

It is noticeable from Figure 14 that all but one subject in Group 1 chose the
symbol & as an appropriate representation for "and", and that & was chosen by
only one student to mean anything other than "and". Unfortunately however,

‘the symbol used in Z to represent ‘and’ is ‘A’. This appears not to be very

motivated as only one subject chose this symbol to mean ‘and’, and opinion
appears also to have been quite divided regarding the other meanings with
which it was associated. On this basis, we may suppose that the use of the
symbol ‘&’ in logic is highly motivated, but that other symbols used in logic
and Z will not easily be associated with their intended meanings by untrained
users.

Group 2 had followed a course on formal languages the previous year, in
which they were taught Z as well as one of the versions of logic from which
symbols were drawn - in the version of logic students were taught, the symbol

‘A’ was used to denote ‘and’, and the symbol ‘71’ was used to denote ‘not’.
These subjects were given the same set of symbols as were shown to Group 1,

and were asked to identify their meanings. For example, given the symbol 3,
subjects were asked to say whether this means "and", "for all”, "there exists",

"if .. then", "or", "if .. and only if", or "not". Results from this question are
shown in Figure 15.

42




identified than those of untaught symbols which are not motivated.
Furthermore, attempting to teach the meaning of symbols which are
unmotivated may not be as effective as starting with symbols which are
motivated in assisting subjects to identify their correct meanings.

We also note that all subjects in Group 2 correctly identified the meanings of 3

and V. From the results of Group 1, the symbols 3 and V do not obviously
appear to be motivated (these symbols were only correctly associated with their
meanings by around one quarter and one third of the subjects respectively).

However, the motivation of these symbols (3 is a backwards E, as in "Exists",

and V is an inverted A, as in "All") had been pointed out to the subjects in
Group 2 during their course the previous year. The results shown in Figure 15
suggest that, once attention has been drawn to the motivation of a symbol, its
meaning may quite readily be recalled, even if, at first sight, it does not appear
to be motivated. Once again, these results provide interesting pointers to further
work on the nature of motivation and its effect on ease of understanding.

9.4 Summary of Findings

The results of our pilot study indicate that we have achieved some success in
our attempts to derive measures of languages which may be used to predict
understandability of representations. We have some measures, though we do
not yet know exactly how to use them, nor how to combine them. For example,
we do not know at present how exactly ease of understanding of representations
written in Z is affected by the fact that two sets of four symbols amongst the 76
available in Z are easily confused with each other. Considering the properties in
combination, we do not know whether consistency of symbols is more or less
significant than discriminability or motivation, nor what the relative weightings
of each of the properties should be in any calculation of understandability.
However, our study has produced some interesting results that encourage us to

-have some confidence that our properties might reasonably be indicators of ease

of understanding.

The results of the study suggest that the kind of consistency which exists
between some symbols in Z may be useful in helping untrained users to
correctly identify the meanings of some symbols once they know the meanings
of others. On the other hand, the results suggest that lack of discriminability
between symbols causes problems in Z. In particular the arrows, such as +,

=, Pand <>, and symbols for domain and range restriction and subtraction,

B>, <1,>and<appear to be sources of confusion, although it is not yet
clear whether this confusion may be due mainly to the perceptual similarity
between symbols, or to their close relations in meaning. Finally, none of the
symbols from Z which were included in our pilot study appear to be very
motivated for completely untrained users, although once meaning has been
taught and motivations identified, their meanings can be correctly recalled.

We have already seen, in section 8, that Z has a relatively high number of
symbols, that it provides little basis for exploiting the capabilities of visual
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and choices made. For each of the properties of languages identified, we have
suggested ways in which direct or empirical measures relating to these
properties can be obtained. For the number of symbols in a language and the
degree of consistency of the symbols we have identified metrics against which
languages can be measured. We have presented empirical evidence from our
study to suggest that problems with discriminability can lead to inaccurate
memory for meaning and therefore decrease the possibility of understanding a
representation. Results from the study also suggest that high motivation is
associated with improved recall of meanings of symbols, and will therefore
contribute to ease of understanding. We have identified certain properties of
software specification languages that exploit human visual perception
(connectedness and inclusion), and we have also suggested how we may check
whether a language gives the developer freedom to exploit recognised design
techniques. For the amount of structure in a language we have referenced
existing research on measuring and comparing tree structures in different
languages.

From the literature and from our study we have generated a number of
hypotheses about properties of languages which make representations
constructed using the languages easier to understand. The impact of the number
of symbols in a language is discussed in section 8.2 , which also shows how
consistency of symbols may alleviate some of the problems which arise when a
language has a large number of symbols, and considers the importance of
discriminability of symbols. Although our study identified problems with
discriminability of symbols, it is not clear whether this was due to lack of
perceptual discriminability or to conceptual confusion; this is discussed in
section 9.2. Motivation of symbols is a feature that is considered as important
for ease of understanding both in Sampson (1985) and in the cognitive
psychology literature (see section 6, above). However, as we note in our
discussion of this property, motivation is virtually impossible to achieve in the
area of software specification because many of the main elements of concern,
such as processes, data and changes of state are invisible and intangible.
Perhaps more important in the development of software systems is whether the
reader has the relevant concepts of, for example, objects, data flow or state to
which he or she can relate components of the language. A further property of a
language that is grounded in the cognitive psychology literature is the property
of exploiting human visual perception . The concern here is that languages
should have the flexibility to allow developers to exploit human perceptual
capabilities in a way which is appropriate to the domain in which representations
are being used. For example, where a domain requires discussion of
categorisation, the language should allow developers to use factors, such as
spatial layout, which suggest a conceptual grouping to the reader. Finally, we
suggest that it is important for a specification language to provide a clear, easily
visible structure for representations, since, in the absence of a given structure,
readers will have to waste time and effort in constructing one for themselves.
We argue that any structure is better than none, since it helps the reader to
‘chunk’ the information presented. Over and above this, a structure will be
particularly effective if it in some way reflects the structure of information in the
domain, or if it provides the reader with useful abstractions to reason with
(Stenning & Oberlander 1995).
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empirical studies which will confirm this (or otherwise). Only once we are
happy that we have a good set of measures, will we be in a position to do such
studies in order to fully validate our properties in the sense of checking whether
they really are good indicators of understandability of representations.

One approach which we hope to follow up is to compare results from our work
with expert opinion on the ease of understanding of different languages. A survey
of developers who regularly design systems for clients and users who are
unfamiliar with software languages (similar to that reported in Britton et al. 1997)
would also provide useful information. We would like to pursue work on how to
achieve more exact measures of the properties and how to use the measures to
produce precise and useful results. Is it possible, for example, to calculate a
reliable ‘understandability quotient’ of a language? Finally, we have chosen a
very specific context for our research to date: the validation of representations of
software requirements. We recognise that understanding in related contexts may
involve more and different activities on the part of the user, such as the ability to
manipulate and modify the representations. Future work will examine whether
more properties of languages are relevant in this case and what those extra
properties might be.
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